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Abstract—The study of cirrus clouds, which significantly affect the climate, is carried out using lidars. Inter-
pretation of the lidar data is based on the direct solution of the problem of light scattering by particles of crys-
tal clouds. Optical characteristics of perfect ice hexagonal columns, obtained previously, poorly agree with
the lidar observation results. The work describes calculations of the optical characteristics of irregular hexag-
onal ice columns, which are in a good agreement with the experimental results. The calculations for particles
with deformation of a dihedral angle of 90° are presented. It is shown that the logarithm of the scattering
matrix can be linearly approximated well by the logarithm of the particle size. This can significantly accelerate
the calculations of the optical characteristics of clouds. It is ascertained that the optical characteristics are in
a good agreement with the lidar observation results throughout the range of sizes calculated even at deforma-
tion angles of a few degrees.
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INTRODUCTION
Cirrus clouds are thin semitransparent clouds

located at altitudes of 5–12 km and comprising mainly
ice particles with sizes from tens to a thousand
microns. The study of cirrus clouds has an important
applied significance, because they strongly influence
the planet radiation balance [1–5]. Present-day
numerical models of the weather forecast require on-
line information about the cloudiness state on the
global scale in order to increase the forecast accuracy
[6–8]. Optical characteristics of cirrus clouds signifi-
cantly depend on microphysical parameters: the form
and orientation of ice crystalline particles generating a
cloud [9–11]. The main instrument, which allows the
on-line acquisition of data on the microphysical
parameters of clouds, are lidars [12–14]. However, the
interpretation of lidar signals is an intricate problem.

A significant step forward in the solution of the
problem of lidar signal interpretation is the method of
laser polarization sensing [15–18], developed at
Tomsk State University (TSU) and the Institute of
Atmospheric Optics (IAO SB RAS). This method
allows us to efficiently determine the spatial orienta-
tion of plane crystalline particles of cirrus clouds.

The interpretation of the lidar signal requires the
solution of the direct problem of the light scattering by
particles characteristic of cirrus clouds. The method of
physical optics [19, 20] developed at IOA SB RAS and
based on the algorithm of tracing optical beams [21–23]
provides the solution of this problem. The method

allowed us to find the solution for quasi-horizontally
oriented ice particles [24, 25], which plays an import-
ant part when interpreting scanning lidar data [26].
However, the solution obtained for ideal hexagonal ice
columns poorly agrees with data from experimental
observations in the case of their chaotic orientation
[27–29]. In this work, we present the solution of the
problem for irregular hexagonal columns, which agree
well with lidar measurements and can be used in their
interpretation.

IRREGULAR PARTICLES

Results of numerical solutions of the light scatter-
ing problem for ideal hexagonal ice columns differ
from the results of experimental observation. Figures 1
and 2 show the lidar (LR) and depolarized (DR) ratios
calculated for an ideal ice column depending on the
particle size.

In calculations, the following experimentally
obtained dependence [30] between the diameter and
length of the hexagonal column was used:

(1)

where L is the column length; D is the circle diameter
around the hexagonal base.
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Since the parameter of the form

(2)

and the dependence of the diameter on the column
length vary with the particle size, it is convenient to use
the maximal size of a hexagonal particle in order to
determine its characteristic size, equal to

(3)
Since experimentally observable values of the

depolarization ratio, lying in range 0.3–0.5, and the
lidar ratio, lying in range 20–40, disagree with the cal-
culations, shown in Figs. 1 and 2, throughout most of
the range of particle sizes, the conclusion can be
drawn that the model of ideal hexagonal particles
poorly describes the microphysical content of clouds.

The above-said is supported by the fact that a halo
of 46° characteristic of the light scattering on the ideal
hexagonal particles [32] (Fig. 3) is seldom observed
experimentally as compared to a halo of 22°, which is
proved by observations, conducted, for example, at
the TomSky chamber [33, 34].

It should be noted that a halo of 22° is formed on
lateral sides of a crystal, the angle between which is
60°. A halo of 46° is formed due to an angle of 90°
between the base and lateral sides of the crystal (see,
for example, [32]). Taking into account the observa-
tion results, it is possible to assert that in the over-
whelming majority of cases, i.e., in the presence of a
halo of 22° at a simultaneous absence of halo of 46°,
cirrus clouds consist of hexagonal ice particles with the
irregular bases.

Many existing particles have a two-sided angle of 60°
at a simultaneous absence of 90° angle. However, it is
necessary to take into account the fact that the back-
scattered light consists of two components, mirror and
angular. Both components are described in detail in
[25, 27]. In this case, the mirror component is signifi-
cantly lower than the angular one for ideal hexagonal
columns and, as a consequence, the lidar ratio is very
small (on the order of 5). The lidar ratio is determined
by the formula

(4)

where 2A is the extinction cross section; A is the mean
area of the particle projection; M11 is the scattering dif-
ferential cross section, including the angular and mir-
ror components.

For a particle lacking an angle of 90°, the angular
component is absent, and the lidar ratio, formed only by
the mirror component, is very high, more than several
hundreds. In this case, results of lidar observations
point to the lidar ratio in the range 20–40, i.e., the
angular component is present, but to a lesser degree
than for an ideal hexagonal column. The particle with
an irregular angle of 90° corresponds to such a descrip-
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Fig. 1. Depolarization ratio for an ideal hexagonal column
in dependence versus its length.
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Fig. 2. Lidar ratio for an ideal hexagonal column versus its
length.
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Fig. 3. Differential cross section of the scattering M11 for a
chaotically oriented hexagonal column of 150 μm in length
and 60 μm in diameter at a wavelength of 532 nm.
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tion. Thus, a good agreement of theoretical optical
characteristics with lidar observation results can be
expected for particles with a small angle of irregularity.
To test this hypothesis, let us study the optical charac-
teristics of the particles depending on the magnitude of
their irregularity. This will help us to improve the accu-
racy of the available algorithms for lidar signal interpre-
tation.

In order to estimate the influence of the magnitude
of irregularity on the optical characteristics, the parti-
cle shown in Fig. 4 was used. The irregularity magni-
tude is determined by the angle ξ, which varies
between 0 and 10°. The particle irregularity is selected
in such a way as to get rid of the particle symmetry.

In this work, optical characteristics of only chaoti-
cally oriented irregular columns are considered, for
which the Mueller matrix

(5)

where Mf is the Mueller matrix at a fixed orientation;
α, β, and γ are Eulerian angles (see Fig. 4).

CALCULATION OF OPTICAL 
CHARACTERISTICS OF IRREGULAR 

PARTICLES
Optical characteristics of chaotically oriented con-

vex particle for backscattering are fully determined by
the mean area of the particle projection A and Mueller
matrix in the form

(6)

where m14 = 0 for ideal hexagonal particles and <0.05
at irregularity angles up to 10°; therefore, this element
can be neglected.

Since of practical interest are lidar (4), depolariza-
tion

(7)

and spectral ratios

(8)

it is necessary to calculate only three values: A, M11,
and M22 for each wavelength. Here indices 1064 and
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532 mean the wavelength at which the values are cal-
culated.

Despite the fact that the method of physical optics is
significantly faster than accurate methods [35, 36], the
calculation of optical properties of the chaotically ori-
ented particle of the size set consumes a long time,
because the adequate averaging over orientations
requires the preliminary calculation of millions of fixed
orientations [36]. Therefore, it is important to deter-
mine the minimal necessary number of particles for the
calculation, which adequately describes the depen-
dence of optical characteristics on the particle irregular-
ity angle. The example of the dependence of optical
characteristics at the 532-nm wavelength on the irregu-
larity angle for 100-μm particle is shown in Fig. 5.

As is seen from Fig. 5, the dependence of the opti-
cal characteristics on the irregularity magnitude can
be adequately described from the calculation of optical

Fig. 4. The model of irregular particle.
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Fig. 5. Dependence of optical characteristics on the angle
of the particle irregularity. Points denote the irregular par-
ticles selected for the calculation.
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characteristics for a few correspondingly selected
irregular particles.

Figure 5 shows that the elements of the Mueller
matrix significantly change with the irregularity mag-
nitude, supporting the fact that a weak deformation of
a two-side angle of 90° causes significant variations in
optical characteristics of hexagonal ice columns. Note
that the deformation of the shape insignificantly affect
the mean area A.

Calculation results also have shown that the rate of
variation in the optical characteristics grows with the
particle size and with a decrease in the wavelength
(Fig. 6).

Since the magnitude and form of crystal irregular-
ity are unknown in a natural cloud, we suppose that
the angle of deformation of particles obeys the Mises
distribution [37]:

(9)

Here ξeff is the effective angle of the crystal irregular-
ity; Np is the normalizing constant.

Of the practical interest is the dependence of opti-
cal characteristics of crystals on the effective irregular-
ity angle, i.e., the values averaged by the formula

(10)

where the limits of the integration correspond to initial
data, and the integral in the denominator is the normal-
izing constant for the von Mises distribution. Results of
averaging for a 100-μm particle are shown in Fig. 7.

EXTRAPOLATION OF CALCULATED DATA
Hexagonal particles observed in cirrus clouds

essentially differ in their sizes. The majority of parti-
cles have sizes from 10 to 1000 μm [30, 38, 39]; how-
ever, very small particles (∼5 μm) and very large ones
(∼10000 μm) can be also observed.

In the case where the cloud of particles is meant, it
is supposed for simplicity that the distribution of par-
ticle sizes obeys the gamma distribution:

(11)

(Dm is the modal size; Г(p) is the gamma function; and
p can be taken as equal to 2 [40]). In this case, the opti-
cal characteristics averaged over sizes M(Dm) can be
calculated as

(12)
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where the modal size varies between 10 and 1000 μm,
and the integral, generally speaking, is taken from 0 to
infinity.

In order to conduct the adequate averaging in the
above range of modal sizes, it is sufficient to have ini-
tial data in the range between at least 5 and 10000 μm,
and renormalize the gamma distribution taking into
account the limited region of integration:

(13)

Calculation of optical characteristics for particles
of fixed sizes was conducted by the method of physical
optics [19, 20] in accordance with the technique pre-
sented earlier [41].
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Fig. 6. Dependence of the differential cross section on the
angle of irregularity, particle size, and wavelength.
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Since the computational complexity of the method
increases with increasing particle size, it was possible
to obtain the optical characteristics in reasonable time
only for particles with sizes up to 1000 μm. The bottom
boundary of size, 10 μm, was dictated by the limits of
applicability of the method of physical optics [42]. The
calculation result allowed us to reveal a very important
fact: logarithms of the elements M11 and M22 can be
approximated with a good accuracy by linear functions
of the size logarithm

(14)

where x is equal to the diameter D for plates and drox-
tals and to the length L for columns and “bullets”; the
coefficients a, b, c, and d are given in Table 1.

As an example, Fig. 8 shows calculations and
results of interpolation at a wavelength of 532 nm. The
interpolation errors are shown in Fig. 9.

The dependence on the optical characteristics A,
M11, and M22 for an ideal hexagonal column is shown
in Fig. 10. It is seen that the variation in dependence
of the column length on the diameter at the point of
100 μm in accordance with Eq. (1) leads to a variation
in the linear approximation of the parameters.

A possibility of linear approximation of all three
necessary parameters allows the extrapolation of the
numerical solution for ideal hexagonal columns to the
necessary range 5–10000 μm.

Such an extrapolation is possible also for irregular
particles. As an example, Fig. 11 shows the depen-
dence of the element M11 on the size and value of the

11

22

log( ) log( ) ,
log( ) log( ) ,

M a x b
M c x d

= +
= +

irregularity (a wavelength is 532 nm). The calculation
was conducted for particles of seven sizes: 10, 31.6,
100, 316, 526, and 1000 μm.

Figures 12 and 13 show linear approximations of
optical characteristics for effective angles of irregular-
ities of 3° and 7°. Figures 12 and 13 confirm the possi-
bility of the linear extrapolation for irregular columns
as well.

OPTICAL CHARACTERISTICS 
OF IRREGULAR PARTICLES

Figures 14–17 show the depolarization, lidar, and
spectral ratios and differential cross sections of the

Table 1

Particle type Range and ratio 
of sizes Wavelength, nm a b c d Maximal error, %

Hexagonal 
column

D = 0.7L, 
10 < L < 100

355 2.981 –2.230 3.003 –2.465 0.4
532 2.942 –2.395 2.994 –2.679 0.6

1064 2.903 –2.652 2.993 –3.007 1.0

D = 6.96L0.5, 
100 ≤ L < 1000

355 1.558 0.627 1.491 0.562 0.2
532 1.542 0.424 1.490 0.337 0.3

1064 1.530 0.108 1.494 –0.002 0.4

Hexagonal 
plate

L = 2.0202D0.449

10 < D < 1000

355 1.884 –0.982 1.875 –1.297 4.4
532 1.875 –1.213 1.870 –1.493 3.8

1064 1.869 –1.545 1.869 –1.796 2.5

Bullet D = 2.31L0.63

10 < L < 1000

355 1.947 –1.116 1.905 –1.280 1.7
532 1.917 –1.280 1.893 –1.471 1.6

1064 1.870 –1.485 1.875 –1.729 2.2

Droxtals

10 < D < 80
355 2.247 –1.783 2.198 –2.061 2.1
532 2.314 –1.915 2.272 –2.222 1.5

1064 2.616 –2.493 2.536 –2.750 1.8

80 ≤ D < 1000
355 2.132 –1.595 2.142 –2.011 0.7
532 2.132 –1.595 2.142 –2.011 0.6

1064 2.132 –1.595 2.142 –2.011 0.8

Fig. 8. Differential cross section of scattering M11 for
plates, “bullets”, and droxtals. Values calculated by the
method of physical optics are denoted by points.
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Fig. 10. Size dependence of optical characteristics of an
ideal column. Points denote the sizes selected for the cal-
culations.
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Fig. 11. Dependence of the element M11 of the Mueller
matrix for an irregular column on the particle size and the
effective angle of irregularity.
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scattering (M11) for irregular hexagonal columns. Fig-
ure 18 shows the differential cross section over all scat-
tering angles versus the irregularity angle calculated in
the geometrical optics approximation for a wavelength
of 532 nm, which demonstrates the break of a halo of
46° with an increase in the irregularity angle.

CONCLUSIONS

Thus, it is shown in this work that optical charac-
teristics, calculated for irregular particles, agree well
with lidar observation results even at small angles of
irregularity. In particular, for a cloud of particles with
a modal size of 100 μm at an effective irregularity angle
of 3°, the calculated values of the depolarization
(0.38), lidar (30 sr), and spectral (0.78) ratios repro-
duce the lidar observation results well [43]. It is also

seen that for such a particle a halo of 46° is absent,
which corresponds to observations.

The calculation results have shown that the model
of irregularity suggested adequately describes optical
characteristics of actual cirrus clouds in a wide range
of experimental values.

The results of the work can be used for the interpre-
tation of lidar signals, and show the necessity of taking
into account weak irregularities of the shape of cirrus
clouds when calculating the optical characteristics.
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