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Abstract—The applicability of formulas derived in the first part of this work has been studied in a numerical
experiment. The geometrical optics approximation is shown to be applicable only on short paths whose length
is less than the corresponding diffraction lengths by a factor of hundreds. The restrictions are caused by oscil-
lations of the kernel of the initial integral equation. They lead to strong oscillations of the third derivative of
the measured data. The formulas based on the asymptotic formula of the kernel for a point receiver are slightly
sensitive to oscillations of the measured data. Applying the formulas for a point receiver in the case of receivers
with a finite radius smoothes the retrieved distributions and shifts them with respect to the given ones. A tech-
nique of taking these factors into account in the process of retrieving has been proposed. Together with
smoothing of the retrieved distributions, applying the point receiver approximation leads to partial loss of the
information about the turbulence spectrum in the retrieved data. This allows one to simplify the retrieval pro-
cedure by reducing it to calculating usual derivatives of the second order.
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INTRODUCTION

In the first part of this work [1], asymptotic solu-
tions were found for the integral equation of the rela-
tion between the distribution of the structure charac-
teristic of refractive index f luctuations along a lidar
sounding path and backscattering enhancement fac-
tor. The statement of the problem was considered in
detail in [1] and corresponds to theoretical investiga-
tions [2, 3] and experiments [4, 5]. The asymptotic
solutions are reduced to finding usual or fractional
derivatives of the measured quantities. This paper
presents results of the numerical study concerning the
applicability range of the asymptotic solutions and
simple modifications of the retrieval formulas for
expanding the ranges of their applicability.

The technique of studying the applicability ranges
is trivial. For a given distribution of the normalized
structure parameter , the mea-
sured quantity, i.e., the enhancement factor of the
received power q(x), is calculated by the formula

(1)

where  denotes the function (the kernel of the
integral equation)

(2)

Here,  is constant, k0 = 2π/λ, λ is
the light wavelength; R is the radius of the receiving
aperture; and J1 is the Bessel function. As was shown
in [1], the function  in the general case is a
complicated oscillating function.

Then, using the function q(x), the function Y(x) is
retrieved by the asymptotic formulas. It is denoted by
a capital letter to distinguish it from the given one. The
applicability of the approximate formulas is estimated
by differences between the functions Y(x) and y(x).

1. GEOMETRICAL OPTICS APPROXIMATION
The solution of the inverse problem in the geometri-

cal optics approximation is defined by the relation [1]:
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where γ is the power index of the three-dimensional
spectrum  of refractive index f luctua-
tions; the quantity Bg(R) is defined by formulas (20)
and (25) in [1].

Since the measured quantity q(x) can vary within a
broad range, it is more convenient to pass to the func-
tion f(x) = q(x)/q0,0(x), where q0,0(x) is the backscat-
tering enhancement factor in a statistically homoge-
neous medium (y = 1); the factor is calculated in the
geometrical optics approximation:

(4)

(  is the geometrical

optics approximation of the kernel [1]).
Then, the following relation follows from (3) and (4)

for the function f(x):

(5)

In all the examples considered below, the derivatives of
the functions were calculated by the formulas

(6)

where , ; and Δ is the sam-
pling interval in the coordinate х.

First, the simplest model was considered: у(х) = 1.
The retrieval results for three values of the aperture
radius are shown in Fig. 1.

It is seen that the geometrical optics asymptotics
poorly operates in the retrieval problem. The functions
Y(x, R) presented in this figure decrease with the dis-
tance approximately as 
Correspondingly, the systematic error of retrieving
exponentially grows with the distance.

In the case у(х) = 1, this error can be eliminated if
the function q0,0(x) which is calculated in the geomet-
rical optics approximation is replaced in the determi-
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i.e., by setting f(x) = q(x)/q0(x). If у(х) = 1, f(х) = 1
and, according to (5), Y(х) = 1.

Then, it was investigated whether formula (5) with
f(x) = q(x)/q0(x) is applicable for retrieving the step-
wise distribution y(x) of the form

(7)

The retrieval examples are presented in Fig. 2. The
calculations were carried out for a turbulence model
with the spectrum index γ = 11/3.

Figure 2 shows errors which can be made by using
the geometrical optics asymptotics. It is interesting
that the structure of retrieval errors as functions of the
coordinate х is oscillating, by analogy with the struc-
ture of functions u(Q) presented in Fig. 3 in [1]. As
seen from Fig. 2, the function y(x) is retrieved cor-
rectly after the jump point X0 only on a certain interval
Lg marked in the upper figures by a double bar. At R =
10 cm and a small value of the half-width of the
smoothing window S = 20 m, the interval Lg slightly
depends on the coordinate X0. It increases from 0.4 (at
X0 = 0.2 km) to 0.5 km (at X0 = 1.2 km). When the data
are smoothed, the applicability interval of the retrieval
formulas Lg increases approximately by the half-width
S of the smoothing window. For a window half-width
S = 200 m, the interval Lg correspondingly varies from
0.6 to 0.8 km. At values of the receiving aperture radius
R = 5 and 20 cm, the interval Lg, as was elucidated,
depends on R approximately linearly and varies at S =
200 m and x = 0.25–2 km within Lg = 0.35–0.4 km at
R = 5 cm and Lg = 1.1–1.6 km at R = 20 cm.

Figure 3 shows how formulas of the geometrical
optics approximation operate in the case of more com-
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Fig. 1. Retrieved distributions Y(x) for the given y(x) = 1
and three values of the aperture radii shown near the
curves. The calculation parameters are λ = 0.532 μm, γ =
11/3, and Δ = 250 m.
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Fig. 2. Distributions y(x) and Y(x) specified by formula (7) (dotted lines) and retrieved ones (solid curves) at the aperture radius
R = 10 cm. The distances X0 from the jump of the distribution y(x) are equal to 200 m for the left column and to 1200 m for the
right column. The sampling interval was chosen to be Δ = 20 m. The half-width S of the Gaussian smoothing window for the data
fn is shown near the plots.
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0.532 μm, γ = 11/3, and Δ = 20 m. The figures show half-widths of the smoothing windows S.
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plicated distributions y(x). The distributions y(x) in
calculations of Fig. 3 were specified in the form

(8)

and with the index m = 20 (super-Gaussian layers) and
m = 2 (Gaussian layers).

It is seen from Fig. 3a that only one and a half layers
are resolved in the case of layers with steep boundaries
in the absence of smoothing (x ≤ 0.4 km); in the case
of smoothing by a window with S = 200 m, two layers
(x ≤ 0.6 km), as for a single jump. Smooth Gaussian
layers are resolved on a larger interval of x ≤ 1 km; in
this case, the data smoothing is not required.

The performed calculations allow one to conclude
that the applicability range of the geometrical optics
asymptotics is narrow. For most commonly used lidars
with receiving aperture radii of about 10 cm, the
retrieval is possible at sounding distances not exceed-
ing 0.5–1 km. An additional restriction upon the
applicability can be caused by measurements noise
which was not taken into account in the calculations.

2. POINT RECEIVER APPROXIMATION
The solution of the inverse problem in the point

receiver approximation is defined by relation (23) in [1]:

(9)

The applicability of formula (9) was verified in
the same way as the verification of the geometrical
optics approximation. Namely, the function q(x) was
calculated by formulas (1) and (2); the retrieved
function Y(x), by formula (9). Let us denote

(10)

where

(11)

(  is the approximate kernel for the point
receiver).

Relations (9) and (11) for the function f(x) yield the
formula
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Some results of the numerical calculations are pre-
sented in Figs. 4–8. Figure 4 shows retrieval results for
the function y(x) = 1. Here, definitions (10) and (11) of
the function f(x) were used. It is seen that the retrieval
accuracy is not high even in the case with an aperture
with a radius of 1 cm. The retrieval accuracy can be
improved in the same way as in the case of geometrical
optics, namely, by normalizing the function q(x) to the

function  which determines f luc-
tuations at a finite size receiver in a homogenous
medium.

Figure 5 shows examples of retrieving a stepwise dis-
tribution y(x) of the form

(14)

with H = 100 m, for three values of X0 equal to 0.5, 1.5,
and 2.5 km, and for three values of the radius R.

The first thing that is seen in Fig. 5 is the appearance
of oscillations of the retrieved distribution after the
jump in the initial distribution y(x). They are detectable
even at R = 2 cm and clearly seen at R = 4 cm. These
oscillations, in contrast to those when using geometri-
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cal optics retrieval formulas, are removed by simple
smoothing.

The main difference between the retrieved distri-
butions and initial ones is the smearing of the jump
boundary in the retrieved distribution; the smearing is

as large as the radius of the receiving aperture and dis-
tance from the receiver to the jump boundary are
large. For the half-width of the region over which the
jump is smeared, one can take the shift dX0(X0) which
is determined by the equation YS(X0 + dX0) = 1.5.
Here, YS is the distribution Y smoothed with a Gauss-
ian window with a half-width S. Figure 6 shows the
dependences dX0(X0) calculated for S = 300 m for four
values of the radius R.

The shift dX0(X0, R) increases with both in the aper-
ture radius R and coordinate X0. Satisfactory approxi-
mations of the dependences dX0(X0, R) in Fig. 6 are

(15)

where the length dimension parameters are defined as
 and  The values of the

dimensionless coefficient СR at R = 1, 2, 3, and 4 cm
are СR = 0.28, 0.31, 0.33, and 0.4, respectively.

Figure 7 shows an example of retrieving a compli-
cated distribution consisting of three Gaussian layers:

(16)

with the coordinates Х1 = 500 m, Х2 = 2000 m, Х3 =
3500 m, and layer half-width Н = 250 m.

It is seen that the retrieved distributions differ from
the given ones in the presence of a shift of maxima and
minima and in smoothing of the initial distributions.
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One can suppose that the shifts dX(X, R) of the
retrieved layers in the case under consideration are
approximately the same as in the example with a
jump-like distribution, i.e., they are determined by
formula (15) with the argument X instead of X0. The
smoothing is also determined by a window with a half-
width approximately equal to dX(X, R). The results of
verifying the hypothesis are illustrated by Fig. 8.

The smoothed functions yS(x) shown in Fig. 8 by
dashed curves were calculated using the procedure of
smoothing with a Gaussian window with a variable
width. The half-width of the smoothing window as a
function of x was specified to be proportional to the
shift dx(x, R), i.e.,  where
KS(R) is a dimensionless factor on the order of unity. It
was chosen from the condition of the best visual coin-
cidence of the retrieved and smoothed distributions
YS(x) and yS(x). For R = 2, 3, and 4 cm, the values of
KS are correspondingly 1.5, 1.1, and 0.9.

The retrieved distributions YS are depicted as func-
tions of the argument , taking into account the shift
and defined as

(17)

Here, δ(R) is the correction selected in the same way
as the factor KS(R). Its values at R = 0.02, 0.03, and
0.04 m are δ = 50, 100, and 200 m, respectively. The
values of the corrections for the shift are lower approx-
imate by a factor of ten than the shift (compare with
Fig. 6).

The comparison of the distribution retrieved by the
formulas for a point receiver and the smoothed initial
distribution demonstrates their satisfactory agree-
ment.

In the end of this section, one should note an inter-
esting result found when solving the inverse problem
of remote sounding of turbulence with a power index γ
of the three-dimensional spectrum equal to 4. Instead
of formulas (12) and (13), one can retrieve the distri-
bution Y(x) in this case by the function f(x) in terms of
usual derivatives:

(18)

It turns out that the retrieval by this formula is pos-
sible not only for the turbulence with γ = 4 but also for
the turbulence with γ = 11/3. In this process, the func-
tion f(x) should be still defined as f(x) = q(x)/q0(x),
where the functions q(x) and q0(x) are calculated for a
medium with the index γ = 11/3. The check demon-
strated that formula (18) is applicable in the case of
receivers whose aperture radii exceed 1 cm. Noticeable
distinctions are observed only for aperture radii less
than 0.1 cm.
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CONCLUSIONS
It has been shown that if formulas for retrieving the

distribution of the structure parameter  by data
from measurements of the backscattering enhance-
ment factor are based on the geometrical optics
asymptotics of the kernel of the integral equation, they
are applicable only on short paths with an extension of
about 0.5 and 1 km when the radius of the receiving
aperture is 10 and 20 cm, respectively. These exten-
sions are less by a factor of hundreds than the corre-
sponding diffraction lengths  which are
equal to approximately 100 and 400 km at λ = 0.53 μm.
The restrictions are caused by small kernel oscillations
which lead to strong oscillations of the third derivative
of the measurement data.

Similar formulas based on the asymptotic formula
of the kernel for a point receiver are less sensitive to
oscillations of the measured data since they include
derivatives of order not higher than two. Applying the
formulas for a point receiver in the case of receivers
with a finite radius leads to smoothing of the retrieved
distributions and their shift with respect to the given
ones. These factors are regular and easy to take into
account when interpreting the results of retrieving the
measurement data with receivers whose radius does
not exceed 4–5 cm.

Together with smoothing of the retrieved data,
applying the point receiver approximation leads to a
partial loss of the information about the index of the
turbulence spectrum in the retrieved data. This allows

one to retrieve the measurement data with the index
γ = 11/3 by the simple formula (18).
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