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Abstract⎯A method is considered for rendering coastal water depths according to multi- and hyperspectral
remote sensing imagery in the visible and near-infrared spectral regions. The depth is recovered for each pixel
on the basis of solution of the inverse problem, which consists in artificial neural network learning with the
use of a semianalytical model of radiation transfer in water, taking into account the effects of light scattering
and absorption in the underwater light field, at least in three informative spectral channels for each bottom
type. A possibility of adjusting the learning process is provided by the use of regression algorithms for deter-
mining organic and mineral impurities in water from their in-situ measurements. We enriched the library of
the spectral characteristics of different bottom types and found informative identifiers for them. The results
are tested on aircraft and hyperspectral space imagery data.
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INTRODUCTION

Active development of the coastal sea areas and
shelf zones during mining, dredging, and land recla-
mation leads to changes in the bottom relief, which
requires periodical updating of information on the
depths of the seas in coastal areas to ensure the safety
of navigation. In the solution of this problem, Earth
remote sensing means can be actively involved,
because they allow receiving on-line information
about the state of waters (in transparent ocean water at
depths up to 20–25 m [1]) through measurements of
upward radiation above the sea surface. The develop-
ment of various technologies for receiving and pro-
cessing hyperspectral (HS) imagery data, and the
design of multispectral (MS) systems with many chan-
nels in the visible and near-IR spectral regions, pres-
ent the possibility of on-line production of bathymet-
ric maps with significantly lower costs as compared to
traditional shipboard multi-beam echo sounders.

The known aerospace methods for the study of
shelf depths use the empiric approach based on the
analysis of images in two spectral regions: violet (400–
450 nm) and yellow (580–620 m). This approach has
certain disadvantages, conditioned by the possibility
of monitoring only clear water and the need to obtain
reference data on the depths for deriving a regression
relation between the depth and reflectance for each
bottom type.

The first data demonstrating the possibility of
using these two spectral channels for assessing coastal
waters were published by Lyzenga in 1978 and then
developed by Stumpf [2, 3]. The method is reduced to
the approximate estimate of depths in the violet
region, where the effect of suspended mineral matter
on the attenuation factor is absent, and in the yellow
region, where the absorption by phytoplankton pig-
ments is minimal.

Actually, the minimal coefficients of solar radiation
attenuation by limnic components (dissolved and sus-
pended organic matter, nonorganic salts, mineral sus-
pensions, and so on) in transparent waters are observed
in the spectral band 400–450 nm. The radiation flux at
the wavelength λ = 470 nm in clear water can penetrate
to depths of 10–20 m, while at λ = 750 nm it is almost
totally attenuated in the layer 0.2–0.4 m [4]. At the
same time, optical properties of the water column in
the violet and blue spectral regions are strongly
impacted by phytoplankton and dissolved organic
matter, which significantly affect the light transmis-
sion, increasing the absorption in the short-wave
spectral region. The maximal contribution of phyto-
plankton pigments to the blue absorption region is
about 35% for highly productive sea and ocean waters
[5]. Therefore, in the presence of phytoplankton, the
depth should be estimated taking into account the
chlorophyll concentration.
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These circumstances have led to the importance of
developing the method for determining the depth of
coastal waters, which is considered in this paper. The
method is based on the use of a semianalytical algo-
rithm for estimating the radiation transfer in sea water
taking into account the influence of radiation attenua-
tion in water and the contribution of the bottom albedo
to the water surface brightness [4, 6]. The primary dis-

tinction of the method from the known analogues [2,
3] is the independence of the availability of initial data
on depths at reference points, because the depth
retrieval is performed through artificial neural network
(ANN) learning using the equation of radiation trans-
fer in water in the most informative spectral channels.
In the learning, the backpropagation algorithm is used,
which relates to the family of optimization methods,
particularly to the method of gradient descent.

The generalized scheme of the technology used is
shown in Fig. 1 and includes the following stages: pre-
processing, including the atmospheric correction of
data and correction of solar f lashes; thematic process-
ing, including bottom classification to two basic types
(algae and ground), and retrieval of the depth of
coastal sea areas. Below, we sequentially describe the
methods used.

LEARNING AREA AND INPUT DATA
The experimental data on reflection characteristics

of coastal seas were received and the suggested algo-
rithm for depth estimation was tested using the results
of test-flights above the Black Sea waters (near Sevas-
topol Bay, Kacha, and Koktebel) organized by
Mozhaysky Military Space Academy.

During the experiments, the airborne video-spec-
trometer NPO “Lepton” (spectral resolution of 0.4–
3 nm, spectral range 402–1031 nm) and the ground-
based FieldSpec 3.0 spectroradiometer (spectral res-
olution of 3–10 nm, spectral range 350–2500 nm)
were used. Together with data of aircraft and marine
measurements, data from hyperspectral devices from
the Russian spacecraft (SA) “Resurs-P” were used.

The FieldSpec 3.0 spectroradiometer was used for
measurements of bottom spectral brightness coeffi-
cients r(λ) in the shelf zone (Fig. 2), which were then
used as input data for the algorithm, as well as spectral
characteristics of shelf zones up to 3 m deep. From five
to ten measurements were conducted for each zone;
the r(λ) confidence interval was within limits of
0.001–0.025 with a reliability of 0.95 and increasing
with wavelength for algae.

MAIN PROCESSING STAGES
The first stage of the algorithm for depth estimation

is the atmospheric correction of aerospace imagery
data; it was performed using the MODTRAN 5.3.2
software for atmospheric radiation transfer simulation.

At the next stage of the processing, the bottom clas-
sification was performed using the following indices:

(1) KS = r570 – r480 for the open ground identifica-
tion (sand, pebble);

(2) for the algae bottom, the wavelength value was
used at which the gradient of the spectral characteris-
tic was zero within 660–750 nm. In this range, the
spectral signature of the bottom vegetation is charac-
terized by a local brightness maximum at a wavelength

Fig. 1. Flow chart of the algorithm for estimation of depths
of shelf sea zones from multi- and hyperspectral data.
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Fig. 2. Spectral brightness coefficients for various bottom
types (open ground and algae) typical for the Black Sea.
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of about 710 nm (for brown algae) and 720 nm (for
green algae).

Threshold values of the indices were found from val-
ues of the water depth reflectance calculated using a
radiation model of light transfer through water and ver-
ified by experimental data. It was confirmed that the
indices suggested, regardless of their variability versus
hydro-optical properties of water, had a sufficient divis-
ibility for their segmentation at depths of up to 4–5 m
(at large depths, the bottom type weakly influences the
water depth brightness). For example, threshold values
of KS for pebble in Sevastopol Bay were less than 0.015;
for algae, less than 0.034; for pure sand (or limestone),
between 0.016 and 0.08. In that case, it was important to
choose the correct sequence of the classification algo-
rithm by the decision tree method, in which algae areas
were identified at the first stage, and only then the
ground bottom types were classified in the remaining
part of an image. All other sea areas, not meeting the
threshold values of the indices, are related to deep water
regions (deeper than 4–5 m).

Just after termination of the bottom classification,
the depths of the sea areas under study are determined.
The model of radiation transfer in the water column
requires the parameters of radiation absorption and
scattering in water, due to the presence of mineral and

organic admixtures, probably unknown, to be set as
input data. In turn, to solve the inverse problem and
derive unknown parameters, including the depth, the
authors suggest using multivariate optimization meth-
ods based on the preference of multivariate multi- and
hyperspectral data. One of such methods is the algo-
rithm of gradient descent, a version of which forms the
basis for the backpropagation learning rule [7].

In this case, the model of radiation transfer in the
water column [8]:

(1)

is used in the network learning. Here, Rа(λ) is the sea
spectral brightness coefficient; Rb(λ) is the spectral
value of the bottom albedo; Rdp(λ) is the spectral coef-
ficient of the water column diffuse reflection for an
infinitely deep sea; kd(λ) = bw(λ) + bbp(λ) + aw(λ) +
aph(λ) is the spectral index of radiation vertical attenu-
ation (forward and back), m–1; aw(λ) and bw(λ) are the
known coefficients of absorption and backscattering
by clear sea water [5]; aph(λ) is the coefficient of
absorption by dissolved organic matter and phyto-
plankton pigments; bbp(λ) is the coefficient of radia-
tion backscattering by the suspension; H is the depth,
m; and f = 1.04/cos(Q) is the index depending on the
solar beam refraction angle Q.

The spectral values of absorption coefficients of
phytoplankton pigments and backscattering by sus-
pended matter are expressed in terms of the chloro-
phyll concentration [9] and specific absorbance at the
reference wavelength [10]:

(2)

(3)

where C is the chlorophyll concentration, mg/m3;
bbp(660) is the specific coefficient of backscattering by
suspended matter at a wavelength of about 660 nm;
ξ is the particle form and size factor [11]; A(λ) and
B(λ) are the empiric coefficients determined for each
channel [9].

During the simulation, a set of vectors of values
 are calculated, the so-

called pairs of input and output data, which are used
for the ANN learning.

Further, the sea depth is calculated via the weight
coefficients found during the learning by the back-
propagation rule. The weight coefficients result from
approximation of the physical model of radiation
propagation in water and are iteratively corrected
toward the configuration that allows the network to
distinguish between prototype images of interest. The
known data received in the experiment can also be
supplied to the network input, thus correcting the net-
work weight coefficients. The diagram of the method
suggested is shown in Fig. 3. The vectors of values of
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Fig. 3. Structural scheme of the use of ANN method for
estimation of shelf sea area depths (l, m, and k are the num-
ber of variable values of С, bbp(660), and H, respectively;
Wis are the weight coefficients between input and hidden
layers of ANN; Wsj are the weight coefficients between the
output and hidden layers of ANN; υ is the ANN learning
time).
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the water surface spectral brightness in three most
informative spectral ranges R(λ1), R(λ2), and R(λ3)
are taken as input data of the input layer during ANN
learning, assuming one spectral band per node. The
input data are analyzed in hidden and output layers of
the neural network. The analysis results are contained
in the output layer, which is a data array that includes
the information on the depth H, specific index of
backscattering by suspended matter, and the chloro-
phyll concentration C.

For solution of the inverse problem of depth estima-
tion, it is the most reasonable to use the data on the
water depth brightness recorded in three spectral chan-
nels, corresponding to violet (400–450 nm) or blue
(450–520 nm), green (510–580 nm), and yellow (580–
620 nm) spectral regions, or in spectral channels cen-
tered at the wavelengths 425 or 485, 545, and 605 nm.
This is justified by the fact that the minimal solar radia-
tion attenuation coefficients are observed in transparent
waters in the 400–450 nm spectral band and near, and
the brightness in the two last spectral channels charac-
terizes the chlorophyll absorption and concentration of
suspended matter that determine the backscattering.

At the last stage of the algorithm, results of the
depth calculation can be corrected in the case that the
known statistical dependences between the spectral

brightness and the chlorophyll or suspended matter
concentration, expressed through radiation backscat-
tering coefficient by suspended matter, are available.

The concentration C of the total content of chloro-
phyll а can be determined with the help of known bio-
logical optical indices, for example, given in [12]:

(4)

where Z is the vector of coefficients of regression

between  and chlorophyll concentration C

found from in situ measurements.
The coefficient of backscattering by suspended

matter can be found from the regression algorithm
based on field measurements with the use of the mean
values of the brightness coefficient at a wavelength of
about 660 nm [13]:

(5)

In turn, knowing the specific index of backscatter-
ing, it is possible to find the concentration of sus-
pended matter Csm = Mbbp(660) + N, where M and N
are the linear regression coefficients [14].
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Fig. 4. (a) Depth mapping of a Black Sea region (Kacha) from “Resurs-P” HS images; (b) dependence between calculation
results and data on depths from bathymetric maps.
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Based on the coefficient calculated, the depth is
refined and corrected for each pixel of multi- and
hyperspectral images, i.e., the network learning is per-
formed with a reduced data set.

RESULTS
The algorithm for depth retrieval was verified by

“Resurs-P” HS imagery data, and the reliability of the
bottom classification was estimated in the field experi-
ments in coastal areas of the Black Sea. Figure 4 shows
the results of depth mapping of the Black Sea area in the
vicinity of Kacha (44°46′22″ N, 33°32′19″ E). To esti-
mate the accuracy of the method suggested, bathymet-
ric maps (http://navionics.ru [15]) were used.

In total, about 60 points were used for the verifica-
tion, by which the linear regression between calculated
and mapped depths was constructed, the correlation
coefficient and mean square root measurement error
(RMSE) were determined. The comparison of HS
data processing results and available sea maps have
shown their high coincidence: the correlation coeffi-
cient is equal to 0.9 in the shallow area of the sea, the
differences did not exceed 1.5 m for depths up to 7 m
and reach 3 m at depths more than 7 m. In this case,
maximal errors correspond to sea areas with high con-
tent of radiation-absorbing phytoplankton.

To implement the depth estimation method, the
software for thematic processing of multi- and hyper-
spectral data was developed [16]. The library of spectral
characteristics of different bottom types and waters,
compiled during flight experiments and ground-based
spectrometric measurements, is an inherent part of the
software.

CONCLUSIONS
The constant updating of the depths of sea shelf

zones is one of key problems of the hydrobiological
studies of seas. Solution of this problem is possible
with the help of remote data in the visible spectral
region; however, the use of them can be limited due to
a lack of information on depths at referent points and
on light attenuation coefficients during its propagation
through the water column. We suggest a method which
allows the retrieval of depths in the sea shelf zones even
in the absence of this information. The depths are esti-
mated due to complex use of the physical model of
radiation transfer in water, multi- and hyperspectral
data in the visible and near-IR spectral regions, and an
artificial neural network algorithm, which provides a
solution of multiparametric problems of nonlinear
optimization. An advantage of the ANN is the learning
capability and the possibility of finding complex
dependences between input and output data while
gaining a reliable result, even with incomplete initial
information.

The applicability of this approach was shown in the
update of Black Sea shelf depths from hyperspectral

data of high and low spatial resolution. The bathymet-
ric estimates agree well with open-access depth maps,
as well as with field measurement results (with a mean
measurement error of 14%). The depth recovery for
each pixel was provided by:

– application of water depth brightness coefficient,
at least in three spectral channels of the visible spectral
region;

– an additional stage of bottom classification, the
brightness of which significantly contributes in the
coefficient of spectral brightness of shallow waters;

– consideration of interactions between physical
factors that form reflecting characteristics of natural
radiation by the water surface in a few spectral chan-
nels of multi- and hyperspectral data due to the light
absorption and scattering by limnic components in the
water column;

– ANN learning with the use of dependences
between hydro-optical indices (concentration of chlo-
rophyll a and suspended matter) and the brightness of
upward radiation from the water surface at the wave-
lengths chosen from field observation results.
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