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Abstract—This paper is devoted to the study of the thermal diffusion of nanoparticles in dense gases and fluids
by the method of molecular dynamics with Rudyak–Krasnolutskii nanoparticle–molecule and Rudyak–Kras-
nolutskii–Ivanov nanoparticle–nanoparticle potentials. The thermal diffusion and binary diffusion coefficients
were calculated with the help of the fluctuation-dissipation theorem. Nanofluids simulated consisted of argon
as а carrier medium and aluminum nanoparticles. Dependences of the nanoparticle thermal diffusion and Soret
coefficients on the particle diameter and volume concentration were derived. The thermal diffusion coefficient
showed a significant dependence on the particle size for small nanoparticles (1–4 nm diameter).
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INTRODUCTION
Nanoparticles are intermediate in size between

ordinary molecules and macroparticles, including
Brownian. A fullerene is the smallest nanoparticle.
Viruses, which are tens of nanometers in size, are in-
between. The specific small sizes of nanoparticles
determine a number of their unusual properties. The
properties of nanoparticle transfer in gases and fluids
are also unusual. As a rule, they cannot be described
by classical theories. Thus, dispersed gases and fluids
with nanoparticles have atypical viscosity and thermal
conductivity [1–3], and diffusion of nanoparticles in
fluids and gases is not described by the Einstein and
the Cunningham–Millikan–Davies theories, respec-
tively [4, 5]. In [6], nanoparticle thermal diffusion in
rarefied gases was studied by the molecular thermody-
namics (MD) method; its specific properties were
shown, i.e., the absence of temperature inversion of
the thermal diffusion factor; values of the thermal dif-
fusion factor several orders of magnitude higher as
compared to gas mixtures, etc.

The experimental study of nanoparticle thermal
diffusion in dense gases and fluids has just begun.
Such experiments are technically difficult; adequate
data on the dependence of nanoparticle thermal diffu-
sion coefficient on the particle size, material, and con-
centration can hardly be obtained from these experi-
ments. It is stated in [7] that the thermal diffusion
coefficient normalized to the mass fraction of colloid
particles is independent of their sizes, if the particle
size is much higher than the range parameter in the

interaction between the molecules of the particles and
carrier medium molecules, equal to several molecular
diameters. This condition is violated for small
nanoparticles. It was shown earlier that the thermal
diffusion coefficient depends on the particle size in
nanoaerosols [6]. The aim of this work is to derive the
dependence of the thermal diffusion coefficient of
nanoparticles on their size by the MD method.

SIMULATION TECHNIQUE

The common MD method was used for the simu-
lation, along with the original SibMD software pack-
age, which was earlier used for the solution of different
problems of the nanofluid transfer theory [8–10]. The
simulation was carried out in a cubic cell with periodic
boundary conditions. The interaction between carrier
medium molecules was defined by the Lennard-Jones
potential

(1)

where σ is the effective diameter of medium molecules,
ε is the potential well depth, and  is the dis-
tance between the centers of the i and j molecules.

The interaction between carrier medium molecules
and a nanoparticle was described by the Rudyak–
Krasnolutskii potential [11] (see also [3, 4]):
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(2)

where i = 9, 3; a9 = 9/8; a3 = 3/2;

  
 Here ρр is the nanoparticle material density;

mp is the mass of molecule (atom) matter composing
the nanoparticle; R is the nanoparticle radius; σij and
εij are the parameters of potential (1) of interaction
between the carrier f luid molecules and nanoparticle
molecules.

The nanoparticles interaction potential used was
specially constructed [12]; it has the following form for
monodisperse nanoparticles:

(3)
where

Here  and  are the parameters of Lennard-Jones
potential (1) of the nanoparticle molecule (atom)
interaction.

Potentials (2) and (3) were derived under the
assumption that interactions between carrier medium
molecules and nanoparticle atoms and between
nanoparticle atoms are described by potential (1) with
the parameters σ12, ε12 and  , respectively. The
parameters of the argon molecule interaction potential
were the following: σ = 3.405 Å, ε/kB = 119.8 K (kB is
the Boltzmann constant) [13]. The following parame-
ters of potential (1) for aluminum were used for the
calculation of the parameters of potentials (2) and (3):
σ = 2.551 Å, ε/kB = 857.6 K. The last parameters were
calculated on the basis of data on the Young’s modulus
and the structure of the crystal lattice (face-centered
cubic) by the method similar to that described in [14].
The parameters σ12 and ε12 were calculated from the
simplest combination relations  and
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and the potential truncation radius were specified
similar to the procedures described in [10].

The nanoparticle thermal diffusion and diffusion
coefficients were calculated by the Green–Kubo rela-
tions [15]:

(4)

where

(5)

is the diffusion flux of the second component
(nanoparticles); N is the number of nanoparticles in
the simulation cell; v is the velocity of the ith nanopar-

ticle; JQ(t) is the heat f lux (t is the time); 

is the chemical potential [16];  is the mass

fraction of the second component (nanoparticles),
and n is the number concentration of nanoparticles.
The index α = 1 relates to molecules, and 2, to
nanoparticles; mi is the mass of a particle (molecule or
nanoparticle); V is the volume of the system; ρ is the
nanofluid density; T is the medium temperature; τ is
the plateau value attainment time [17]. Angle brackets
in Eq. (5) mean averaging over the ensemble.

SIMULATION RESULTS
To derive the dependence of the nanoparticle ther-

mal diffusion coefficient on the particle diameter, the
calculations were carried out for aluminum nanoparti-
cles 1–4 nm in diameter in argon at a temperature of
300 K and constant nanoparticle mass fraction C2 =
0.09. The simulation cell size was selected so that the
nanofluid pressure was the pure argon pressure at the
density nσ3 = 0.707. In addition, adequate data acquisi-
tion requires averaging over phase trajectories of the
system simulated [18, 19]. In those calculations, the
ensemble of systems, the averaging was carried out over,
included several thousand independent trajectories.

The dependence of the thermal diffusion coeffi-
cient DT of nanoparticles on their diameter d is shown
in Fig. 1. The triangles correspond to MD simulation
data and the following calculation by Eq. (4). As seen
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from Eq. (4), the thermal diffusion coefficient con-
sists of two components. The simulation performed
has proved their different dependences on the parti-
cle diameter. They can be sufficiently accurately
approximated to power functions of the nanoparticle
diameter d:

(6)

In this case, a1 = 1.342 × 10–8 m2/s; k1 = 1.794; a2 =
1.334 × 10–8 m2/s; k2 = 1.201. The thermal diffusion
coefficient is measured in m2/s, and the nanoparticle
diameter, in nanometers. Approximation (6) is shown
in Fig. 1 by the dashed curve.

The positive sign of coefficient (4) means that
nanoparticles move to cold regions in the direction
opposite to the temperature gradient due to the thermal
diffusion. The first component in the brackets in Eq. (4)
is positive, since the ratio  decreases with an
increase in the temperature at constant pressure and
mass fraction of nanoparticles. The second compo-
nent is negative, since the direction of diffusion
nanoparticle f lux f luctuations is negatively correlated
with the direction of heat f lux f luctuations.

Typical values of the nanoparticle thermal diffusion
coefficient normalized to their mass fraction for systems
with large (d = 106–506 nm) nanoparticles [7], where
the thermal diffusion coefficient is independent of the
nanoparticle size, are  = (43–128) ×
10–9 m2/s. Thus, the values of the thermal diffusion
coefficient calculated in this work (see Fig. 1) corre-
spond well to the experimental data published. At the
same time, the simulation has shown that both com-
ponents of thermal diffusion coefficient (4) show sig-
nificant growth with the particle diameter for small
nanoparticles (1–4 nm in diameter).

1 2
1 2– .k k

TD a d a d=

2,( )C pTμ

2 2(1 – )TD C C

It is also clear from physical grounds that the diffu-
sion coefficient of nanoparticles should decrease with
an increase in their size. Indeed, the MD data show a
decrease in the diffusion coefficient D with an increase
in the particle diameter. This dependence is shown in
Fig. 2. The triangles correspond to MD simulation
data and the following calculation by Eq. (4). This
dependence can be approximated to a power function
of the nanoparticle diameter

(7)
with a = 4.02 × 10–9 m2/s and k = 1.384. Approxima-
tion (7) is shown by the dashed curve in Fig. 2. The
dependence derived differs from the dependence that
corresponds to the classical Einstein formula, accord-
ing to which the diffusion coefficient of a particle is
inversely proportional to its diameter. This difference
is also observed for solitary nanoparticles [8].

The dependence of the Soret coefficient

(8)
is shown in Fig. 3. The triangles correspond to the
MD simulation data and the following calculation by
Eq. (8); the dashed curve shows the approximation
by Eqs. (6)–(8).

CONCLUSIONS
The simulation performed has shown that the ther-

mal diffusion of small nanoparticles in dense gases and
fluids strongly depends on their sizes. At the same
time, when describing the thermal diffusion of large
particles (d = 106–506 nm), the absence of this
dependence is usually mentioned. Besides, it is shown
[7] that experimentally measured characteristic values
of the thermal diffusion coefficient  =
(43–128) × 10–9 m2/s change by three times, which
might well be evidence of such a dependence. The

–kD ad=
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Fig. 1. Thermal diffusion coefficient of nanoparticles ver-
sus their diameter.
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Fig. 2. Coefficient of interdiffusion in a nanofluid versus
the nanoparticle diameter.
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thermal diffusion coefficient of Brownian particles
decreases in inverse proportion to their diameters
and, in addition, depends on the carrier f luid viscos-
ity [20, 21].

It is also important to note that two absolutely differ-
ent effects are observed during the study of the motion
of macroparticles in the temperature field, i.e., thermal
diffusion and thermophoresis (particle motion due to
the temperature gradient along its surface). It is difficult
to distinguish these two effects for large particles.
Therefore, one should be extremely careful when inter-
preting experimental data on the thermal diffusion. In
contrast, when studying the motion of nanoparticles in
the temperature field, only the thermal diffusion takes
place. It is almost impossible to produce noticeable
temperature gradients, which could result in thermo-
phoresis, at sizes of the particle diameter due to the
small sizes of nanoparticles.

ACKNOWLEDGMENTS
The work was carried out under partial financial

support of the Russian Science Foundation (grant
no. 14-09-00312).

REFERENCES
1. V. Ya. Rudyak, “Modern status of research of nanoflu-

ids viscosity,” Vestn. NGU, Fiz. 10 (1), 5–22 (2015).
2. P. M. Kumar, J. Kumar, R. Tamilarasan, S. Sendhilna-

than, and S. Suresh, “Review on nanofluids theoretical
thermal conductivity models,” Engin. J. 19 (1), 67–83
(2015).

3. V. Ya. Rudyak and S. L. Krasnolutskii, “Effective vis-
cosity coefficient of rarefied gas nanosuspensions,”
Atmos. Ocean. Opt. 17 (5–6), 468–475 (2004).

4. V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin,
and E. I. Kauppinen, “Methods of measuring the diffu-

sion coefficient and sizes of nanoparticles in a rarefied
gas,” Dokl. Akad. Nauk Phys. 47 (10), 758–761 (2002).

5. V. Ya. Rudyak, S. N. Dubtsov, and A. M. Baklanov,
“Measurements of the temperature dependent diffu-
sion coefficient of nanoparticles in the range of 295–
600 K at atmospheric pressure,” J. Aerosol Sci. 40 (10),
833–843 (2009).

6. V. Ya. Rudyak and S. L. Krasnolutskii, “On thermal
diffusion of nanoparticles in gases,” Tech. Phys. 55 (8)
1124–1127 (2010).

7. R. Piazza and A. Parola, “Thermophoresis in colloidal
suspensions,” J. Phys. Condens. Matter 20 (18), 153102
(2008).

8. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov,
“Molecular dynamics simulation of nanoparticle diffu-
sion in dense f luids,” Microfluid. Nanofluid 11 (4),
501–506 (2011).

9. V. Ya. Rudyak and S. L. Krasnolutskii, “Dependence of
the viscosity of nanofluids on nanoparticle size and
material,” Phys. Lett., A 378, 1845–1849 (2014).

10. V. Ya. Rudyak and S. L. Krasnolutskii, “Simulation of
the nanofluid viscosity coefficient by the molecular
dynamics method,” Tech. Phys. 60 (6), 798–804 (2015).

11. V. Ya. Rudyak and S. L. Krasnolutskii, “The interaction
potential of dispersed particles with carrier gas mole-
cules,” in Proc. 21st Int. Symp. on Rarefied Gas Dynamics
(Gépadués-Éditions, Toulouse, 1999), vol. 1, pp. 263–
270.

12. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov,
“The interaction potential of nanoparticles,” Dokl.
Phys. 57 (1), 33–35 (2012).

13. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird,
Molecular Theory of Gases and Fluids (J. Wiley and
Sons, New York, 1954).

14. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik,
“Accurate simulation of surfaces and interfaces of face-
centered cubic metals using 12-6 and 9-6 Lennard-
Jones potentials,” J. Phys. Chem., C 112 (44), 17281–
17290 (2008).

15. D. N. Zubarev, Nonequilibrium Statistical Thermody-
namics (Nauka, Moscow, 1971) [in Russian]

16. L. D. Landau and E. M. Lifshits, Course of Theoretical
Physics. Vol. 6. Hydrodynamics (FIZMATLIT, Mos-
cow, 2001) [in Russian].

17. V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and
V. V. Egorov, “The simulation of transport processes
using the method of molecular dynamics. Self-dis-
charge accelerator of bodies,” High Temp. 46 (1), 30–
39 (2008).

18. G. E. Norman and V. V. Stegailov, “Molecular dynam-
ics method: The concept and the reality,” Nanostruk-
tury. Mat. Fiz. Modelir. 4 (1), 31–59 (2011).

19. G. E. Normann and V. V. Stegailov, “Stochastic theory
of the classical molecular dynamics method,” Mat.
Modelir. 24 (6), 3–44 (2012).

20. A. G. Bashkirov, “Nonequilibrium statistical mechan-
ics of heterogeneous systems,” Theor. Math. Phys. 49
(1), 940–943 (1981).

21. G. Nicolis, “On the evaluation of the thermal-diffusion
coefficient of heavy particles using a theory of Brownian
motion in a nonuniform medium,” J. Chem. Phys. 43,
1110–1113 (1965).

Translated by O. Ponomareva

Fig. 3. Soret coefficient in a nanofluid versus the nanopar-
ticle diameter.
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