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INTRODUCTION

Methods that include measurements of sea water
optical properties are among the most efficient meth�
ods for seawater analysis. A bulk of data has been accu�
mulated by now that allows one to correlate seawater
optical properties with concentrations and composi�
tions of the main natural seawater admixtures. The
accumulated data on light absorption and scattering
and fluorescence are basically composed by results of
long�term studies of sea waters different in admixture
compositions with the use of submersible and flow�
through light transmittance meters, spectrophotome�
ters, fluorometers, Secchi disk, and lidars [1–8].

Passive sensing methods allow recording solar fluxes
scattered by the water column. Their magnitudes
mainly depend on light absorption and scattering by
seawater, since the sunlight�excited fluorescent
response of the water is negligible. The seawater spectral
brightness coefficient (SBC) is one of key seawater
parameters measured with passive methods. The radia�
tion flux outgoing from the seawater depth carries infor�
mation about all optically active seawater components,
each certainly influencing the spectrum profile [9–13].

However, shipboard measurements of the SBC
spectrum are difficult, because it is necessary to dis�

criminate between a signal from the water column and
the surface�reflected sunlight. To exclude the reflected
signal, a subsurface spectrophotometer has been
designed for measurements of subsurface irradiance
and radiation flux outgoing from the water depth; for
operation, it requires submersion of the device at sta�
tions or towing devices [14, 15].

Three�channel radiometers were suggested for
remote measurements of the SBC. They measure the
brightness of upward and downward light fluxes and
brightness of the sky area that mainly contributes to the
water surface reflected signal. The SBC spectra were
shipboard measured and processed [16–20]. However,
it turned out that the resulting spectra strongly depend
on the measurement conditions. This might well pre�
vent the wide use of this technique. We suggest a calibra�
tion technique, which relieves the requirements for
weather conditions, under which satisfactorily results
can be obtained. The technique is based on consider�
ation of light absorption and scattering by pure sea
water, almost free of suspended or dissolved admixtures.

The SBC remote measurement technique can be
especially useful when it is required to develop or
refine a regional satellite data decoding algorithm
related to a specific water body and season (see, e.g.,
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[21–23]). In this case, minimally required shipboard
(contact) measurements should be supplemented with
measurements of parameters of the upward radiation
flux which has already entered the atmosphere but has
not been affected by it. Only in such a case can the
atmospheric effect be taken into account correctly. In
addition, rapid sensing methods should be used to
acquire data sufficient for the development of a
regional decoding algorithm in coastal water areas and
inner seas (water type 2 [1, 2]), in view of the strong
spatiotemporal variability of their parameters. A high
resolution is of special importance during monitoring
of coastal water areas impacted by continental runoff.

In this work, a method is described for SBC mea�
surements from onboard a moving ship with a three�
channel optical spectrophotometer. A new calibration
technique is suggested, which allows the use of spectra
measured in cloudy and windy conditions. The spec�
tral coefficients of water absorption are retrieved from
the spectra measured, and the concentrations of main
sea water admixtures are estimated in the region under
study.

SBC SPECTRA MEASURED
DURING SHIPBOARD REMOTE SENSING

The SBC is defined as the ratio of the brightness of
radiation outgoing from the water depth to the bright�
ness of a horizontal perfectly scattering surface that
characterizes the solar irradiation of the water surface:

 (1)

Expressing the magnitude of radiation ascending
from a thin water layer in terms of coefficients of light
backscattering and absorption in this layer and inte�
grating throughout the water column (the coefficients
are taken to be averaged over the sun�illuminated
layer), the equation for SBC in terms of the optical
parameters of water can be derived [3, 4]:

 (2)

where bb(λ) is the coefficient of water column back�
scattering; a(λ) is the water absorption coefficient; k0

is a certain constant determined by light transmission
through the water–air interface. 

To calculate SBC, three parameters were shipboard
measured at each point: the upward radiation bright�
ness, which includes the brightness of radiation scat�
tered by the water column and brightness of sunlight
reflected by the seawater surface, the brightness of the
sky area that mainly contributes to the reflected radia�
tion, and the brightness of a horizontal white diffuse
reflector, which characterizes the seawater surface
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irradiation. Seawater SBC has been estimated by the
equation

 (3)

where Bsea is the brightness of radiation flux from the
sea water, Bsky is the brightness of the related sky
region, r is the Fresnel reflection coefficient equal to
0.02 in calm weather and at near�vertical sensing
directions, and Bws is the white reflector brightness.
The light absorption and scattering by air is ignored,
since the shipboard sea surface sensing is considered. 

Figure 1 shows the brightness spectra, which were
measured in the north�eastern part of the Black Sea
near the Vulan river estuary at four points while the ship
was moving away from the coast. An AVANTES spec�
trophotometer with the spectral range 360–760 nm,
spectral resolution of 5 nm, signal�to�noise ratio of
1000 : 1, and integration time from 0.1 to 60 s was used
for the measurements. It is seen that though the general
behavior of the spectra retains, the brightness of objects
under study varies significantly because of clouds and
strong wind, which change the irradiation conditions
when changing from one object to another (thus, the
object brightness changes by 3–4 times due to direct
sunlight shadowing by clouds). SBC spectra calculated
from these measurements are shown in Fig. 1d.

The SBC error in Eq. (3), calculated by the signal�
to�noise ratio of the spectrophotometer and with ordi�
nary relations for the error of the sum and quotient of
two parameters, is approximately equal to 1% in the
range 400–600 nm and increases when measuring small
magnitudes in the 600–700 nm range. The measure�
ment error can be estimated directly from the SBC
spectra calculated, considering deviations from the
midline in small spectral ranges (∼30 nm) as results of
measurement errors. It is seen (Fig. 1d) that the abso�
lute error is approximately equal throughout the spec�
trum (∼0.001 for two top curves). Hence, the relative
error changes from 2 to 5% and a little more in the 600–
700 nm range. However, in�motion shipboard measure�
ments under conditions of partly cloudy, heavy sea, or
quickly varying optical parameters of the water mass
under study contribute a much higher error when using
a remote method. In addition, during successive mea�
surements of sea, sky, and white reflector brightness
(which were used for SBC spectra in this work), an
additional error is caused by asynchronicity of the read�
ings. A prototype of a new�generation three�channel
spectrophotometer is currently designed; it is capable of
measuring synchronously the three above parameters.
In addition, a calibration technique described below
provides for satisfactory spectra, which allows estima�
tion of the admixture concentrations from onboard a
moving ship, even under bad weather and incomplete
synchronization of individual measurements.
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SBC SPECTRA CALIBRATION USING PURE 
SEA WATER ABSORPTION PECULIARITIES

The idea of the calibration appeared from the com�
parison of SBC spectra received in different seas.
A certain common feature of the spectra was revealed,
i.e., the presence of a knee in the 580–630 nm (clearly
seen in Fig. 1). The light absorption and scattering by
natural sea water admixtures (chlorophyll, yellow sub�
stance, and suspended matter) have no peculiarities in
this spectral range. The light absorption by pure sea
water is usually higher than the light absorption by
admixtures in this range and increases with the wave�
length, and this increase rapidly slows down at 600 nm
(Fig. 2) [5, 24–26]. Just this peculiarity served as a
basis for the calibration of SBC dependence calculated
and the calculation of water absorption spectra.

The suggested calibration technique by pure water
absorption consists of several iteration steps. During the

first step, the backscattering coefficient bb is considered
independent of the wavelength in the 580–700 nm
range, and the absorption coefficient of phytoplankton
pigments ap and yellow substance ays are considered
small as compared to the absorption coefficients of pure
water aw and suspended matter asm. Assumption about
the scattering is true for the most part of coastal waters,
since the backscattering here is mainly determined by
scattering by the suspended matter bsm, and variations in
the spectral curves depend on scattering by fluctuation
inhomogeneities of water bw. The absorption by yellow
substance and phytoplankton pigments is much lower

than the absorption by pure water  in this
range. Hence, the following equations can be written at
the first step:

 (4)
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Fig. 1. (a) Brightness spectra of radiation propagating upward from the sea water surface measured in the 400–700 nm range,
(b) brightness spectra of the sky area that mainly contributes to the light reflection from the water surface during SBC measurements,
and (c) brightness of a horizontal white opaque screen; (d) SBC spectra calculated from these data. Curves 1–4 have been calcu�
lated while the ship was moving away from the coast.
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Let assume at the first step that the difference in the
absorption before and after the knee at 600 nm is pro�
vided only by pure water absorption in this range, i.e.,
it is known in advance:

 (5)

and one can write

 (6)

It should be noted that the absorption coefficients
can be equal to not only the absorption coefficient of
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pure water, but are a sum of absorption by pure water
and suspended matter (the absorption coefficient of
the latter is considered constant, in the opposite case
the calibration technique is to be refined).

Let us assume that the different weather factors
cause the difference between the true SBC and the
measured value and can be calculated by the equation

 (7)

where R(λ) is the spectrum calculated by the measure�
ments; and k and ΔR are the unknown coefficients.
Nonselectivity of the coefficient k and difference ΔR in
Eq. (7) was assumed from the analysis of possible causes
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Fig. 2. (a) Pure sea water absorption spectrum [5]: the wavelength dependence of the absorption stepwise changes near 600 nm.
(b) Absorption and backscattering spectra for water and main sea water admixtures: only the water absorption has a peculiarity at
600 nm. 
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of the appearance of these corrections. Thus, the coef�
ficient k different from unity appears during a stepwise
change in the total illumination, during which the rela�
tive spectral distribution does not change (see Fig. 1c),
hence, k is nonselective. The nonzero coefficient ΔR
appears when the sky brightness is incorrectly taken into
account, but it also changes stepwise, and the quotient
of sky brightness by white reflector brightness is almost
constant in the 580–700 nm range. A certain nonlin�
earity can appear here near 500 nm, and it can be taken
into account during calculation of the absorption spec�
tra. However, ΔR turned out small in our measurements
and was considered constant to the first approximation.
Later, this correction can be introduced. Substitution of
Eq. (2) in the left part results in the equation

 (8)

Considering Eqs. (4)–(6), the set of equations for
three SBC values measured at 580, 600, and 700 nm
can be written for the red spectral region:

 (9)

This is the set of three equations with three unknowns

  and  Solving this set relative to

these three unknowns and substituting them in
Eq. (8), the spectra of the parameter connected with the
water absorption and scattering can be estimated in the
whole measurement spectrum range (400–700 m):

 (10)

It should be noted here that equation (10) estimates
the water absorption spectrum for mesotrophic and
eutrophic waters, which mainly occur in shelf zones,
since the scattering is determined here by scattering
by suspended matter, which can be considered more
or less independent of the wavelength in the chosen
range. Indeed, assuming  where

 we derive 

 (11)

Neglecting the third term, one can conclude that the
resulting spectrum is the water absorption spectrum
plus a constant which shows the mean backscattering.

At the second iteration step, the corrections to the
difference in water absorption coefficients Δ1 and Δ2

introduced by yellow substance and pigments can be
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taken into account. For this, let us estimate a change
in absorption by the admixtures (axyz) in the spectrum
when changing from 500 to 600 nm:

 (12)

Assuming that the total absorption by yellow sub�
stance and pigments (axy) exponentially decreases with
the wavelength in the 500–700 nm range and the
exponent is equal to the exponent of the yellow sub�
stance absorption g = 0.015 nm–1 [18], we obtain

 (13)

Calculation of Δ1 and Δ2 by the absorption, which
consists already of three components at this step (pure
water absorption, nonselective absorption by sus�
pended matter, and total absorption by yellow sub�
stance and pigments) is carried out by the equations

 (14)

Then, the set of equations (9) is solved with new
values of Δ1 and Δ2. The iteration steps continue until
the difference between  at the next and previous
steps becomes smaller than a certain preset value.
Table 1 shows values calculated during three iteration
steps by the SBC spectrum measured at four points
when moving away from the coast. It is seen that 
at the third step differs from the previous value by no
more than 1%.

After a required number of iterations, the resulting
coefficients are substituted in Eq. (10), and the total
spectrum of seawater absorption and the constant that
corresponds to the mean scattering by suspended mat�
ter is calculated. Subtracting the known pure seawater
absorption spectrum from it, the admixture absorption
spectrum can be estimated. Figure 3 shows spectra
calculated at four stations when moving away from the
coast.

It is seen that these absorption spectra change
orderly when moving away from the coast (and the river
estuary), in contrast to the SBC spectra, which can
hardly be systematized. The estimation error of the
absorption spectra calculated with the use of the cali�
bration suggested by Eq. (10) can be estimated from the
spectra (Fig. 3). The relative error is 5–7% (the same
result is found from estimation by the equation under
the assumption that the pure seawater absorption is
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known with an accuracy higher than during our mea�
surements). The absolute error is about 0.005 m–1 in the
400–580 nm range and attains 0.02 m–1 in the 600–
700 nm range, since the absorption significantly
increases in this range (let us note that the absolute error
does not decrease when subtracting the pure water
absorption; therefore, the range 600–700 nm is
excluded from the estimation of admixture concentra�
tions). Using these spectra, the concentration of the
main seawater admixture can be estimated.

ESTIMATION OF CONCENTATIONS 
OF MAIN SEAWATER ADMIXTURES

The estimation of the concentrations of the main
natural seawater admixtures is exemplified below by
processing the absorption spectrum that has been calcu�
lated at stations no. 1 the nearest to the coast (Table 2).

The main light absorbing and scattering components
are phytoplankton pigments, with an absorption maxi�
mum at 430 nm, dissolved organic matter (yellow sub�
stance) and detritus, with the spectrum that exponen�
tially decreases with the wavelength, and suspended
matter, with the absorption and scattering independent
of the wavelength in the range 400–700 nm. The seawa�
ter absorption can be written as [16]:

 (15)
λ

λ = λ + λ

+ − λ − λ +
0 0

*( ) ( ) ( )

exp( ( )) .

a a C a

a g a
w p p

ys sm

Here, aw(λ) is the absorption coefficient of pure sea�
water (without admixtures); asm is the light absorption
coefficient of seawater suspended matter (its absorp�
tion and scattering can be considered independent of
the wavelength in the range under study for a wide

Table 1. Estimates of the absorption coefficients of phytoplankton pigments and yellow substance at 500 nm by three iter�
ations for four stations

Absorption 
coefficient, m–1

Station no.

1 
(coastal)

2 (∼0.7 km 
from the coast)

3 (∼1.5 km 
from the coast)

4 (∼2.2 km 
from the coast)

axy 500 [I] 0.0388 0.0108 0.0094 0.0234

axy 500 [II] 0.0435 0.0122 0.0106 0.0263

axy 500 [III] 0.0441 0.0124 0.0108 0.0267
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Fig. 3. Seawater absorption spectra calculated with the use
of the technique suggested for calibration by SBC ship�
board remotely measured on the site near the Vulan river
estuary. The darker curves correspond to stations closer to
the coast; the thin curve shows the pure sea water absorp�
tion spectrum.

Table 2. Estimates of phytoplankton pigments, yellow substance, and suspended matter concentrations in seawater by the
absorption spectra calculated from shipboard remotely measured SBC. The concentrations measured in water samples are
given in italics for comparison

Concentration

Station no.
Concentration range 

in the samples1 
(coastal)

2 (∼0.7 km 
from the coast)

3 (∼1.5 km 
from the coast)

4 (∼2.2 km 
from the coast)

Cp, mg/m3 1.35
0.4

0.45
0.9

0.45
0.6

0.6
0.5

0.4–0.9

ays 500, m–1 0.012
0.04

0.007
0.02

0.007
0.02

0.008
0.005

0.005–0.04

asm + b, m–1 0.14
0.02

0.06
0.008

0.05
0.009

0.015
0.004

0.004–0.02
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range of problems); Cp and  are the concentration
and specific absorbance of phytoplankton pigments;

 is the absorption coefficient of colored dissolved
organic matter (yellow substance) and detritus (col�
ored organic matter in the suspended matter), con�
tained in seawater, at the wavelength λ0; and g is the
factor equal to 0.011–0.02 nm–1; here g = 0.015 nm–1,
λ0 = 500 nm. Hereinafter, the values of all these
parameter refer to the average values over the surface
water layer the solar radiation penetrates into. 

Setting the specific absorption spectra of the main
admixtures according to the available data [4, 5], one
can calculate the seawater absorption spectrum at dif�
ferent admixture concentrations and compare it with
the absorption spectrum found from SBC. Varying the
concentrations, one can choose values at which the
deviation between the two curves is minimal (e.g., by
the mean square method). The curves are compared in
the range 400–600 nm, since the spread in absorption
values is larger in the longer wavelength range because
of the small SBC comparable with signal fluctuations.
Figure 4 shows the results of the procedure, i.e., model
curves for absorption by phytoplankton pigments, yel�
low substance, and dissolved matter and the total
model spectrum, which agrees well with the absorp�
tion spectrum calculated by SBC.

The admixture concentrations have been calcu�
lated by the resulting spectrum. To calculate the phy�

λ*( )pa

λ0
ays

toplankton pigment concentration, the empirical
dependence of the concentration on the absorption
maximum at 430 nm has been used, which has been
derived in water samples in the same experiment; the
concentrations of yellow substance and suspended
matter have been found by absorption at 500 nm. It is
important to emphasize here that all estimates have
been found without an assumption about any correla�
tion of these concentrations, which is a necessary con�
dition for operation in shelf waters (water type 2).

Carrying our similar calculations for all stations,
the table of the admixture concentrations averaged
over the sun illuminated layer has been composed. The
concentrations of all the three admixtures tend to
decrease as the distance from the coast increases. The
concentrations found in surface water samples are
given in Table 2 for comparison. The concentration
error has been calculated by means of variation in each
concentration about the average, and the value has
been selected for which the standard deviation of a
new model curve from the spectrum measured differs
from the deviation of the best model curve by no more
than the spectrum measurement error. 

The calculations performed allow the conclusion
that the phytoplankton and suspended matter concen�
tration errors are about 30% and the yellow substance
concentration error is about 40%. Two remarks are
required here: first, these estimates are applicable only
to mesotrophic and eutrophic waters; second, the
results of comparison with measurements in water sam�
ples do not refute the result, since our method allows
estimating concentrations averaged over the sun�illu�
minated layer, while the samples were taken from the
surface layer (it is of interest to compare tends in con�
centrations). It is seen that concentrations of phy�
toplankton pigments found by different methods are
close except for coastal station no. 1 located near the
river estuary. It is evident that the river water did not mix
with the sea water, and estimates by surface water sam�
ples differ from estimates of the light penetration depth
average absorption. The yellow substance concentra�
tions found from the absorption spectrum slightly
decrease when moving away from the coast. Similar
estimates by water samples give a high spread in the val�
ues because they relate to the surface layer; however,
they coincide with estimates from the spectrum on the
order of magnitude and in a general trend. Suspended
matter concentrations found by the spectra and in the
samples differ significantly. This might well be due to
rapid sedimentation of the suspended matter. At the
same time, the trend toward a decrease in the suspended
matter concentration as the distance from the coast
increases is seen in the both cases.

DISCUSSION OF RESULTS

Thus, it is shown that the SBC of the upper sea
layer calculated from shipboard measurements gives
much information about the seawater composition.

Wavelength, nm
400 500 600 700

0.40

0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Model spectra of light absorption
by main seawater admixtures

A
bs

or
pt

io
n

 c
oe

ff
ic

ie
n

t,
 m

–
1

1 aw
ays_mod asm_mod

ap_mod
summa_mod

Fig. 4. Estimates of the concentrations of the main seawa�
ter admixtures from the absorption spectrum (station
no. 1). The admixture absorption spectrum calculated by
the SBC spectrum is shown by dark triangles. The calcu�
lated light absorption spectra of natural admixtures (phy�
toplankton, yellow substance, and suspended matter) with
the most probable concentrations are shown by curves of
different thickness and tint: ap_mod corresponds to the
phytoplankton pigments, ays_mod, to yellow substance,
and asm_mod, to suspended matter. Empty diamonds
show their total absorption spectrum.
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This parameter can be measured with the use of a
small and light three�channel spectrophotometer,
which has no special requirements for supply. In addi�
tion, since the measurements are passive and remote
and do not require special stops, they can be carried
out onboard a moving vessel.

However, the resulting SBC spectra strongly
depend on surveying conditions. This might well be
the reason why this method for seawater analysis has
not been commonly accepted. In view of this, the cal�
ibration technique suggested for SBC spectra recorded
in bad weather (clouds and wind) significantly
expands opportunities of using the shipboard passive
remote measurements of SBC. The calibration is
based on the use of absorption properties of pure sea�
water in the 580–700 nm range. The technique is con�
venient because the absorption by all main admixtures
has no peculiarities in this range and is usually weak,
while the required values of the seawater absorption
are quite high and measured with good accuracy.

Another advantage of the technique is a possibility
of retrieving the spectra of light absorption by seawater
after the calibration. These spectra and known spectra
of the specific absorbance of the main sea water
admixtures can be used for estimation of the admix�
ture concentrations. It is important that all the esti�
mates do not imply any correlation between phy�
toplankton, dissolved organic matter (yellow sub�
stance), and suspended matter concentrations, which
is a key point when operating in shelf waters and inner
seas (water type 2).

The measurements carried out in the Black Sea
near the river estuaries allowed testing the techniques
for SBC measurement with a three�channel spectro�
photometer, calibration of resulting spectra with cal�
culation of the absorption spectra, and admixture con�
centration estimation in coastal waters. The resulting
concentrations have been compared with the concen�
tration measured in water samples taken in the same
experiment. Correlations between the estimates allow
a conclusion about the possibility of detecting the
coastal water composition with the shipboard remote
SBC measurement technique. 

CONCLUSIONS

The inclusion of a new calibration technique
described in this work, in the chain passive remote sea�
water SBC measurements–spectra calibration and
calculation of admixture absorption spectra–sea water
analysis makes the procedure more reliable and less
dependent on the weather conditions.

Since the shipboard measurements can be carried
out on move, the technique suggested can be conve�
nient for mapping admixture distribution in the coastal
water areas. In addition, it can be used in subsatellite
measurements, especially for Russian satellites with
onboard multispectral optical instrumentation. 
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