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Abstract—The eddy viscosity and the eddy diffusivity are calculated for the viscous sublayer in turbulent f low
near a solid surface by using Fourier transforms of a spectral element of the velocity profiles, the pressure, and
the concentration. The different spectral elements are assumed to behave independently of each other in this
region, and the magnitudes are plotted as functions of distance from the wall. The tangential velocity profiles
show a slope of unity on log–log plots against distance y from the wall, while the normal component shows
a slope of 2. The concentration profiles generally show a slope of unity except near the outer limit of the vis-
cous sublayer. There is also a dependence on the value of the Schmidt number as well as the concentration fluc-
tuation assumed to prevail at a distance of δ0 at the outer limit of the viscous sublayer. When the normal velocity
fluctuation is correlated with either the streamwise velocity fluctuation or with the concentration fluctuation,
one infers a slope for the eddy viscosity or the eddy diffusivity of 3. The eddy diffusivity shows more structure
than the eddy viscosity and can differ substantially from the latter in the depths of the viscous sublayer.
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INTRODUCTION
It is apparent since 1932 that turbulent f luctuations

are present in the viscous sublayer [1, 2]. They merely
decay as a solid surface is approached. Levich [3, Sec-
tion 4, p. 29] suggests that in this region different
eddies behave independently, so that their behavior is
governed by their individual magnitudes at the outer
limit δ0 of the viscous sublayer.

Levich [3, Section 4, p. 29] says, “In the viscous
sublayer Re is less than unity, and the second-order
terms in the Navier–Stokes equations are small com-
pared to the first-order terms. The velocity distribu-
tion in a viscous sublayer can therefore be determined
by linear equations only. If a certain spectrum of
eddies penetrates a viscous sublayer, the interaction
between separate eddies ceases. The f low then
becomes a sum of independent periodic motions,
whose period T remains constant throughout the vis-
cous sublayer.”

Vorotyntsev et al. [4] treat the sublayer and con-
clude that the eddy viscosity is proportional to y3 but
that the eddy diffusivity begins to deviate from the
eddy kinematic viscosity within the viscous sublayer,
showing a y4 dependence just within the sublayer but
having a y3 dependence deep in the layer whose coef-
ficient depends on the diffusion coefficient D. In his
summary of statistical treatments of this situation,

Martemianov [5] reaches similar conclusions but
determines that in the y3 region the eddy diffusivity is
proportional to the square root of D.

ANALYSIS

Separate the velocity into a steady component and
a f luctuating component:

(1)

Substitute into the continuity equation, and eliminate
the term for the steady component:

(2)

Substitute into the momentum equation:

(3)

When 3 is taken to be the dynamic pressure, no grav-
itational acceleration is necessary. Take the average of
this equation:

(4)

′= + .v v v

′∇ ⋅ = 0.v

∂ +
+ ∇ ⋅ + + = ∇ ⋅ ∇ +

∂
− ∇ +

'
[( ')( ')] ν ( ')

1 ( ' ).
ρ

3 3

t
v v

v v v v v v

∂ + ∇ ⋅ + = ∇ ⋅ ∇ − ∇
∂ ρ

1( ' ' ) ν ,3
t
v vv v v v
263



264 JOHN NEWMAN
where the angular bracket also denotes the average,
since it is difficult to put a bar on top of this quantity.
Subtract this from Eq. (3):

(5)

Within the viscous sublayer, v' should be small com-
pared with the steady term, and the square should be
negligible. While this may not be true at the outer limit
of the viscous sublayer, it becomes valid deeper in the
viscous sublayer, and Eqs. (2) and (5) could thus
describe variations of the f luctuating quantities within
the viscous sublayer. For mass transfer within this layer,
at moderate to high Schmidt numbers, a similar
approximation should apply to fluctuations of the con-
centration. This derivation of the equations governing
the fluctuations is inspired by Vorotyntsev et al. [4].

We thus have a linear problem for the variation of
the f luctuations within the viscous sublayer. Further-
more, the viscous sublayer is very thin, and the average
velocities depend only on y and in fact,  = βy, where
β is a constant. Thus,  =  = 0. Eventually we may
want to relax the strict linearity of , in which case 
will no longer be zero. (Compare with the universal
velocity profile.) The governing differential equations
for the f luctuating components of the velocity become

(6)

(7)

(8)

(9)

We recognize that we can eliminate the pressure f luc-
tuation by taking the curl of the equation of motion.
We also recognize that, on the basis of Eq. (6), we can
express the f luctuating velocity components as the curl
of a vector stream function. However, we also recog-
nize that we can easily become confused.

For boundary conditions, we expect the f luctuat-
ing velocity components to vanish at y = 0 and to
assume values at the outer boundary of the viscous
sublayer that reflect the turbulent f luctuations in the
outer f low.
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Because the equations are linear in the viscous sub-
layer, the eddies do not interact, and we can express
the f luctuating components in Fourier series which
reflect periodic behavior in time and in the down-
stream direction x and in the cross f low direction z.
Thus, we write

(10)

(11)

(12)

(13)

Each spectral component can be identified by the val-
ues of kx, kz, and ω, and each spectral component can
be treated separately from all the others. If we knew
the spectrum of the external turbulence, say outside a
distance y = δ0, this would constitute the boundary
condition on the viscous sublayer at this distance. We
then want to solve for the variation of Vx, Vy, Vz, and P
as functions of y from y = 0 to y = δ0. Since we do not
know the external spectrum, we must guess values for
Vx, Vy, Vz, and P at y = δ0, perhaps trying to match the
expected value of the eddy kinematic viscosity at δ0.

Now substitute the Fourier forms (10) to (13) into
Eqs. (6)–(9).

(14)

(15)

(16)

(17)

We could eliminate P from two of these equations, but
that would be unnecessarily complicated.

Next make the problem dimensionless by intro-
ducing y+ = (y/ν)(τ0/ρ)0.5 and dimensionless Fourier
coefficients and a dimensionless pressure. The veloc-
ity functions Vx, Vy, and Vz, can be understood to be
divided by the value of Vx at y = δ0. The parameters and
dependent variables are defined according to:
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VISCOUS SUBLAYER 265

Fig. 1. Calculated profiles of the f luctuating components
of the velocity and of the pressure for one component of
the Fourier spectrum (for Kx = Kz = Ω = 1). Here, B is
taken to be 1. Vx, Vy, and Vz are taken to be zero at the wall.
Vx and Vz and p are taken to be 1 at y+ = 1. While the f luc-
tuations are comparable in the three coordinate directions
in the outer turbulent f low, the normal component
decreases with a slope of 2 (in the log–log plot) in the
inner part of the viscous sublayer, while the tangential
components are nearly equal to each other and adopt a
slope of 1. The pressure f luctuations persist with little
change all the way to the surface.
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Equations (14)–(17) become

(14′)

(15′)

(16′)

(17′)

In this way, the kinematic viscosity ν, the density ρ,
and the wall stress τ0 are eliminated, and the formula-
tion is designed to accommodate all such values as
may arise in turbulent f lows. (The pressure should be
made compatible with the dimensionless velocities.
Since we do not use p directly, this may not be import-
ant.) B can be made to be equal to 1, since very close
to the wall, vx is proportional to y and this is commonly

expressed as  = y+ on plots of downstream velocity
versus distance from the wall in turbulent f low.

For numerical solution, Eqs. (15′) and (17′) should
treat the second derivatives with central differences.
Equation (14′) should be treated as a first order equa-
tion with backward differences; one essentially inte-
grates the continuity equation with known profiles of
the tangential velocity components vx and vz to yield
the normal velocity component vy. Equation (16′)
should be treated as a first order equation for the pres-
sure f luctuations p, with known profiles of the velocity
components. The second derivative of Vy can be
replaced by first derivatives of Vx and Vz by substituting
Eq. (14′). The treatment of boundary conditions is
tricky when there is a gradient term, here the gradient
of p but frequently a gradient of electric potential.
Compare the treatment of the von Kármán transfor-
mation for laminar f low to a rotating disk, where three
equations (the continuity equation and the radial and
angular components of the momentum equation)
determine the three velocity components, and subse-
quently the pressure distribution is determined (if
needed) from the axial component of the momentum
equation. (Compare Section 15.4 in [6].) If the gradi-
ent of a variable is known throughout a field, the value
of the variable need be specified at only one point in
the field. The same is true of state functions in ther-
modynamics. In the present case, one can in principle
eliminate the pressure from Eqs. (15′) and (17′) by
means of Eq. (16′). This is equivalent to eliminating
the pressure from the full equation of motion by taking
the curl of the equation, but the introduction of addi-
tional integration constants is avoided. Thus, the
boundary conditions do not actually include the value
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of Vy at y = δ0, and the pressure f luctuations do not go
to zero at the wall.

Figure 1 presents results obtained by numerical
solution of the equations developed here. Much fur-
ther work is required to consider the spectrum of the
turbulence at y = δ0, in developing the eddy viscosity
from the Fourier results, and in developing the eddy
diffusivity.

FLUCTUATIONS OF CONCENTRATION
Modeling of mass transfer permits calculation of a

profile of the eddy diffusivity. The concentration pro-
file obeys the equation of convective diffusion

(20)

With boundary conditions of

(21)

it is convenient to work with a dimensionless concen-
tration defined as

(22)

In terms of steady and fluctuating quantities,
Eq. (20) becomes
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Fig. 2. Magnitudes of the f luctuations in concentration for

four different Schmidt numbers Sc, ranging from 1 to
1000. Solid curves use the zero boundary condition for θ′

at y+ =  = 1. Then the concentration fluctuations are
due entirely to velocity f luctuations within the viscous sub-

layer. The curves with short dashes set θ′ to 1 at y+ = δ0,

which might be more appropriate for Sc = 1 because the
diffusion layer can extend somewhat beyond the viscous
sublayer. For Sc = 1000, the two curves nearly coincide

except for y+ values very close to . Dashed lines show for

comparison slopes of 1 and 2.
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and the averaged equation becomes

(24)

This is like the original equation but averaged and with
the presence of the turbulent transport term. Subtrac-
tion from the preceding equation gives the equation
governing the f luctuations of concentration

(25)

similar to Eq. (5).

We drop the two quadratic terms on the premise
that they are negligible deep in the viscous sublayer.
We make the same assumptions with respect to the
average velocity, namely that the x component can be
approximated by βy and that the y and z components
are zero. The average concentration depends also only
on y. Equation (25) then simplifies to

(26)

similar to Eq. (7). The f luctuations in concentration
are caused by the f luctuations in velocity (see the third
term in this equation) and can be represented by a sim-
ilar Fourier series:
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where C belongs to the same spectral component as
the f luctuating velocity components treated earlier.
Consequently, the transformed Eq. (26) becomes

(28)

The similarity to Eq. (15) should be apparent.
Notable differences are the replacement of the kine-
matic viscosity with the diffusion coefficient, the
absence of a pressure term, and the replacement of β
with the derivative of the average concentration pro-
file. For a dimensionless form, the Definitions (18)
and (19) yield

(29)

For boundary conditions we might expect

(30)

at least for moderately high Schmidt numbers where
the diffusion layer is expected to lie entirely within the
viscous sublayer.

Some calculated results are shown in Fig. 2.

At Sc = 1, the Reynolds analogy might hold (where
vx and ci profiles may be very similar, because the gov-

erning equations are similar, and consequently the
Stanton number may be close to half the friction fac-
tor). At higher Schmidt numbers, substantial differ-

ences show up, and StSc2/3 becomes proportional to
the square root of the friction factor. Some features in
the curves in Fig. 2 may arise from the boundary con-

dition at y+ = . For Sc = 1, substantial concentration

fluctuations may come from the external f low, but for
higher Sc, the diffusion layer lies within the viscous
sublayer, and the zero boundary condition may be
more appropriate.

For turbulent f low, the derivative of the average
concentration can be expected to follow [7]

(31)

and γ = B+ as used in [7] for the coefficient of y3 in the
expression of the eddy viscosity. See in particular
Eqs. (37) and (39) in [8]. (For turbulent f low, the edge
of the diffusion layer is broader than for laminar f low
because of the mixing effect of the eddy diffusivity.
Contrast this equation with Figs. 17.1 and 17.66 in [6].
Figure 3 shows the two profiles; for turbulent f low, the
average concentration does not reach the bulk value
until much larger values of ξ.)

It is possible that the assumption of the y3 depen-
dence of the eddy diffusivity influences the outcome of
the slopes on Fig. 2, which in turn may influence the
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Fig. 3. Profile of average concentration for turbulent shear
flow and for a laminar boundary layer, such as that found
on a rotating disk. The dimensionless distance ξ in the dif-
fusion layer is defined appropriately for the two different
systems.
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Fig. 4. Concentration f luctuations recalculated with the
changes mentioned in the text to ensure that the form of
Eq. (31) is not influencing the slopes in Figs. 2 and 4.
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conclusions obtained for the eddy diffusivity itself. For
this reason, the calculations were redone with an
exponent of 1/4 for Sc in Eq. (31) and with an expo-
nent of 4 on ξ in the denominator. The results are
shown in Fig. 4. There is little difference; in particular,
the slopes do not appear to change.

EDDY DIFFUSIVITY 
AND EDDY KINEMATIC VISCOSITY

A procedure to calculate profiles of the turbulent
transport coefficients would be to pick several spectral
points, somewhere between 1 and 100, chosen to rep-
resent points characteristic of the actual turbulence.
For each spectral point, one would calculate the aver-
ages VyC for mass transfer and VyVx for the Reynolds

stress. The different spectral points would not expect
to be correlated with each other. Hence, one can take
the average for each spectral point. This means taking
the magnitude of the combined real and imaginary
parts, it being assumed that the average of the different
angles would yield a number of order 1 and about the
same for all spectral points. One needs to be dividing by
the flux density or the stress at the surface. This should
be automatic for the dimensionless formulations.

The result of such an effort is shown in Fig. 5.

It is presumed that the lines for all spectral points
will generally have the same slope, so that, when one
averages over the spectrum, one obtains the same
slopes apparent for the individual spectral points.

DISCUSSION

Vorotyntsev et al. [4, 5] develop predictions for the
eddy diffusivity in the viscous sublayer by a more com-
plicated method but still using the same basic concept
of treating the velocity and concentration f luctuations.
RUSSIAN JOURNAL OF ELECTROCHEMISTRY  Vol. 5
They conclude that the eddy diffusivity varies as y4,

apparently in a region near the outer limit of the vis-

cous sublayer. One can infer such a y4 dependence

from Fig. 5 (seen for Sc = 100 and 1000) and a corre-

sponding y2 dependence for the concentration f luctu-

ation from Figs. 2 or 4. They also conclude a y3 depen-

dence deeper in the viscous sublayer but with a coeffi-

cient proportional to the square root of the diffusion

coefficient. We verify here the y3 dependence, but not

necessarily the dependence on the diffusion coeffi-

cient. Figures 2 and 4 do show a dependence on the

Schmidt number. One should keep in mind that the
6  No. 3  2020
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diffusion layer lies deeper in the viscous sublayer as Sc
increases [9]. For example, the outer limit of the diffu-
sion layer at Sc = 1000 should be approximately at

y+ = 0.08, although this transition should be much less
sharp for turbulent f low than for laminar f low, as men-
tioned in connection with Fig. 3. [11–13] provide
additional perspective on these matters, including
behavior at lower Schmidt numbers, which are also
covered here in Figs. 2, 3, and 5.

UNCERTAINITIES

The behavior of turbulent mass transfer in the viscous
sublayer is not completely resolved. Equation (29)
requires the derivative of the average concentration in
order to compute the f luctuations. However, the cal-
culation of the average concentration requires a profile
of the eddy diffusivity, which comes from the f luctua-
tions. The development of Fig. 4 suggests that one can
guess the average concentration profile and that the
choice made has only a weak effect on the result. One
can do better by iterating between the two. In fact, one
can do even better by doing this with the whole profile.
Figure 5 provides the whole profile for the eddy diffu-
sivity in the viscous sublayer, hinting at slopes of both
3 and 4. On can use this profile in Eq. (29) to calculate
a new profile of f luctuating concentration and eventu-
ally come to a consistent profile for average concentra-
tion and for eddy diffusivity. It should be noted that
this procedure does not involve or require any use of
analogies among heat, mass, and momentum transfer.

This problem is also present in the treatment of the
velocity profiles. The average velocity profile was used
to select a value of β. Fortunately, it is clear that B = 1
in much of the viscous sublayer, and a similar iteration
process can be implemented as long as one does not go
too far outside the viscous sublayer.

CONCLUSIONS

The behavior of the eddy viscosity and the eddy dif-
fusivity in the viscous sublayer can be explored by
treating individual Fourier components since eddies
behave independently of each other in this region.
Vorotyntsev et al. [4] inspired our derivation of the
governing equations for the f luctuations (Eqs. (6)
through (9) and (25)). Within the viscous sublayer, the
fluctuations of the normal component of the velocity

are proportional to y2 while those of the tangential
components and of the concentration are proportional
to y. Consequently, both the eddy viscosity and the

eddy diffusivity should be proportional to y3. The latter
two are not equal to each other, and the eddy diffusiv-
ity shows some dependence on the Schmidt number.
The concentration f luctuations are produced by the
steady concentration gradient interacting with the
fluctuating normal component of the velocity. Conse-
quently they should be absent in the bulk turbulent
flow at high Schmidt numbers because this is then
RUSSIAN JOURNA
outside the diffusion layer. On the other hand, for
Sc = 1, the concentration f luctuations should reach to
the center line of a pipe and resemble the f luctuation
of the normal velocity component [10]. Thus, there is
a quandary as to the proper boundary condition for
the concentration f luctuations at the outer limit of the
viscous sublayer, depending on the Schmidt number.
It would be desirable to treat more spectral compo-
nents at the same time so as to be more quantitative
about the magnitudes of the turbulent quantities and

how they evolve in the region from y+ = 1 to 30.

APPENDIX
TURBULENT FLOW IN A PIPE

One might be able to approach a valid treatment of
fully developed turbulence in a pipe. The steady, fully
developed flow has only an axial velocity component,
and this depends only on radial position. The average
axial pressure drop is the same at each axial and radial
position, although there may be a radial average pres-
sure variation as discussed below.

Thus one could express the f luctuations as a sum of
a finite number of spectral components of a form sim-
ilar to that used in the present linear problem:

(A.1)

(A.2)

(A.3)

(A.4)

The problem is reduced to finding the radial
dependence of Vr, Vθ, Vz, and P for these spectral com-

ponents. This is a formidable problem, but still simpler
than solving directly for f luctuating components in
time and space. This method of treating interacting
Fourier components could also be used in the present
problem for extending the valid range farther into the
outer turbulent f low for a single spectral component.

Is there a variation of average pressure with radial
position in this pipe f low? I thought I found one in
about 1963, but I have lost any notes on it. The aver-
aged radial component of the equation of motion is

(A.5)

Even if the third term on the left is zero, the fourth
term would be expected to generate a nonzero contri-
bution. The first term will generate a zero result over-
all, since it can be integrated and the correlation

θ= Σ θ + + ω'v [Re{ ( )exp( )}],r r zV r ik ik z i t

θ θ= Σ θ + + ωθ
'v [Re{ ( )exp( )}],zV r ik ik z i t

θ= Σ θ + + ω'v [Re{ ( )exp( )}],z z zV r ik ik z i t

' θ= Σ θ + + ω[Re{ ( )exp( )}].3 zP r ik ik z i t

θ θ

∂ ∂+
∂ ∂θ

∂∂ ∂+ − = −
∂ ρ ∂

θ

' 'v v
' 'v v1

2

' 'v v
'v 1'v .

r r
r

r
z

r r

z r r
3
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should be zero at both the center and the pipe wall.
The second term should be zero since the angular
fluctuation should not be correlated with the radial
f luctuation (fluctuations of the angular velocity
should be equally probable in the plus and minus θ
directions).
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