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Abstract—Nikuradse’s 1932 paper on turbulent f low in a smooth pipe contains a wealth of information on
flow resistance (friction factor) and profiles of velocity and eddy viscosity. The goal here is to study this infor-
mation in detail with the objective of applying it to other turbulent-flow situations. In particular, reverse engi-
neering supports a value of n = 2 for the exponent on the volumetric dissipation in the decay term of the equa-
tion of the dissipation theorem. Of equal importance, integration of Nikuradse’s profiles of eddy viscosity
does not lead to his formula for the universal resistance law; instead the presence of the viscous sublayer has
an overt effect on the result even though we had thought that such a region influenced only the form of mass
transfer at high values of the Schmidt number. A formula is proposed for the decay of dissipation for turbulent
flow in smooth pipes.
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INTRODUCTION
The dissipation theorem refers to the statistical rep-

resentation of turbulence by the Reynolds stress, the
volumetric dissipation , the eddy viscosity, and
the kinetic energy per unit volume. [1] introduces the
dissipation theorem and applies it to data on mass
transfer in the rotating-cylinder system. [2] applies
these concepts to turbulent f low in a pipe. One basic
equation of the dissipation theorem relates the volu-
metric dissipation to the eddy viscosity. For pipe f low,
this takes the dimensionless form

(1)

where   being the dissipation per unit
volume, μ the viscosity, and τ0 the shear stress at the
wall of the tube. R+ is the independent stress parame-
ter (R/ν)(τ0/ρ)0.5, and R+M is the ratio ν(t)/ν of the
eddy kinematic viscosity to the kinematic viscosity.
ξ = r/R is the radial position divided by the radius of
the pipe. The second basic equation describes how the
volumetric dissipation varies in time and space due to
convection, diffusion, and decay. For steady, fully
developed flow in a pipe, the equation becomes

(2)

Equations (1) and (2) are essentially Eqs. (49) and
(50) in [2]. The dimensionless decay is defined by the
left side of Eq. (2). Λ is a dimensionless rate constant,
n is the reaction order for decay, and the two terms in
the denominator have been added so as to provide
flexibility. There is also a term 4, not shown here,
which if included allows laminar f low to be a solution
of Eq. (2). D = 1 at ξ = 1, the wall of the pipe, and D
becomes proportional to ξ2 as ξ → 0.

From turbulent pipe f low, we learned that the
exponent used in the divergence should remain 1, as is
appropriate for the cylindrical geometry, and not
become 5 for the rotating cylinders or –1 for pipe f low.
Furthermore, the result for the eddy viscosity should
be able to superpose for different values of the stress
level (at least for high Reynolds numbers), and this can
be accomplished by introducing factors into the decay
term with the exponents p and q for the radial position
and for the stress level (R+). We also learn more about
how negative values of the eddy viscosity could arise in
the calculations and how this could be avoided. The
objective is to learn how to apply similar changes to
other situations of turbulent f low. However, there is
more information to be gleaned from Nikuradse’s
1932 paper [3].

The focus here is on pipe f low, dealing with items
not adequately discussed in [2]. First, plot all of Niku-
radse’s distributions of eddy viscosity at different
Reynolds numbers, from 4000 to 3.2 × 106. This cov-
ers a range of R+ from 112 to 56000.1 The article is published in the original.
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Fig. 1. The eddy-viscosity profiles of Nikuradse for 16 different Reynolds numbers. The dashed line is the limit curve for large
Reynolds numbers. Points for the lower Reynolds numbers generally lie slightly higher than the limit curve. (a) is for Reynolds
numbers of 4000, 6100, 9200, and 16700. (b) is for Reynolds numbers of 23300, 43400, 105000, and 205000. (c) is for Reynolds
numbers of 396000, 725000, 1110000, and 1536000. d is for the high Reynolds numbers of 1959 000, 2350000, 2790000, and
3240000.
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The curves have much the same shape throughout
the entire range of Reynolds numbers. This means that
the eddy-viscosity profiles are approximately super-
posable if one first divides by the stress parameter R+.
The flow is well characterized by these profiles.
For example, the friction factor f is given by the for-
mula B5, derived in Appendix B,

(3)

where ξ = r/R and M = ν(t)/νR+.
From Fig. 1 it is evident that Nikuradse [3] believes

that the eddy viscosity does not go to zero at the center
line. In light of the author’s proof that it should go to
zero (see [2]), the data might indicate that the f low is
not really fully developed, that is, there are still some
entrance-length effects. It should be noted that Fig. 1
covers a wide range of Reynolds numbers and several
pipe sizes and that the profiles are more noted by their
similarity than by any possible random situation of
developing f low. (This might prompt one to try to
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move on quickly to the later phases of this investiga-
tion, of developing f lows on a rotating disk or a f lat
plate at zero incidence or, in the present example, pipe
flow.) One should probably keep clearly in mind the
message from Nikuradse that the eddy viscosity does
not go exactly to zero at the center line. [This observa-
tion might have implications for the issue of y3 or y4 for
the decay of eddy viscosity near a solid wall. The argu-
ment supporting y4 depends on fully developed flow
and the invariance of certain statistical averages with
axial distance. The strong support for y3 dependence
comes from the observed dependence of the Stanton
number on the 2/3rd power of the Schmidt number.
See for example [1].

REVERSE ENGINEERING 
OF NIKURADSE’S RESULTS

Even in Fig. 9 of [2] we obtained a good idea of the
profile of the volumetric dissipation by applying
Eq. (1) to the limit curve of Nikuradse. The previously
unpublished Appendix A is included here because it
5  No. 1  2019
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Fig. 2. The dimensionless decay calculated by reverse engi-

neering from the limit curve for eddy viscosity in pipe f low
as measured experimentally by Nikuradse, and as fitted by
John Newman. The short-dashed curve shows a close
approximation. The long-dashed line shows that the slope

is 2 for large values of R+D. Calculated curves overlap for

three values of R+. Two approximations overlap for two

values of R+.
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gives a very good idea of the radial distribution of D
and shows clearly a number of regions of different
behavior of D. Similar reverse engineering can also
reveal the form of the decay term. For an approxima-
tion to the eddy-viscosity profile of Nikuradse, use the
formula

(4)

The corresponding fit for a curve which goes to
zero on the axis is

(5)

The reverse engineering involves obtaining D by
substituting Eq. (4) into Eq. (1) and then substituting
the result into Eq. (2) to get the decay. This produces
a multitude of values of the decay term at positions and
Reynolds numbers encountered in Nikuradse’s work,
and it gives a hint of what would be a suitable repre-
sentation of the decay term as a function of the volu-
metric dissipation. Here are some of the necessary
derivatives.

(6)
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(7)

Without worry about signs with the absolute value,
the derivatives of M are

(8)

(9)

The sign of the first derivative changes at ξ = 0.48.
One should probably refit Nikuradse’s limit curve with
a series of even powers of ξ, to eliminate this (probably
nonphysical) fractional power of 2.4.

Thus, one can write for the (dimensionless) decay

(10)

Substitution of Eqs. (8) and (9) gives

(11)

The number 4 appears again here.

This has been implemented in a spreadsheet.
Results are shown in Fig. 2.

First, Fig. 2 provides strong evidence that the decay

term should be proportional to D2, particularly for

large values of R+D, which are the values of most inter-
est in the wall region where the volumetric dissipation
decreases dramatically. The figure also suggests that

the decay term does depend only on R+D. Second,
Fig. 2 supports the idea that a term 4 needs to be

included in the decay term for small values of R+D,
although this term may not be significant with high
levels of turbulence. This term does not work well in
reproducing the shape of Nikuradse’s eddy-viscosity
curves in Fig. 1, even though it comes from reverse
engineering with his limit curve. The approximation
shown by the short-dashed curve on Fig. 2 is

(12)

thus picking two significant terms from Eq. (11). Con-
sequently, a third lesson from Fig. 2 is that the decay
term includes an explicit dependence on ξ (which
could come from the local stress) and, even more sur-
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Fig. 3. Profiles of the eddy viscosity calculated with the

dissipation theorem. The upper solid curves are calculated

with the parameters Coef = 0.17, n = p = q =2, B+ =

0.0005, and ε = 0.33/R+. Curves for R+ of 88198, 16399,
3049, and 567 superpose, while that for 105 falls a little
lower. (In contrast, Nikuradse’s experimental data for low

R+ in Fig. 1 fall above his limit curve.) The solid curves are
calculated by the dissipation theorem without regard for

any viscous sublayer. Dotted curves for R+ = 567 and 105
show the effect of splicing in the viscous sublayer. For

R+ = 105, this extends out from r/R = 1 to about 0.8, but

much less far for R+ = 567. At the left, the curves mimic
the curves of Nikuradse in Fig. 1 by not going to zero on
the axis. This is accomplished by the ε parameter, intro-
duced here. The dashed curves result when the term 4 is
added into the dimensionless decay term in the dissipation

equation.

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.10

1.00.2 0.4 0.6 0.80

r/R

ν(t
) /
νR

+

prisingly, a dependence on the derivative dM/dξ. Nor-
mally we do not think of the decay term as being
related to such a derivative, implying a nonlocal
dependence. (We are bothered by a similar appearance
of a derivative of chemical potential in the theory of
Cahn and Hilliard [4] on the size distribution of drop-
lets resulting from supercritical condensation.) One
can combine the R+ again with the derivative and say
that the decay is shown to depend on the derivative of
ν(t), which translates to a derivative of D by Eqs. (1) or
(6). (See Eq. (10).) A second useful approximation to
the decay is

(13)

which matches exactly with what we had arrived at by
exhaustive comparison of various forms with Niku-
radse’s experimental determination of the friction fac-
tor for pipe f low. Here the derivative of M has been
eliminated, and the value of Coef is taken to be 0.17.
Thus we conclude that n = 2, at least for pipe f low.

However, Eq. (13) leads to negative values for the
eddy viscosity near the center line and for small values

of R+, and generally to a zero value for the eddy viscos-
ity on the axis, as in Eq. (5). This forces us to the con-
clusion that Nikuradse is probably right, that the eddy
viscosity does not go exactly to zero on the center line.

This thought prompted new ideas of how to influ-
ence the shape. One is to have an exponent n of 2
(which can give the straight lines on the universal-
resistance plot) but also an exponent of 1, which might
be closer to decay of homogeneous isotropic turbu-
lence in the final stages of decay. This can be expressed
in an equation of the form

(14)

where Coef has been replaced by C2 and a new term
with C1 has been added. The term 4 may or may not be
helpful. It is apparent that Eq. (14) strongly resembles
Eq. (11), already obtained by reverse engineering of
Eq. (4). (Perhaps a term like C0R+D is also needed.)

The miracle from Nikuradse’s work is that the
derivative of M at the pipe wall is insensitive to the

value of R+. This is in harmony with earlier work in the
1920s on the universal velocity profile. It is a necessary
condition for the validity of the universal resistance
law, which is treated here in Appendix B. It may not
apply to other turbulent f lows.

For pipe f low, = τ0r/R = ξτ0. Hence, we can

associate the appearance of ξ in the expressions for the
decay with a local stress term in the denominator.
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Thus, we can express the approximate decay term by
the equation

(15)

The local stress has a different radial dependence

for rotating cylinders ( ), and this associa-

tion of ξ with local stress may be helpful. The principal
difference between pipe f low and rotating cylinders is
in this radial dependence of the local stress.

RESULTS 
WITH THE DISSIPATION THEOREM

Graphs of the prediction of the distribution of eddy
viscosity from the dissipation theorem are shown in
Fig. 3. (Equation (14) is implemented in a form equiv-

alent to replacing Dn with Dn + εD in the decay term,

where ε = C3/R+. This is not quite the same, and we

need to see exactly how we want Eq. (14) to be writ-
ten.) These graphs show a nice shape (for n = 2) but
are not quite as fat as the profiles shown in Fig. 1, from
Nikuradse. They do reproduce the nonzero value of
the eddy viscosity on the center line. For n = 2, the
profiles give a friction-factor plot with a straight line
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Fig. 4. The solid curves represent the volumetric dissipa-
tion calculated by Eq. (1) from Nikuradse’s limit curve for
the eddy viscosity, as represented by Eq. (4). The short
dashed curves are calculated the same way but from
Eq. (5), where the eddy viscosity is forced to be zero on the
axis. The line with long dashes is the curve for laminar f low
and necessarily has a zero value for the eddy viscosity.
Hence, crossing the laminar line creates negative values for
the eddy viscosity. All the curves start at 1 at the wall
(r/R = 1). Higher values of R+ cause a steeper drop in the
volumetric dissipation and thereby stay farther away from
the region of negative eddy viscosity. However, the curves
with zero eddy viscosity on the center line approach asymp-
totically the laminar line near the axis. This means that the
dissipation program, which predicts the eddy viscosity, has
a greater likelihood of touching the laminar line.
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for large Reynolds number when plotted in the man-
ner of the law of universal resistance. Other values of n
make it hard to achieve such a straight line. In attempts
to modify the shape of the distribution of eddy viscos-
ity, the term which permits the laminar f low to be a
solution of the dissipation differential equation was
added. As discussed further below, this modification
of the eddy-viscosity profile does not greatly affect the

shape of the friction factor versus Re or R+. (What we
are getting now with the added 4 term is shown by
dashed lines on Fig. 3.)

AVOIDING NEGATIVE EDDY VISCOSITY

In the preparation of Fig. 3, negative values of the
eddy viscosity were encountered, close to the axis and

at low values of R+, when running the dissipation-the-
orem calculations. This was with a decay term that
looks like Eq. (13) (with or without the added 4).
There should be a physical mechanism that prevents
negative values from occurring. In this regard, Niku-
radse’s profiles in Fig. 1 with a nonzero eddy viscosity
on the axis look more promising. This can be seen in
Fig. 4 where Eq. (1) is used to calculate the dissipation
from Nikuradse’s limit curve (Eq. (4)) and from this
curve when the eddy viscosity is forced to zero on the
axis (Eq. (5)).
RUSSIAN JOURNA
Originally we had expected the eddy viscosity to be
a maximum on the center line, but Nikuradse’s exper-
imental results (Fig. 1) show that the eddy viscosity
actually goes through a maximum and approaches a
small but nonzero value on the axis. The decay
increases when the dissipation is large near the wall,
and it increases even faster closer to the axis (due to the

ξ2 in the denominator). The shape of the dissipation
curves in Fig. 4 ref lects the decrease of D toward the
axis but also the increase in the decay due to the radial
position. When D becomes very small, the decay
becomes small, and the curve can cross the laminar
line.

My reasoning was that the decay term should not

continue to decrease as D2 near the axis; the decay
term might decrease only linearly with D in the final
stages of decay. That was the reason for introducing
the term with εD. Implementing this in the construc-
tion of Fig. 3 permitted matching with Nikuradse’s
nonzero value of the eddy viscosity on the axis, and
this also led to the avoidance of the negative values of

the eddy viscosity near the axis for low values of R+.
The empirical fit suggests that ε should be inversely

proportional to R+. (The parameters were not changed
when making the dashed curves with the extra 4 in the
decay. Consequently, the eddy viscosity falls below
Nikuradse’s values on the axis, and for the lowest

value of R+ negative values are found near the axis.)

Further consideration of these questions leads us to
reconsider the decay term. Equation (11) shows that

there is a dominant term proportional to (R+D)2 but

there are also two terms proportional to R+D. One can
consider that the derivatives of M should really be eval-
uated near the wall. Then, dM/dξ = –β0 ≈ –0.36823,

and d2M/dξ2 is about –0.994, so that the full expres-
sion of Eq. (9) could be taken to be decay ≈ 4 +

(β0R+D/ξ)2 + 3β0 R+D/ξ + 0.994 R+D. This makes us

think of Coef as approximately equal to β0
2 and corre-

spondingly for the term proportional to R+D. We shall,
however, continue to use empirical constants for these
coefficients.

CALCULATION OF THE FRICTION FACTOR 
FROM A SPECIFIED DISTRIBUTION 

OF THE EDDY VISCOSITY

Equation (3) permits the friction factor to be calcu-
lated directly from the eddy viscosity. Appendix B
shows how to use this equation to derive the relation-
ship of the universal resistance formula. Here we look
into how to carry out the calculation numerically with
due consideration of the fact that the integrand
changes dramatically for small values of 1 – ξ, from 1

at ξ = 1 to something much smaller if R+ is large. When

the integrand is plotted against R+(1 – ξ), curves for

different values of R+ superpose for small values of the
abscissa. A strategy is to use a small step size h for the
L OF ELECTROCHEMISTRY  Vol. 55  No. 1  2019
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Fig. 5. Calculations of the friction factor from the distribu-

tion of eddy viscosity. The curve toward the bottom is
obtained by direct integration of Eq. (3) with the eddy vis-
cosity measured by Nikuradse, with smaller step sizes for

larger values of R+. The other curve was calculated with the
dissipation program, in essence using the profiles of eddy

viscosity in Fig. 3 but with inclusion of the y3 region, the
viscous sublayer. This curve rises from the lower curve and
eventually approaches a straight line which is much higher
than the asymptote with the lower curve. (Here Coef =

0.17, n = p = q = 2, B+ = 0.0005. The curve is not modified
when ε is nonzero and treated as in Fig. 3.) The straight

lines are (2/f)0.5 = 2.7 ln(R+) – 6.46 for the lower line and

2.45 ln(R+) + 2 for the upper line, which agrees well with
Nikuradse’s fit of experimental friction-factor data by

means of the universal-resistance plot (see Eq. (B2)).
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first step (such as 0.001/R+) and then increase it by a
factor of 1.05 for each subsequent step. This allows
accurate integration for small values of the abscissa but
keeps the total number of steps modest for large values

of R+. The resulting plot, expressed as suggested by the
universal resistance law, is shown in the lower curves
in Fig. 5. (This new spacing of points gave insufficient
accuracy near ξ = 0, where negative eddy viscosity

could result for small values of R+. This is not a prob-
lem where the eddy viscosity is known or specified, but
it can be a problem when using the dissipation theo-
rem to predict the eddy viscosity.)

The discrepancy between the two methods of cal-
culating the friction factor is resolved by careful exam-
ination of the details of the integration. There is a dif-

ference in the eddy-viscosity profiles in the y3 region
very close to the wall. (See [1] for a description.) The
lower curve uses Eq. (3) for direct integration of the
eddy-viscosity profiles of Nikuradse as given by

Eq. (4). There is no provision for a y3 region, and the
curve falls well below the upper dashed line represent-
ing how Nikuradse fit his experimental friction-factor
data to the universal resistance law. The upper curve is
calculated by means of the dissipation theorem
(Eqs. (1) and (2)) with one or two adjustable parame-

ters, and automatic inclusion of the y3 region.

Other curves (omitted from the graph for clarity)
can use Nikuradse’s eddy-viscosity profiles but with

the y3 region grafted in. This clearly accounts for the
difference between the curves on Fig. 5.

The result elucidated in Fig. 5 is remarkable. We

had assumed that the y3 region was so small that it
influences mainly mass transfer at high Schmidt num-
bers, where the inner part of the diffusion layer near
the wall can be explored. The conclusion was that it
did not influence very much the hydrodynamics, as

embodied in the friction factor. We had included the y3

region in the dissipation program, which is also used
to predict mass-transfer results, and the parameter

used (B+ = 0.0005) was a remnant of those investiga-
tions. The earlier conclusion (that the viscous sublayer
does not affect the hydrodynamics and the friction
factor) was not valid. Actual integration of the eddy-
viscosity profile as inferred from Fig. 1 does not yield
the friction factor as implied by the universal-resis-
tance plot (or by a plot of the friction factor versus the

Reynolds number). The y3 region, narrow as it is, still
provides a hydrodynamic resistance sufficient to
change greatly the intercept in the universal-resistance

law (from about –6.46 to +2). Changing B+ from
0.0005 to 0.0002 or 0.001 greatly changes the upper

curve. (Alternatively, one can assume a y4 region and

put the curve on top of the curve with the y3 region.
The resolution is not sufficient with the friction factor

to decide which is better, y3 or y4.)

We should expand on the statement that the vis-
cous sublayer has a dramatic effect on the friction fac-
RUSSIAN JOURNAL OF ELECTROCHEMISTRY  Vol. 5
tor, since this is an important discovery of this paper.
In hindsight it may be obvious that this is true since
the friction factor (or the wall stress) results by a
straightforward integration of the profile of the eddy
viscosity. Nevertheless, we generally think of the vis-
cous sublayer as showing itself in mass transfer at high
Schmidt numbers. This is mainly because if the
Schmidt number is close to unity, Reynolds analogy
applies, and the Stanton number would be approxi-
mately equal to the friction factor (over 2), whereas, at
high Schmidt numbers the Stanton number times the
Schmidt number to the 2/3 or 3/4 power is propor-
tional to the square root of the friction factor. Niku-
radse did a very good job of measuring the distribution
of the eddy viscosity. There is no sign of a viscous sub-
layer. Nikuradse promoted the method of the univer-
sal law of resistance, plotting his friction-factor data in
this way. Thus it was somewhat a surprise when inte-
gration of his eddy-viscosity data did not reproduce his
friction-factor curve. It is quite a bit off.

DISCREPANCIES

Nikuradse shows a nonzero eddy viscosity on the
center line, unlike the dissipation theorem. This dis-
crepancy has been resolved by modifying the decay
term to reproduce Nikuradse’s nonzero values of the
5  No. 1  2019
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eddy viscosity on the axis. Nikuradse shows the fric-
tion factor following the asymptotic formula of the

universal resistance law all the way down to R+ = 112,
while the dissipation theorem shows a negative devia-

tion. See Fig. 5. At low values of R+, Nikuradse’s val-

ues of ν(t)/νR+ tend to lie above the limit curve, but
those for the dissipation theorem lie below. (Contrast
Figs. 1 and 3.)

The decay term seems to call for an additive term of
4 to permit the equation of the dissipation theorem to
be satisfied by the laminar f low (Poiseuille) result. It
also arises by reverse engineering of Nikuradse’s limit
form for the eddy viscosity. However, it appears to be
negligible at high levels of turbulence, and it can pro-
duce a profile of the eddy viscosity which is at variance
with Nikuradse’s measured profiles for the eddy vis-
cosity (see Fig. 3).

The viscous sublayer is not yet integrated with the
other regions, in the sense that we do not have a gov-

erning equation to determine the coefficient of the y3

term, even though it is apparent that the viscous sub-
layer depends on and is closely related to the regions
farther from the wall. Eddies in the outer f low are of
significant size. These must decrease in size as the wall
is approached. This is evident from the fact that the
tangential average velocity approaches zero linearly as
the wall is approached, and the normal average veloc-
ity approaches zero quadratically as required by the
continuity equation. Near the wall, the nonlinear
nature of the turbulence should be approached by gov-
ernance of linear equations. Statistical theories of tur-
bulence should help in developing a relationship

between the B+ parameter (characterizing the viscous

sublayer) and B1
+ (a calculated parameter characteriz-

ing the f luctuations farther from the surface and as
predicted by the dissipation theorem). See, for exam-
ple, [5]. We have not brought this to fruition here.

Despite these discrepancies, the agreement of the
dissipation theorem with observed facts continues to
get better.

CONCLUSIONS

The eddy viscosity appears not to go to zero on the
axis of pipe f low, but instead has a small value. The
friction factor can be calculated accurately by integra-
tion of the profile of eddy viscosity, but to get agree-
ment with experiment, one needs to include the vis-
cous sublayer very close to the solid pipe wall. One can
derive the linear (asymptotic) relationship between the
reciprocal of the square root of the friction factor and

the logarithm of the stress parameter R+ by careful
examination of the form of the eddy viscosity near the
solid wall. By reverse engineering, one can obtain a
better idea of the behavior of the decay term in the dis-
sipation theorem, thereby showing that the best value
of n is 2 for the exponent on the volumetric dissipa-
tion. Hopefully, this work will lead to a better under-
RUSSIAN JOURNA
standing of the decay term in other f low situations,
including rotating cylinders and developing turbulent
flows.

APPENDIX A
SINGULAR-PERTURBATION TREATMENT

Nikuradse’s paper or Fig. 1 makes it clear that the
eddy viscosity can be approximated by

(A1)

where C ≈ 0.32 and ξ = r/R. This formula appears to
be uniformly valid in the wall, bulk, and core regions,
that is, excluding the viscous sublayer. We shall use
C = 0.3 when we need a numerical value. Formula (1)
then provides interesting details of the profile of the
volumetric dissipation.

Figure A1 shows that the core region and the bulk
region can superpose if we use for the stretched radial

variable R+ξ and for the stretched dissipation variable

(R+)2D. Figure A2 shows that the bulk region and the
wall region can superpose if we use for the stretched

radial variable y+ = R+(1 – ξ) and for the stretched dis-
sipation variable D.

Equation (1) is general for pipe f low. In the bulk

region, ν(t) @ ν when R+ is large, and the appropriate
form for D is

(A2)

Thus, D = O(1/R+), and ξ = O(1). As ξ → 0,

approaching the core, D → ξ/CR+, and, as ξ → 1,

approaching the wall region, D → 1/Cy+. These forms
would be used when matching the bulk region with the
core or the wall region. Note in connection with Fig. 3

that DR+ = O(1) in the bulk region.

The stretched coordinate in the core is = R+ξ,
and the appropriate form for D is

(A3)

Thus, D = O(1/(R+)2), and ξ = O(1/R+). As  → ∞,

approaching the bulk, D → /C(R+)2, demonstrating
the matching between these two regions.

The stretched coordinate in the wall region is y+ =

R+(1 – ξ), and the appropriate form for D is

(A4)

Thus, D = O(1), and 1 – ξ = O(1/R+). As y+ → ∞,

approaching the bulk, D → 1/Cy+, demonstrating the
matching between these two regions. Note that the
thickness of the wall region is clearly shown here to be

Δξ = O(1/R+).
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Fig. A2. Superposition of dissipation values in the bulk and

wall regions when using the proper stretched variables. D =

1/0.3y+ in the bulk region, and D = 1/(1 + 0.3y+) in the
wall region. The core region shows deviation from this

behavior.
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Fig. A1. Superposition of dissipation values in the core and

bulk regions when using the proper stretched variables.
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It is expected that these orders of magnitude
remain the same if we were using the dissipation theo-
rem instead of assuming Eq. (A1) for the eddy viscos-
ity. The conclusions should also remain the same if we

used Eqs. (4) or (5) instead of Eq. (A1). The y3 region

(which in this case may be a y4 region, see Appendix A
of [2]) may be considered part of the law-of-the-wall

region, and y+ may still be the appropriate stretched

variable. However, we are considering the y3 region to
be separate, since at present we have no way to treat it
with the dissipation theorem. We do not have a valid
governing equation in this region. The bulk is a region

where ν(t)  ν, whereas ν(t) ≈ ν in the wall region. If ν(t)

went to zero on the center line, we could say that the

core is a region where ν(t) ≈ ν. However, with Fig. 1 for
the eddy viscosity not being zero on the axis, this is no
longer true, and the core should be defined as the
region where the volumetric dissipation is propor-

tional to ξ2.

Despite what is said in this appendix, Fig. 4 shows
that the behavior of D is markedly different if we use
Eq. (4) instead of Eq. (5). The curves for D still drop
sharply, but then the slope decreases to 2 and the curve
becomes parallel to the laminar line instead of bending
over and approaching the laminar line asymptotically.
Thus, a region with a slope of 1 does not exist in
this case.

APPENDIX B

THE UNIVERSAL RESISTANCE FORMULA

For pipe f low, the universal resistance formula
expresses the reciprocal of the square root of the fric-
tion factor as a linear function of the logarithm of the
Reynolds number times the square root of the friction
factor. This unlikely relationship may be thought of

@
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more simply as a linear relationship between the recip-
rocal of the square root of the friction factor and the

logarithm of the stress parameter R+. This can be car-
ried over into the rotating-cylinder system and into
mass transfer, at least at high Schmidt numbers (see
[1] and [2]).

Nikuradse and also people before him recognized
that the friction factor always has a lower slope at
higher Reynolds numbers when plotted logarithmi-
cally but that a straight line results when data are plot-
ted as mentioned above. Nikuradse extended the
experimental Reynolds number to larger values and
found a new asymptotic distribution for the eddy vis-
cosity and for velocity profiles and the friction factor.
He expressed his fit of the data for f low rate and pres-
sure drop as

(B1)

which translates to

(B2)

The straight line for large values of R+ can be
derived as follows. From Eq. (17) of [2], the average
velocity is

(B3)

The definitions of Re, R+, and f,

(B4)
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Fig. B1. The integral I2 plotted both in its exact form and
in the straight-line asymptote. The curve for (I1 + I2) β0 is
shown with short dashes.
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produce a useful formula for calculating the friction

factor from the eddy viscosity

(B5)

A somewhat different formula applies to rotating

cylinders. Even at large R+ one cannot simply neglect

the 1 in the denominator because M goes to zero at the

pipe wall, ξ = 1. To account for the singularity let

(B6)

where β0 is the negative of the derivative of M at ξ = 1.

Now, add and subtract the singular part of the inte-

grand, so that Eq. (B5) becomes

(B7)

Deal with the second integral first. Substitute x =

1 + B(1 –ξ), where B stands for β0R+ and is under-

stood to be large.
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Evaluation of the integral gives

(B9)

Further simplification leads to

(B10)

We should retain this entire expression when we
want the value of the friction factor without approxi-
mation. However, for the moment, just to get the
straight-line expression, take B to be large and retain
only a few terms.

(B11)

Equations (B10) and (B11) are plotted in Fig. B1.
The asymptote is good for B > 512. Since β0 ≈ 0.4, the

approximation should be good for R+ > 2500.

Equation (B11) establishes the slope of the straight
line. For comparison with Eq. (B2), the slope is
1/β0 = 2.708 for my approximation to Nikuradse’s

original plot of eddy viscosity and 2.604 after I have
modified the plot to go to zero at the center line. To get
the additive constant, one also needs the first integral,
which we evaluate numerically. The integrand is no
longer singular.

(B12)

This is the form to evaluate if you want no approx-
imations. To get just the constant for the straight line

valid for large R+, make the approximation of taking

R+ to be large:

(B13)

By expressing this as an integral over ξ2, the inte-
grand is nearly linear and is easy to integrate numeri-
cally. We use a spreadsheet to evaluate I1, both approx-

imately and by the exact equation. The approximation

is independent of R+ (as long as M is independent

of R+). The exact numerical integral is shown in
Table B1, and the total integral is plotted dashed in
Fig. B1.

With our evaluation, the universal resistance for-
mula for pipe f low becomes

(B14)
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Table B1. Values of integrals needed to calculate friction
factors. I1β0 is about 3.26 at large values of R+, but one can-
not ignore the discussion of Fig. 5

B I2β0 Asymp I1β0

2 0.374 –1.140 0.235

4 0.623 –0.447 0.535

8 0.967 0.246 0.994

16 1.405 0.939 1.536

32 1.922 1.632 2.047

64 2.500 2.326 2.456

128 3.122 3.019 2.741

256 3.771 3.712 2.919

512 4.439 4.405 3.021

1024 5.117 5.098 3.076

2048 5.802 5.791 3.104

4096 6.490 6.484 3.119

8192 7.181 7.178 3.126

∞ 3.257
The slope is close to Nikuradse’s value, but the
intercept is far off. In connection with Fig. 5, we dis-
cuss the numerical integration of Eq. (B5). We discov-
ered, almost by accident, that the dependence of the
eddy viscosity on radial distance in the viscous sub-
layer needs to be accounted for and that this leads to a
substantially different value for the intercept. The
slope may also be altered slightly. This reduces the
usefulness of Table B1.

Figure B1 leads us to expect that the actual curve
must deviate positively from the approximation, since

it needs to approach zero at small values of R+. Simi-
larly, Fig. 11 of [2] should show negative deviations,
whereas it shows a positive deviation. One possibility is

that the value of B1
+ becomes smaller for low values of

R+. This is observed with the dissipation theorem, but
it is at variance with Nikuradse’s observation that β0 is

independent of R+. The matter is apparently resolved
RUSSIAN JOURNAL OF ELECTROCHEMISTRY  Vol. 5
by the discussion of Fig. 5. The viscous sublayer needs
to be taken into account, and the intercept to be used
in the universal resistance law needs to be corrected
toward the value given by Nikuradse in 1932.

This gives the asymptotic resistance relation. We
have never seen it derived this way, although Prandtl,
von Kármán, and Nikuradse and others were aware of
the result and fitted parameters to the overall relation-
ship between friction factor and Reynolds number
from data on the f low rate for a given stress level over
as large a range as possible.

We notice from this exercise, that it is the values of
eddy viscosity near that wall that are most important in
determining the fraction factor. We see this first in the
universal resistance law, where the coefficient of the
logarithmic term is largely determined by the slope of
the eddy-viscosity curve near the wall (see β0). We see

this again when we see that the intercept of the univer-
sal resistance law is largely determined by the eddy vis-

cosity in the y3 region.
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