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Abstract—The effect of volume variation at the possible dissociation equilibria of (МХ4)2– anionic complexes
in halide melts of bivalent metals are analyzed in terms of the mean-sphere approximation (MSA) of the sta-
tistical theory. Within the framework of the simplified model of charged hard spheres of different diameters
and valences, the complete system of equilibrium equations is obtained, i.e., equations of the law of mass
action and equations of state. This system makes possible self-correlated calculations of both the equilibrium
concentration of autocomplexes and the melt density. It is shown that the simplest approximation of the com-
plex diameter as the treble diameter of simple ions overestimates the effects of volume variations when con-
sidering dissociation. Taking into account the superposition of spheres makes it possible to describe the
smoother volume variations with the temperature.
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INTRODUCTION
Quite recently 50 years passed since the publication

of a study [1] in which a model of the autocomplex
structure of molten halides was put forward. When
analyzing the spectroscopic, thermodynamic, and
transport properties of fused salts, Smirnov et al. [2‒5]
arrived at the conclusion that many peculiarities in the
temperature and concentration dependences of the
aforementioned properties can be understood if one
assumes the existence of anionic complexes (МХn)m–.
These ideas played an important role in understanding
the structure of fused salts and provided noticeable
progress in studying physicochemical properties.
During the subsequent half-century, the school of
M.V. Smirnov accumulated and interpreted vast
experimental data on physicochemical properties of
fused halides of alkali, alkali-earth, and rare-earth
metals and also of their various mixtures. The analo-
gous ideas were also voiced in the 70s when analyzing
EPR spectra of fused salts [6].

However, as regards its theory, the autocomplex
model (and the general model of complexation in
fused salts) is insufficiently elaborated so far. Attention
was focused on the internal energy of autocomplexes
which was calculated to be compared with the stan-
dard enthalpy of the melt. This approach made it pos-
sible to follow the changes in calorific properties when
passing from one salt to another in the series of halides
of alkali, alkali-earth metals, etc. For the typical dis-

cussion of calculations of the internal energy of auto-
complexes in terms of the conventional model pair
potential, followed by calculation of pair bondings of
the nearest neighbors within the preset geometry, see
[7]. It should be stressed that the concentration of
autocomplexes was assumed to be maximum possible.
As a result, the calculations of the autocomplex con-
centration in salt melts were beyond the scopes of
studies by Smirnov and its followers.

In cycles of studies [8–10], the problem of complex
formation in binary liquid mixtures of salts of multiva-
lent metals with alkali-metal halides (AMH) was
developed further as regards statistics and thermody-
namics. For example, for binary salt systems of cal-
cium chloride with AMH [8] the existence of the tet-
rahedral complex (CaCl4)2– in chemical equilibrium
with free calcium cations and chlorine anions was
assumed. The complex as a whole was characterized
by the radius of a sphere circumscribed about tetrahe-
dron, while the statistical-mechanical part of the
problem was reduced to the model of charged hard
spheres with different diameters. The authors derived
the law of mass action (LMA) and then calculated the
complex concentration in the melt. True enough, this
calculation did not involve the estimation of various
contributions into the free energy of autocomplex
associated with its internal degrees of freedom (vibra-
tional and rotational), which were ignored. It was
assumed that the main contribution to the equilibrium
433
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Fig. 1. Geometrical model of autocomplexes (MX4)2–.
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constants was made by the dissociation energy deter-
mined by coulomb interaction. It is important that the
above authors noted the necessity of taking into
account the electrostatic interaction of all ions (simple
and complex) in the salt melt when calculating the
chemical equilibrium.

It is well known that even in dilute solutions of
strong electrolytes, one must return to the principle of
the free-energy minimum as regards the number of
particles involved in the reaction [11]. As a result, the
LMA takes its most general form with the activity
coefficient that should be calculated with regard to
electrostatic interactions of all particles involved in the
reaction. Generalizing the classical notations on com-
plex formation in fused salts, it is necessary to take into
account also the specifics of dissociative equilibria in
the ionic medium with electrostatic interaction and
also the finite size of ions (excluded volume). The
important deviation of the considered problem on the
chemical equilibrium in fused salts from that in dilute
solutions of strong electrolytes consists in the fact that
here one has to find the minimum of free energy of
Gibbs, rather than of Helmholtz, because the equilib-
rium mole volume of the melt or its average density are
not constant. Indeed, in dilute solutions, the equilib-
rium volume is preset by the conditions of the prob-
lem, i.e., by the initial volume of solvent. On the other
hand, for a salt melt, any change in the concentration
of free ions and complexes, i.e., a shift of dissociation
equilibrium in any direction, inevitably induces
changes in the average density or volume of the sys-
tem. Thus, the average density should be self-cor-
related with the concentration of autocomplexes at the
fixed external pressure and temperature, i.e., by using
RUSSIAN JOURNA
the equation of state too. As a result, the calculation of
the concentration of autocomplexes inevitably
becomes a self-correlated problem on solving the sys-
tem of LMA equations and melt’s equation of state.

The preliminary estimates in terms of the simpli-
fied model of a salt melt which uses the complete the-
ory of Debye–Hückel for the electrostatic part of free
energy and the van der Waals approach for the contri-
bution of excluded-volume forces have shown that a
temperature region exists above which the complexes
become unstable [12, 13]. On our opinion, this result
reflects the fact that the decrease in the electric energy
of the ionic melt formed by particles with the mini-
mum size always prevents the formation of larger com-
plex anions due to the increase in the mean field
formed by the ionic atmosphere. Moreover, the work
on formation of a larger cavity in liquid (against the
forces of excluded volume) also considerably increases
when large particles are formed. However, the reason
for applying the Debye–Hückel model to the problem
on chemical equilibrium in a salt melt apparently was
to carry out qualitative and rather rough analysis of the
problem of complexation. The next step in the devel-
opment of the statistical theory of autocomplexes is to
take into account the discrete nature of the ionic
atmosphere. This can be achieved within the frame-
work of the mean-sphere approximation (MSA) by
self-correlated calculations of the packing factor of
simple and complex ions in salt melt at the fixed tem-
perature and pressure.

Thus, this study is aimed at analyzing the thermo-
dynamics of complex formation in halide melts of
bivalent metals based on the simplified model of
charged hard spheres (with anions and cations of the
equal diameter), which takes into account the effects
of volume variation upon shifts of chemical equilib-
rium at dissociation of composite complex anions.
The effect of superposition of atoms inside the com-
plex on the position of chemical equilibrium is also
discussed on the qualitative level.

THEORY
Model

Now, we try to formulate the model for melts of
salts such as  (for convenience, the original
chemical formula МХ2 is transformed per one atom).
We assume that the following chemical reaction to
form the composite (complex or autocomplex) anion
can occur:

(1)

Figure 1 shows the geometrical model of such
complex.

The number of atoms in such system
, where .

+ −2
1 3 2 3M X

( ) −+ −+ = 22
4M 4X MX .

= +0 0
M XN N N =0 0

M X1 3N N
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We can write the ratios between numbers of free
ions and autocomplexes based on the laws of conser-
vation. From the condition of material balance, it fol-
lows that ; . Hence,
the total number of atoms is .

Next, taking into account the condition of electro-
neutrality , we obtain

 and . The num-
ber of particles  is smaller than the
number of atoms.

Let us express the mole fractions in the ternary sys-
tem of simple ions and complexes through a single
independent variable, i.e., the concentration of auto-
complex groups: . Then, the mole frac-
tions of cations and anions are equal to

. The value that characterizes the
average number of atoms per particle is

.

Free Energy
It is evident that the main difficulty in developing

the theory of fused salts prone to complexation is the
explicit consideration of sizes and charges of simple
and complex ions in the system. The simplest model
that allows taking into account both the repulsion of
ions at small distances and the coulomb interaction is
the model of a liquid with charged hard spheres of dif-
ferent diameters and electric valences. Then, the
Helmholtz free energy of such liquid can be repre-
sented as the sum of ideal, hard-sphere, and coulomb
terms

(2)

To perform clear analysis of the consequences of
this theory, we assume for simplicity that the sizes of
free cations and anions coincide  and the
size of autocomplex  is determined by the
diameter of the sphere circumscribed about this
molecular formation inside which the mass centers of
cation and anion are localized at the minimum possi-
ble distance d.

Now we estimate the dimensionless density of
atoms as , where V is the volume occupied
by the system.

Ideal contribution. Let us use the well-known for-
mula for the mixture of polyatomic gases [14]:

(3)

where  is the molecular-statistical
integral which we represent as the product of partial
statistical integrals describing the various degrees of
freedom (electronic, vibrational, rotational, and
translational, respectively).

= −0
M M CN N N = −0

X X C4N N N
= + +M X C5N N N N

+ + − + − =M X C( 2) ( 1) ( 2) 0N N N
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We approximate the electronic part by the Boltz-
mann probability of the nondegenerate ground state

The translational part is written conventionally as

 where  is the thermal

wavelength, V is the volume occupied by the system,
ħ and k are the constants of Plank and Boltzmann,
respectively, mi are masses of particles, е is the Napie-
rian base.

Vibration and rotation are possible only for auto-
complexes and make a weaker pre-exponential
(power) contribution to the dependence of its con-

centration on the temperature: ,

, where ω is the frequency of

valence oscillations in the complex, 
are the moments of inertia along principal axes (for
tetrahedron, ), σ is the symmetry number
(for tetrahedron, σ = 12),  is the halide ion mass.
Furthermore, for simplicity, we used the Einstein
model with the only frequency of normal vibrations,
because the vibrational degrees of freedom make
insignificant, i.e., pre-exponential, contribution to the
temperature dependence of concentration of auto-
complexes for problem under consideration.

It is convenient to pass to the change in free energy
by reckoning the ideal contribution of energy from the
ground-state energy of free simple cation and anion in
the absence of complexes and defining the dissocia-
tion energy as the difference between the correspond-
ing ground electron terms of ions and autocomplex

(4)

where  is the energy of
dissociation or formation of complexes (MX4)2–.

Hard-sphere contribution to the free energy. To
assess the contribution of repulsive forces at small dis-
tances upon the interaction of particles, we can use the
approximation of the statistical theory of liquids. This
approximation is based on the solution of Lebowitz of
the system of equations of Percus–Yewick for a mix-
ture of hard spheres with different diameters [15],
namely, the approximation of Mansoori–Carnahan–
Starling (MCS) [16] which is one of the best approxi-
mations as compared with the Monte-Carlo and
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molecular-dynamics computer simulations. For our
case, the free energy is as follows:

(5)

We designate

—the total packing factor, y1 = ,

, 

.

Indices M, X, and C mark the values pertaining to
cations, anions, and complexes, respectively.

Here,

Coulomb contribution to the free energy in the
mean-sphere approximation. The contribution of elec-
trostatic interactions of simple and complex ions to the
Helmholtz free energy can be taken as Blum’s solution
of the problem of charged hard spheres with arbitrary
diameters and valences in the mean-sphere approxi-
mation [17–19]:

(6)
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where

 are valences,  is the reciprocal Blum length that
describes the characteristic scale of attenuation of
charge oscillations about the central ion, which must
be determined by the coupling equation

Assessment of the Dissociation Energy of Complex
In principle, the dissociation energy of a complex

can be calculated by the quantum chemistry methods.
However, within the scopes of this study, we can use
simple and illustrative approximations. First, for the
sake of simplicity, we assume that the complex anion
(MX4)2– has the tetrahedral configuration. Second, if
we assume that the chemical bond inside the complex
is predominantly ionic, then the binding energy of the
pair of nearest neighbors cation-anion within the
complex is evidently equal to . The dissocia-
tion energy in the nearest neighbors approximation is

, because the (MX4)2– complex has four
such pairs. This method of calculating the dissociation
free energy seems to give the reasonable estimate of its
upper limit. To roughly assess its lower limit, we can
consider also the contribution to the dissociation
energy due to the coulomb repulsion of ligands in the
second coordination sphere. For a (MX4)2– complex,
the number of such pairs is six and the distance
between them can be easily found from the geometry
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of tetrahedron, because the height of the pyramid built
based on the vertices localized in the mass centers of

anions is ; hence, its edge is . We have

It is evident that dissociation energy can be suffi-
ciently high, reaching the values of the order of mag-
nitude of several tens of eV. In the below calculations,
we use these estimates as the upper (the nearest neigh-
bors) and the lower (the second coordination sphere)
limits of its range, when considering the dissociation
energy as a parameter of the theory.

Conditions of Chemical Equilibrium 
at Complex Formation

To derive the equations describing the conditions
of equilibrium in the system, allowing for the reaction
of complex formation at the constant pressure (P0) and
temperature, it is necessary to find the minimum of
the Gibbs free energy

(7)

In the case under consideration, the following two
independent variables are responsible for the position
of minimum: the mean atomic density and the con-
centration of autocomplexes. By equating the free-
energy derivatives with respect to these variables to
zero, we obtain the complete conditions of equilib-
rium in the system under consideration with chemical
reaction (1):

(8)

The first equation in system (8) represents the law
of mass action and can be reduced as follows:

(9)

where , γ is the mean activity

coefficient which, for the model of charged hard
spheres, is the product of the hard-sphere and cou-
lomb parts
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In the case of complexation reaction under consid-
eration,

(11)

In the MSA approximation of the model of charged
hard spheres (Blum’s solution), the contribution of
the coulomb interaction for the ith type of particles
can be written as follows:

(12)

The hard-sphere term in the formula for the mean
activity coefficient  is totally analogous to that in
Eqs. (11), (12) with substitution of index “hs” for
index “q.” The expressions for the contributions of
hard-sphere interaction to the chemical potentials of
simple and composite ions can be written as follows:

The second equation in system (8) is the equation
of state (EOS), i.e., relates the density with external
pressure and temperature:
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Fig. 2. (a) Typical dependences of different contributions to free energy on the concentration of autocomplexes at the fixed tem-
perature (3500°C) and pressure (0.6241 × 10–6 eV/Å3 corresponds to atmospheric pressure); (b) concentration dependence of
the free energy at different temperatures : (1) 0.015; (2) 0.017; (3) 0.019.
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Note that the so complicated method of calculating
the chemical equilibrium is associated with a very sim-
ple reason. Any change in the volume at the constant
pressure and temperature inevitably shifts the chemi-
cal equilibrium and, vice versa, any change in the con-
centration of complexes affects the volume. As a
result, the mean atomic density must be considered as
a significant and peer variable in the problem on
chemical equilibrium.

Furthermore, when calculating the pressure in sys-
tems with chemical reactions (the variable number of
particles), one has to recalculate each contribution to
the initial number of atoms.

RESULTS AND DISCUSSION

System of equations (8) was solved by the Newton–
Raphson method with initial values determined ana-
lytically as the low-temperature asymptotics. In calcu-
lations, we used the following model parameters: the
frequency of normal valence vibrations ω = 2πсν,
where c is the velocity of light, ν = 200 cm–1. For the
(MX4)2– autocomplex, the ion masses corresponded
to the case of calcium chloride; in our case, the
moment of inertia was 5.35 × 10–37 g cm2.

Figure 2a shows the results of calculations of differ-
ent contributions to the free energy as a function of the
autocomplex concentration at the constant tempera-
ture. To better understand, we also plotted the varia-
tion of contributions to the free energy corresponding
to the zero concentration of autocomplexes. The pres-
ence of the free energy minimum at the nonzero con-
RUSSIAN JOURNA
centration is evident. The ideal contribution is the
main factor favoring the formation of autocomplexes.
This contribution provides a decrease in the free
energy at relatively low concentration values. The cou-
lomb interaction of simple and composite ions in the
reaction mixture prevents the formation of autocom-
plexes. The variation of this contribution lies in the
positive region and increases with the increase in con-
centration.

Figure 2b shows the concentration dependences of
the free energy at different temperatures. It is seen that
as the temperature increases, the dependences change
their form. Moreover, the free energy increases and
passes to the positive region at temperatures at which
autocomplexes are absent.

Figure 3a shows the results of calculations of the
autocomplex concentration for several values of disso-
ciation energy which varies as a parameter in this the-
ory. It is seen that the region of characteristics values,
in which the autocomplex concentration considerably
differs from zero is shifted to relatively low tempera-

tures (about ). This means that the chemical

equilibrium with respect to formation of autocom-
plexes is substantially shifted to the left, i.e., towards
dissociation, if we consider the ideal case which
ignores the coulomb interaction of simple and com-
pound ions. The lower the dissociation energy, the
narrower the temperature range of the existence of
autocomplex groups. Moreover, when the dissociation
energies become too low, the concentration of auto-
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d

~ 10kT
E
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Fig. 3. (a) Calculated temperature dependences of the concentration of (MX4)2– autocomplexes and (b) calculated temperature

dependences of the melt density at different dissociation energies: (1) ; (2) ; (3)  (4) 
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complexes is zero throughout the whole reasonable
temperature region.

Figure 3b shows the calculated temperature depen-
dences of the atomic density of a bivalent metal halide
melt for different values of dissociation energy of
(MX4)2– complexes. It is evident that the temperature
dependence of the density has a maximum which
shifts in the high temperature direction with the
increase in dissociation energy, as the height of this
maximum decreases. The curve acquires the standard
monotonic form in which the density decreases with
the temperature once the temperature of complex for-
mation reaches the marked threshold after which the
complexes are totally instable.

We regard these data on the behavior of density as
the most interesting consequence of the developed
qualitative model.

The dissociation is so active in the narrow tempera-
ture interval that a considerable part of free volume
earlier contained within the complex is liberated. As a
result, the pronounced anomalies appear also in the
density plot, which generally contradicts the experi-
ment. Now we try to refine the volume changes in an
elementary act of complexation due to superposition of
spheres inside the complex in order to analyze qualita-
tively the possible changes in the dissociation process.

Note that in terms of the spherical model for the
autocomplex with the diameter 3d, its volume is ,

where  is the volume of unbound cation or

anion.  accounts for the volume occupied by the

ν027
πν = 3

0 6
d

ν05
RUSSIAN JOURNAL OF ELECTROCHEMISTRY  Vol. 5
bivalent-metal cation and four halide anions. Thus,
 is the additional volume necessary for the forma-

tion of the complex. It is evident that these values are
substantially overestimated. The more accurate theory
should operate with the factor reflecting the shape of
these molecules.

The rigorous consideration of the shape factor of
complexes is beyond the scopes of our study. However,
we can illustrate qualitatively the possible conse-
quences of rigorous consideration of volume variations
within the framework of a spherical model with super-
position of spheres within the complex.

Let us circumscribe a regular pyramid in the sphere
of radius 3d which was used earlier for the description
of autocomplex (MX4)2–. We can easily find that its

volume is . Let us determine the sphere

(Fig. 4) with the radius such that its volume 

coincides with the pyramid volume . Then, the
diameter of the reduced (or effective) sphere describ-
ing the autocomplex is . Now we can
easily find the parameter of superposition (λ) of spher-
ical atoms inside the complex that satisfies such vol-
ume cut-off. In our case of the complex anion with the

tetrahedral geometry, .

If we take the new diameter for (MX4)2– autocom-
plexes and calculate the concentration and the density,
it becomes evident that the characteristic region of the

ν022

ν = 3
p 2 6d

πν = 3
f f6

d

ν = νf p

( )= λ +f 2 2
dd d

−πλ = ≈
3 2 6 1

0.554
2
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Fig. 4. Geometrical model of (MX4)2– autocomplexes
with regard to superposition.

λd
existence of complexes shifts to the higher tempera-
tures (Fig. 5a). This can be easily explained by the
fact that the dissociation energy calculated in terms
of the crystal field model with the new distance
between centers  increased. This led to a shift of
the temperature interval of complex stability to the
higher temperatures.

λd
RUSSIAN JOURNA

Fig. 5. (a) Calculated temperature dependences of the concen
dependences in the approximation of the nearest neighbors (1) w
within the complex.
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Figure 5b shows that when the geometry of com-
plexes under study is considered rigorously, the anom-
aly in density curve disappears. The maximum in
curve 1 of Fig. 5b is transformed to the monotonic
decrease in the density with the increase in the tem-
perature. It is seen that the decrease in the radius of
complex leads to the increase in the density at equal
temperature. The more rigorous consideration of the
autocomplex size results in compacting of the system.
Indeed, the size of autocomplexes decreases which
means that they occupy the smaller volume.

CONCLUSIONS

(1) The effects of volume variation upon possible
dissociation equilibria of anionic complexes (МХ4)2–

in halide melts of bivalent metals are considered.

(2) Within the framework of the simplified model
of a molten electrolyte as a mixture of charged hard
spheres of different diameters and valences, it is shown
that the simplest approximation of the diameter of
complex as the treble diameter of simple ions leads to
substantial overestimation of the effects of volume
variation when considering dissociation.

(3) By the example of tetrahedral complexes
(МХ4)2– in halide melts МХ2, it is qualitatively
demonstrated that the density variations with the tem-
perature radically change when the autocomplex
shape is taken into account.
L OF ELECTROCHEMISTRY  Vol. 54  No. 5  2018
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