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1. INTRODUCTION

When I began to work on my Ph.D. thesis in 1972,
my director, Wolf Vielstich, told me, that there was a
new branch of theoretical electrochemistry based on
quantum mechanics, and gave me a review article by
Levich [1] on the theory of electrochemical electron
transfer reactions to read, which later became known
as the Levich and Dogonadze theory. He suggested
that I should work in this area for my thesis, which I
did with success. Later my interest shifted to other top-
ics, and when I actually went to the famous Frumkin
Institute in Moscow in 1979, I was working on adsorp-
tion and double layer problems, Levich had already
left, and Dogonadze was busy setting up a scientific
institute in Tbilisi in his native Georgia. I started a very
fruitful cooperation with a few of the younger mem-
bers of the Moscow group, in particular with Korny-
shev and later with Kuznetsov, who had become the
chief exponent of the Soviet theory of electron trans-
fer; his book [2] has become the standard work on this
topic.

During the course of the years I returned to prob-
lems of electron transfer several times, shifting from
outer-sphere to bond-breaking electron transfer and
later to electrocatalysis. Since so much of my work was
inspired by reading the first review on the Levich and
Dogonadze theory, I am happy to contribute to this
special issue in honor of Levich. Writing a review on a
subfield of electron transfer was out of the question;

! This paper is the author’s contribution to the special issue of
Russian Journal of Electrochemistry dedicated to the 100th
anniversary of the birth of the outstanding Soviet electrochemist
Veniamin G. Levich.

2 The article is published in the original.

rather, I decided to link three different approaches to
outer sphere electron transfer, which can be derived
from the same model Hamiltonian via Green’s func-
tion theory: (1) the original Levich and Dogonadze
theory based on first order perturbation; (2) calcula-
tion of potential energy surfaces from an exact solution
of the Green’s function; (3) time propagation of the
initial state based on an exact solution. Each of these
approaches has its own merits, and I hope that a com-
parison within the same framework will be useful
especially for younger colleagues.

By necessity this work contains many equations. In
order to avoid clustering them with constants I use
atomic units throughout. However, at times I have
written out Planck’s constant # explicitly, so that the
units of certain quantities can be verified.

2. THE MODEL HAMILTONIAN

Our model Hamiltonian, which we had first pre-
sented in [3], can be considered as a second-quantized
version of the Levich and Dogonadze theory [1]. The
advantage of this formalism is that it lends itself easily
to the application of Green’s function techniques. So
we consider a reactant with a valence orbital labeled a,
which can exchange an electron with a metal, whose
electronic states are labeled by a continuous index k.

We denote by ¢, the electronic energy of the metals

states, by n, their number operator, and by ¢ and ¢ X
the creation and annihilation operators. The corre-

sponding quantities for the state a are €., n,, ¢, and c,.
We consider the transfer of one electron in the outer
sphere mode, so we can disregard spin. In this case the
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electronic part of the Hamiltonian is a spinless version
of the Anderson—Newns [4, 5] model:

+ * +
Hel = Sana + ngnk + Zl:chkca + Vk Cack . (1)
k k

The first two terms denote the reactant and the
metal, the last term effects electron exchange between
the metal and the reactant with amplitudes V. Elec-
tron transfer is coupled to the reorganization of the
solvent, and usually also to a few inner sphere vibra-
tion modes of the reactant. Just like in Marcus [6] (and
polaron) theory, these modes are divided into a fast
part, which is supposed to follow the electron transfer
instantly, and a slow part. The former just renormal-
izes the electronic energy [2, 7], and will not be dis-
cussed further. The latter is modeled as a phonon bath,
whose modes we label by v:

Hsol = %zhwv (Q3 + p\?ja (2)
v

where ¢, and p, are dimensionless coordinates and
momenta, and ®, the frequencies. These modes inter-
act linearly with coupling constants g, with the charge
on the reactant. We consider the case in which the
charge on the reactant vanishes when the orbital g is
empty. Then the interaction term is:

Hint = nazhmngQV' (3)

v

Here we consider only classical modes, so that their
coordinates can be considered as external parameters
for the electronic system. For the sake of brevity, we
shall refer to them as solvent modes. Towards the end
we shall briefly comment on the effect of quantum
modes.

Our model Hamiltonian H is the sum of these
three terms. For the application of Green’s function
theory it is convenient to split it into two terms: A

transfer term H ,, which consists of the last two terms
in Eq. (1), and the rest:

H=Hy+Hy, Hp=Vicic,+Vicie|. @
The corresponding retarded Green’s [8, 9] func-

tions are:

G' (@)= ——, — 1

z—H +ie z—H,+ie

where € is an infinitesimal quantity. They are related
through the Dyson equation:

G'(2) =Gy + G ()HGy (2). (6)

We limit ourselves to the case in which all relevant sol-
vent modes are classical. In this case it is convenient to

collect the terms in #, and write:

G;(2) = )

€, t thngQV n, = S'Hna‘ (7)

v
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3. FIRST ORDER PERTURBATION THEORY

The Dyson equation (6) can be used to obtain a
systematic perturbation series in the transfer Hamilto-

nian H . To first order this gives:

G'(2) = Gy + Gy ()H Gy (2). ®)

In the Levich and Dogonadze version of electron
transfer theory one considers electron transfer from a
to the manifold of metal states k£, and the reverse. The
corresponding amplitude is:

(al6*@|k) = L 7 SN )
-l +id & + i

To obtain the time-development we use the relation

between the Green’s function and the propagator via

the Fourier transform

FGH(@) = j e 'GT(wdw = —2mie™'0(r),  (10)

where 0(7) in the Heaviside step function. If we disre-
gard the trivial factor —2mi, this is just the propagator
in the forward direction. By taking the Fourier trans-
form of Eq. (9) we obtain for the transition amplitude
from the time zero to the time ¢ > 0:

<a ‘e—th {1 _ ei(s-ﬂ—skrm}
a k

and the corresponding transition probability is given by:

k).

Now follows the textbook derivation of Fermi’s golden
rule. The transition rate from a to k per time is:

—ig'd

1)

k> _yre

W, = Ka ‘e_iH' (12)

Wa—)k — |I/k|2
1

Vassk =

[2 —2cos(e, — sk)t] (13)
(e, — Sk)zt
Taking the limit # — < we obtain:

Vassk = |I/k|2 6(8'51 - Ek)’

where a well-known relation for the d-function has
been used [10]. The rest is elementary, but it may be
useful to give a few details. Next we perform the ther-

mal average over the solvent coordinates ¢,. For this
purpose it is useful to take the Fourier transform of the
d-function:

8(6; _ Ek) _ 21 J‘ ei(ez,—ek)rdt
T

1 .
= b .[ exp |:lt[€a —€; t thvquvﬂdt

— \Y

(14)

No. 10 2017



1184

For the thermal average we need the partition function
of the oscillator bath in the initial state. For each oscil-

lator we have:
Z, = 2nk T .
\/ ho,

The total partition function is the product over v. For
didactical purposes we show how the average over one
mode is performed. We need:

(16)

1 [ 2
Z_V I dq, exp I:_Bhquv + h('ongQVt} (17)

= exp— Ak T,

where B = 1/kT, and A, = ho,g, / 2 is the contribu-
tion of one mode to the energy of reorganisation of the
solvent. For the thermally averaged rate we then
obtain:

ra = Wil [ exolie, —er —heTr’
i (18)
1 (e, — &)’

=, |? — & ,
Vi Ak T ankT

where A = A, is the total energy of reorganisation.
v
\%

So far we have not specified any reference energies.
For the metal it is convenient to take the Fermi level as

zero, so all g, are referred to this level. We next look at
the energy of the reactant plus the solvent, when the

former is far from the electrode, so that H, does not
contribute to the energy. When a is occupied, a simple
calculation gives that the solvent is in equilibrium

when ¢q, = —g, for all modes. This gives an energy of
€, — A for this subsystem. When « is empty, the equi-

librium condition is ¢, = 0, and the energy vanishes.
At equilibrium there must be no gain in energy when
the electron is transferred to the Fermi level, therefore

€, = —A at equilibrium, and in general we may write:
n, = —\ + e, where 1 is the overpotential. Hence:

A +en—¢,)’

19
A\NkT (19

=il 4T ka expT

Electron transfer can only occur to empty levels. To

get the total rate we multiply the r.h.s. by [1 — f(g,)],
where f is the Fermi—Dirac distribution, and inte-

grate over all €. :

_ 1 [ 200
= 4“”_{ dk V11 - fe)]

(A +em— gk)z
WkT

ra—)k

(20)

X exp—

SCHMICKLER

Usually the overpotential is smaller than A, and
inspection shows that in this case only states near the
Fermi level participate in the reaction. In this case we
may take the coupling as constant: V, =V, and
replace the integral over k£ by an integral over p(¢e)de,

where p(e) is the electronic density of states of the
metal. This finally results in:

r= /4 = jdep(s)[l—f(ek)l

A +em-— 8)
MkT

This equation has a nice interpretation in the theory of
Gerischer: He interprets:
(A +en—¢)’

/ 1 exp—
4TAkT A4NkT

as the density of occupied states of the solution, and

PO - f(ep)] (23)

as the density of empty states on the metal, so that the
rate is proportional to the product of these two densi-
ties. For more details, we refer to the original publica-
tion [10], and to the textbook [11].

21

X exXp—

(22)

4. ADIABATIC POTENTIAL
ENERGY SURFACES

Instead of using perturbation theory we can solve
for the matrix elements of the Green’s function
exactly. We are interested in the properties of the reac-
tant; we start from Dyson’s equation (6):

a)

<a " a> = <a‘GJ‘a> + <a‘G+HTGO+

1 (24)
- {1+§:v;< >}
Similar we obtain:
1
{alo7[ k) = 5{alc™]k)
7—¢€, +id
v, (25)
B S z- €, + 16< >
We combine the two equations:
(z—¢€, +id) <a‘G+‘ a>
(26)
-1+ X —H
We use the relation [12]
L —p 1 indz-ep), 7)
Z - 8/( + 18 Z - Sk
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where P denotes the principal part. We define the two
so-called chemisorption functions:

V 2
A@) = PZJLL A2) =my [il* 8z —¢,), (28)
K &tk k
which obey the equation:
A =Lp[A®) 4 (29)
T Z—X

With these definitions, we can write the matrix ele-
ment in the compact form:

)= !

z7- [s‘a - A(Z)J + iA(z)'

(af”

(30)

The two chemisorption functions have different

effects on the energy €,: A shifts this energy, and A
adds an imaginary part, so that the state g attains a
finite lifetime. We shall return to these points below.
Note that this Green’s function contains solvent terms

in 8:,. In its general form, Eq. (30) plays an important
role in the Santos and Schmickler theory of electroca-
talysis [13, 14]. Without the solvent, but with consid-
eration of spin, it forms the basis of the Newns theory
of adsorption [5].

We are considering outer sphere electron transfer,
where the interaction with the metal is much weaker
than in adsorption, and the detailed electronic struc-
ture of the metal plays no role. In this case the wide-
band approximation is useful, in which the coupling

elements V, =V = constant are taken as constant. In
this case, A is constant and A vanishes for reasons of
symmetry. We had made the same assumption in the
derivation of Eq. (21), and we shall use it in the rest of
this article.

From the Green’s function we can obtain the den-
sity of states (DOS) of a [8]:

P.(e) = —13 <a‘G+ a>
i

1 A

- T(E—¢, — Z:ho)vquv)2 + A%

v

(31

where 3 denotes the imaginary part. Here and in the
rest of this work we shall denote real energies by €, and
use the general term 7 when we need the extension
into the complex plane. The DOS of a has the simple
form of a Lorentzian of width A. The center of this dis-
tribution depends on the solvent coordinates, and thus
on the fluctuations of the solvent.

From the DOS we can obtain the occupation (n,)
of the orbital. To a good approximation we can replace
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the Fermi—Dirac function by a step function, and
integrate the DOS to the Fermi level £, = 0:

o €, T E ho,g.qy
1
= de = —arct .
(n,,) J.pa(s) € narc an

—oo

. (32)

The electronic energy is obtained from the integral:

0 €'
: A
E, = j ep,(e)de = €, (na>+;£ ﬁdm, (33)

—oco

where we have made the substitution @ = € — €. The
integrand has the  indeterminate  integral

111(0)2 + AZ)/ 2. So the determinate integral diverges,
which is a consequence of the wide band approxima-
tion. However, the difference between two states with
different solvent configurations is finite. We choose

the reference state as g, = 0, so that we obtain:

(€, + ) hog,q,)" + A’
Aln x

(34)
2n eﬁ + A’

E, = 8; <nu> +

The two terms have a simple interpretation: the
first is the electronic energy multiplied by the occupa-
tion probability, and the second term is the correction
due to the finite width A, which lowers the energy, and
which vanishes for A = 0.

Equation (34) gives the potential energy as a func-

tion of the solvent coordinates ¢q,, which, since they
are considered as classical, act as external parameters.
The stationary points of the surface are of special
interest; they are given by:

)
dq,

which gives the simple relations for the solvent coordi-
nates:

(35)

qv:_<na>gv (36)

This leads to a self-consistent equation for (n,), which
is examined in [3, 15]. We consider adiabatic outer-
sphere electron transfer, where the interaction is suffi-
ciently strong to ensure adiabaticity, but the absence of
adsorption ensures that A << A. Under this condition
there are always three stationary points at equilibrium
conditions: two minima corresponding to the initial
and the final states, separated by a saddle point. From
Eq. (36) it can be seen that they lie on a straight line.
This makes it possible to define a single reaction coor-
dinate g on this line. This can be normalized such that
for g = 0 the solvent is in equilibrium with the reduced
state, and for ¢ = —1 with the oxidized state. Details of
the normalization can be found in [12].
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Fig. 1. Adiabatic potential energy curves for various values
of A in the equilibrium configuration. The energy of reor-
ganization was taken as A =1 eV.

Consequently we can plot one-dimensional poten-
tial energy curves for the electron transfer, in the same
way as is familiar from Marcus [6] and Hush [16] the-
ory. An example is shown in Fig. 1 for the case where
the reaction is at equilibrium. Similar to Marcus the-
ory, the interaction energy A lowers the energy of the
saddle point. In addition, high values of A affect the
energies of the initial and the final state. Such poten-
tial energy curves can be combined with Kramers’ the-
ory [17] to calculate rate constants.

This theory holds equally well for -electron
exchange with a semiconductor. In this case, simple
approximations like the wide band approximation hold
only for energies inside the conduction and the valence
band. A good introduction to this problem is contained
in the recent article by Nazmutdinov et al. [18].

5. PROPAGATION IN TIME

In the wide band approximation, the electronic
energy €, acquires an imaginary part /A. In order to
obtain the time development, we can use the results of
perturbation theory by replacing €, — ¢, —iA in
order to obtain the exact result. For example, from

(al6"|a) = —L— (37)
z—¢, +iA
we obtain by Fourier transformation:
< ‘ —iHt > _ —Ar-igy
ale a)=-e (38)

so that an initially prepared state decays exponentially
with a decay time h/ 2A, where we have explicitly put
in % to clarify the units. This confirms our interpreta-
tion of A as a life-time broadening.

SCHMICKLER

In the same way we obtain from Eq. (13) for the
transition probability from a state k£ to a:

ff .
}

[l +e M —2e ™ cos(e, —g )t |.

—iH1
Wi = [(ale

2
Vi

(e, —€,)" +A°

Note that this is not the rate, but the probability to

find a state k prepared at 1 = 0 in state ¢ at a later time

t. At large times it tends to a finite value, so that, in
contrast to the results of perturbation theory, the rate

|/ N / t tends to zero. In order to interpret the result,
we sum the limiting value over all occupied states k:

Zf(gk) |Vk

& —SJ + A
(40)
= dEf(e)#S(a &) = [ F©p,©0de
(ea——sk) +A°

This shows, that at long times electronic equilib-
rium has been achieved.

Equations (39) and (40) depend on the solvent
coordinates through €', so we next have to perform the
thermal average. The calculations are not difficult but
cumbersome, so we only note that it is useful to
replace the Lorentzian by its Fourier transform; we
integrate over €, so that we obtain the total occupation
probability as a function of time [19]:

(n, (1)) = lj'def(e T)xR jdrexp[—z(s —e+M)1]
(41)

b

—At “2At+ATY  —kTAT?
X e —e e

where R denotes the real part. Admittedly, this result
does not look very pretty; it even oscillates at short
times. However, at long times it can be shown to obey
a relaxation equation of the form:

( D) = ((n (1)) — (n,(t = =),

with the relaxation time 1, = h/ 2A. This can be veri-
fied by taking the long-time limit of Eq. (41) and sub-
stituting it into Eq. (42); again the calculations are
straightforward, but cumbersome.

Let us see how this helps in defining the rate con-

stant. The electron transfer takes place in both direc-
tions, and in formal kinetics we can define rate con-

(42)

stants k.4 and k,,, so that:
() = Kia [1 = ()]~ oy (n0)- (43)
RUSSIAN JOURNAL OF ELECTROCHEMISTRY  Vol. 53  No. 10 2017



ADIABATIC AND NON-ADIABATIC ELECTROCHEMICAL ELECTRON TRANSFER

This is a standard problem of chemical Kinetics.
The equilibrium value is:
red (44)

(n,(o0)) =
kred + kox
and the decay time towards equilibrium is:

_ 1
kred + kox

k

(45)

so that:
Krea = (1a(=2))/T, and ko = [1=(n,(=))]/7,. (46)
Applying these relations to the case at hand, results in:
s = [ def (€ Wrea®), @7)

where:

Wiea() = %(nkaTf“

X S{W&\/E(E” —£+7»+iA)H,

2
where w(z) = e ° erfc(—iz) is the complex error func-
tion [20]. The corresponding equation for the oxida-
tion is:

(48)

ooy = [ dell = £ (&) ooy @), 49)

Weor (€) = %(nxkgrf”z

X S{W(%\/E(sa —a—k+iA)ﬂ.

Note that these rates have the same form as in perturba-
tion theory—see Eq. (21)—and the expressions (48) and
(50) are the generalizations for the densities of states of
Eq. (22) in the sense of Gerischer.

These equations are valid for all strengths of the
interaction A. In addition, they give the absolute val-
ues of the rate, which depends only on A and on the
solvent reorganization energy A. This makes it possible
to investigate the rate and the effective activation
energy, defined through: E,, = —dIn(k,4)/d(1/kT),
as a function of the interaction energy A. The results
are shown in Fig. 2 for the equilibrium situation. For
small values of A the rate is proportional to A, and the
activation energy is constant and equal to 7\./ 4 like in
Marcus theory. This is the range where first order per-
turbation theory holds. For stronger interactions the
rate rises faster than linearly, and the activation energy
starts to decrease—this is the same effect as in Fig. 1.

(50)

6. DISCUSSION

We have presented three different ways of investi-
gating electrochemical electron transfer reactions in
the outer sphere, which start from the same model
Hamiltonian, and which use the Green’s function for-
malism as the starting point. The physical model is the
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Fig. 2. Dependence of the reduction rate k.4 and the acti-
vation energy at equilibrium on the energy broadening A
for a system that couples to classical modes only; A = 0.5 €V.
Full line: reaction rate; dotted line: activation energy.

same as in the original works of Marcus, Hush, Levich
and Dogonadze: electron transfer is coupled to the
reorganization of solvent modes.

In the first formalism the electronic interaction
between the reactant and the metal is considered to be
weak, and the rate is calculated by first order perturbation
theory. This is the approach of the Levich and Dogo-
nadze theory. We have derived the corresponding equa-
tions from Green’s function theory, but any other deriva-
tion leads to the same results. The transition probability
is proportional to time, and defining the rate is not prob-
lematic. It takes the form of an integral over the electronic
energy of the transferring electron. The integrand can be
considered as a thermal density of states as suggested by
Gerischer, or as an energy resolved rate. Electron transfer
is a rare event, so that solvent dynamics play no role. This
theory should hold, whenever the electronic interaction
is weak; an important application is electron transfer on
film-covered metals.

The second approach has been developed by
myself; using ideas of Anderson—Newns theory, the
Green’s functions can be calculated exactly. This
allows us to obtain the adiabatic potential energy of the
system as a function of the solvent coordinates. These
involve electron exchange with all levels on the metal,
but they do not appear as individual contributions.
The results are particularly simple in the wide-band
approximation, where the interaction is taken as con-
stant and the details of the electronic structure of the
metal are ignored. For outer sphere electron transfer
this is a reasonable approximation. For weak and
medium strong interactions, A << A, the potential
energy curves are the same as in Marcus theory; stron-
ger interactions lower the activation barrier. The cal-
culated potential energy curves can be combined with
Kramers’ theory to obtain reaction rates. The
approach is limited to adiabatic electron transfer. It
can be extended to electrocatalytic reactions by incor-
porating results from quantum-chemical calculations.
This line of theory has been developed in my group
during the last couple of years [13, 14].
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By taking the Fourier transform of the exact
Green’s function, the corresponding time develop-
ment of the electronic states can be derived. In the
wide-band approximation, the transformation can be
calculated analytically. The results are formally similar
to those of first-order perturbation theory, but valid
for any interaction strength. The transition probability
oscillates at short times, but at long times it obeys a
simple relaxation equation, which makes it possible to
define and extract the rate constants. Here, like in per-
turbation theory, the total rate is the integral over elec-
tron exchange with individual metal states. The results
are valid for all interaction strengths. Solvent dynam-
ics are not included; however, they can be considered
by combining the equations of motion with stochastic
molecular dynamics [21].

Finally, a comment on the reorganization of quan-
tum vibrations, which we have not considered. They
can and have been included both in the perturbation
and in the time propagation approaches, so they pose
no principal problem. So far, they have not been con-
sidered in the calculation of adiabatic potential energy
surfaces. This would involve the calculation of individ-
ual surfaces for each vibrational transition, with the
appropriate thermal averaging. So far, to the best of
our knowledge, this has not been done.

7. CONCLUDING REMARKS

As stated in the introduction, this is by no means a
review of electrochemical electron transfer theory.
Our aim has been to start from a model Hamiltonian
in second quantized form, calculate the corresponding
Green’s function, and compare three different
approaches for the calculation of the rate of electron
transfer. Each of them has its own merits and range of
applicability. We hope that this unifying approach to
three different methods has shed some light on elec-
tron transfer theory.

Obviously, this is not the place to discuss experi-
mental results, but a brief comment is in order. First
order perturbation theory by definition holds when the
interaction is weak. It is therefore the theory of choice
for electron transfer on electrodes covered by a thin
insulating film. The second approach has been used to
explain, why outer sphere electron transfer on metal
electrodes is independent of the nature of the metal
[22], and also forms the basis of our theory electroca-
talysis [14]. A big advantage of the equations-of-
motion approach is the fact, that it is valid for all inter-
action strengths, and that quantum vibrations can be
incorporated directly.

On a personal note, writing all these equation made
me feel somewhat nostalgic. Nowadays papers in the-
oretical electrochemistry are usually based on density
functional theory (DFT), which most scientists use as
aboxed program. While I admit, that DFT is very use-
ful—we use it ourselves extensively in my group — its
results cannot compete with the beauty and the rigor
of a mathematical derivation.
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