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Abstract—We report results of MC simulations of electron transfer across a metal electrode/electrolyte solu-
tion interface. The model presumes the Landau–Zener theory and a random walk on a two-dimensional lat-
tice formed by crossing parabolic reaction free energy surfaces along the solvent coordinate. Emphasis is put
on investigating the activationless discharge regime; the bridge-assisted electron transfer is also partially
addressed. We have calculated effective electronic transmission coefficient as a function of the electrode over-
potential and temperature in a wide range of orbital overlap. The dependence of the transmission coefficient
on the electronic density of states is analyzed as well.
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1. INTRODUCTION

The elementary act of electron transfer (ET) across
a solid/electrolyte solution interface is broadly more
complicated as compared with homogeneous redox
processes. The first reason is the adsorption of reac-
tant (product) for inner-sphere reactions, while the
second complication results from a manifold of elec-
tronic energy levels which might contribute to the ele-
mentary act. The latter presumes a family of crossing
free energy surfaces along the reaction coordinate
which should be addressed when considering a hetero-
geneous charge transfer in terms of the quantum
mechanical theories (see, for example, Refs. [1–4]).
This issue is important for calculations of electronic
transmission coefficient and can be treated analyti-
cally in two kinetic regimes: diabatic (i.e. weak elec-
tronic coupling) and adiabatic (strong coupling) lim-
its. However, in the important intermediate region
only numerical approaches seem to be efficient.
Monte Carlo (MC) simulations which mimic a ran-
dom walk through nodes of a 2D-lattice formed by
crossing reaction free energy surfaces (RFES) along
the solvent coordinate were performed first in work
[5]; the crossing plots of RFES were considered in a
linear approximation. Later this model was extended

to parabolic RFES in Ref. [6]; the electrode overpo-
tential effect was also partially addressed.

The aim of the present work is to elucidate three
issues of heterogeneous ET using the MC technique
employed in Ref. [5]. First of all we investigate not
only normal but also activationless region when calcu-
lating an effective electronic transmission coefficient
( ). It has been shown in Refs. [7, 8] on the basis of
quantum mechanical theory that for example, the
reduction of the [Fe(CN)6]3– and peroxodisulphate
anions at a mercury electrode (thoroughly investigated
experimentally by the Frumkin’s school) proceeds in a
near-activationsless region. Secondly, we consider in a
more detail the dependence of  on the electronic
density of states (DOS) in an arbitrary region of orbital
overlap. Finally the dependences of  on the DOS and
temperature for a bridge assisted ET are calculated as
well. These problems were not discussed earlier in
works [5, 6].

2. MODEL AND COMPUTATIONAL DETAILS

Let us consider for the sake of simplicity an outer-
sphere one electron reduction proceeding at a metal
electrode/electrolyte solution interface without bond
break and with a small intramolecular reorganization.
It is also assumed that the influence of the reactant—
electrode orbital overlap on the activation barrier is
small and can be neglected. Then the reaction energy

1 This article is a contribution of the authors to the special journal
issue dedicated to the centenary of the birth of outstanding elec-
trochemist, corresponding member of the Academy of Sciences
of the USSR, Veniamin Grigor’evich Levich (1917–1987).

2 The article was translated by the authors.
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surfaces describing the initial (reactant, i) and final
(product, f) states are written as follows [4, 9],

(1)

(2)

where q is the dimensionless solvent coordinate, λ is
the solvent reorganization energy, is the reaction
free energy ( = –e0η and η is the electrode overpo-

2( ) ,iU q q m= λ + Δε

2( ) ( 1) ,fU q q F m= λ − + Δ + Δε

FΔ
FΔ

tential), Δε is the energy increment arising from a con-
tinuum of electronic states in the electrode and m = 0,
±1, 2,… (m = 0 corresponds to the Fermi level, neg-
ative and positive m values describe the electronic
states below and above the Fermi level).

Equations 1, 2 presume that the Marcus theory [10]
is employed to calculate the ET barrier. A family of
crossing RFES is shown in Fig. 1. The coordinates of
the lattice nodes can be readily calculated analytically
using Eqs. (1)–(2). We present below for illustration a
partial case, when the lattice is obtained by crossing of
three  with three  energy surfaces (Fig. 2).
A (3 × 3) matrix of the energy values looks as follows:

±

( )iU q ( )fU q

(3)
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4 4 4
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In turn, the corresponding matrix of the solvent
coordinates takes the form:

(4)

It follows from the Landau–Zener (LZ) theory
[2‒4] that the reaction system in the vicinity at each
node can pass from the surface  on  (or in
vice versa, from  on ) with some probability

2

.

2

F F F

F F F

F F F

λ + Δ λ + Δ + Δε λ + Δ + Δε⎛ ⎞
⎜ ⎟λ λ λ
⎜ ⎟λ + Δ − Δε λ + Δ λ + Δ + Δε
⎜ ⎟

λ λ λ⎜ ⎟
λ + Δ − Δε λ + Δ − Δε λ + Δ⎜ ⎟⎜ ⎟
⎝ ⎠λ λ λ

( )iU q ( )fU q
( )fU q ( )iU q

(see Fig. 3). These probabilities are calculated as fol-
lows:

(5)

(6)

(7)

(8)

where  is the Landay–Zener (LZ) factor,  is
the Fermi–Dirac distribution function and  is given
by the Boltzmann factor, (the mean-
ing of  is clear from Fig. 2).

(1 exp( 2 )) ( ) ,i e eP f P= − − πγ ε
�

(1 exp( 2 )) ( ),i eP f= − − πγ ε
�

(1 exp( 2 ))(1 ( )),f eP f= − − πγ − ε
�

(1 exp( 2 ))(1 ( )) ,f e eP f P= − − πγ − ε
�

2 eπγ ( )f ε
eP

Bexp( )E k T−Δ
EΔ

Fig. 1. Two-dimensional lattice formed by several crossing
parabolic free energy surfaces along the reaction coordi-
nate q.

Reactant (i) “Mirrors”

Product (f)

Fig. 2. Lattice nodes formed by three crossing reaction free
energy surfaces; see also matrices (3) and (4).
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In Eqs. (5)–(8)  is the probability to pass on the

lower right side of ,  is the probability to pass on

the upper left side of ,  is the probability to

pass on the lower left side of  and  is the prob-

ability to pass on the right upper side of .

Using our model we start the simulation loop from

the lowest node in the left side of a rhombus formed by

the crossing points (Figs. 1, 2). Then combining the

Monte Carlo scheme with probability  one can

arrange a random ballistic walk on the lattice nodes

(see technical details in Ref. [5]). Instead of periodical

boundary conditions we use the “mirror” closure, i.e.

when the system attains the upper lattice sides (right

and left), a new loop starts from the corresponding

node (“reflection”). The efficiency of such an

approach has been demonstrated earlier in work [5].

The trace formed by a number of the lattice nodes

passed during such a rambling can be rendered as a

trajectory. If trajectories start from some left lower

node and finally reach the right lower lattice side, they

are considered as successful. In contrast, if trajectories

after some rambling return to the initial lattice side,

they are called unsuccessful. The effective partial

transmission coefficient ( ) can be defined as a ratio

of the number of successful trajectories ( ) to the

total number of attempts ( ) to start from the

selected node in the left lower lattice side:

(9)

A value of 300 for  was found to be enough for

estimates with a reasonable accuracy. The same proce-

dure is repeated for each node of the lower left side of

rhombic lattice. Then the effective electronic trans-

mission coefficient ( ) is calculated as follows:

iP
�

( )fU q iP
�

( )fU q fP
�

( )fU q fP
�

( )fU q

iP
�

iκ
succesN

totalN

succes total .i N Nκ =

totalN

κ

(10)

where n is the number of RFES left (or right),  is
the energy difference between the i-th node and the
lowest node.

Note that our definition of  somewhat differs
from that given in Ref. [6]. A value of 0.7 eV was taken
for λ in Eqs. (1), (2) which nearly corresponds to the
total reorganization energy of electron transfer at the

electrochemical reduction of [Fe(CN)6]
3– [7]. A lat-

tice 61 × 61 (i.e., n = 61) was used in most of simula-
tions; in this case the difference between the bottom of

the lowest und topmost RFES amounts to 7 . All
MC simulations were performed by an original code
written with the help of Matlab program package.

3. RESULTS AND DISCUSSION

In our simulations direct trajectories appear suc-
cessful (see Eq. (9)), while unsuccessful trajectories
are basically reverse (some examples are shown in
Fig. A1, see Appendix A). The dependence of partial
electronic transmission coefficient on the energy cal-

culated from the Fermi level ( ) is plotted in Fig. A2
(Appendix A); a sharp decay of the curve in the region

upper  results from the Fermi–Dirac distribution.
We have investigated first the dependence of  on
electronic density of states (DOS). The latter was
modeled by a number of reaction free energy surfaces

(n) in the abovementioned energy interval 7 . At

B
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Fig. 3. Probabilities of transition from one reaction energy
surface to another near their crossing point.
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Fig. 4. Dependence of on the number of RFES (in a fixed

energy interval) calculated for four different LZ factors:
0.99 (1), 0.1 (2), 0.01 (3), 0.001 (4) at η = 0 V and T =
298 K. The results of calculations in terms of the “multi-

state” LZ theory (see Eq. (12)) are plotted as well:  =

0.1 (d),  = 0.01 (m).
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small LZ factor values (0.01 and 0.001) our results pre-
dict nearly linear dependencies which are in a good

qualitative agreement with the theory [1–4]3 (Fig. 4).
For adiabatic limit the behaviour of transmission coef-
ficient resembles a step-like function. In this limiting
case  practically does not depend on the DOS (i.e. on
the electrode material) that looks reasonable and
agrees with experiment [11]. Note that the transient
interval at low DOS (where changes rapidly) seems
to be artificial induced most likely by the discrete
character of electronic energy level in the model sys-
tem. On the other hand, a real dependence with the
rapid change of electronic transmission coefficient
might be observed for metal nanoclusters of different
size with discrete energy spectrum.

The most challenging is, however an intermediate

case (  = 0.1), where  reveals a significantly non-
linear behaviour. Recently Feldberg and Sutin [12]
treated the heterogeneous electron transfer in the whole
range of orbital overlap (from diabatic to adiabatic
limit) in the framework of “multistate” LZ theory:

(11)

We attempted to calculate similar dependencies at
two different LZ factor values (0.01 and 0.1) and com-
pare them with the results of MC simulations. It is
convenient to recast Eq. (11) as follows,

(12)

On can see from Fig. 4 that using Eq. (12) overesti-

mates the  values for  = 0.1 (with the maximal

error 11%) and underestimate them for  = 0.01
(with the maximal error 7%).

3 According to Refs. [1–4] in diabatic limit ,

where  is the density of electronic states of an electrode in
the vicinity of the Fermi level.

κ ≈ πγ ρ εF B2 ( )e k T
F( )ρ ε

κ

κ

2 eπγ κ

κ = − − πγ ρ εF B1 exp[ 2 ( ) ].e k T

κ = − − πγ ρ ε = − − πγF B1 exp[ 2 ( ) ] 1 exp[ 2 ].e ek T n

κ 2 eπγ
2 eπγ

Electronic transmission coefficient as a function of
the LZ factor is presented in Fig. 5 for two different
kinetic regimes. The finite DOS (n = 61) was
addressed in our simulations, that is why the calcu-
lated dependencies are strongly non-linear in the

interval of  under consideration. As can be seen,
the  values for the activationless discharge exceed
those obtained for the normal region but the maximal
difference was found to be small and amounts to 0.08.

The electronic transmission coefficients calculated
for two different LZ factors at n = 61 in a wide range of
the electrode overpotentials are plotted in Fig. 6. The

scattering of data for  = 0.01 is explained by the
fact that for the case of weak orbital overlap one needs
longer simulations to collect results with a smaller dis-
persion. The qualitative effect was found to be the
same for the both LZ factor values:  increases with
increasing η (ca by 0.06–0.08). It should be noted that
the authors [6] have been reported a slight decreasing
of the effective transmission coefficient with the over-
potential growth. Again, this quantity was defined in
work [6] in somewhat different way. The effects we
observe originate purely from the rambling of reaction

2 eπγ
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κ

Fig. 5. Dependence of  on the LZ factor calculated for the

normal (η = 0) and activationless (η = 2.5 V) regions at

T = 298 K.
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system in the two-dimensional network (Fig. 1). On
the other hand, the LZ factor depends on the tunnel-
ing matrix element (resonance integral) [1–4]. The
latter is sensitive to the electronic density of a metal
electrode and can noticeably increase at the growth of
electrode overpotential. This significantly affects both
the transmission coefficient [13] for diabatic ET reac-
tions and the activation barrier of redox-processes in
adiabatic limit [14].

The influence of temperature on effective trans-
mission coefficient in the region of strong orbital over-
lap was explored as well. As demonstrated in Fig. 7a, at
zero overpotential the  values slightly decrease with
increasing temperature. In general this effect should
be even stronger, if the temperature dependence of LZ

factor is additionally addressed4. However, for the
activationless region the temperature effect is practi-
cally absent (Fig. 7b).

Finally some preliminary results obtained for a
bridge assisted ET [4] are also reported. In this special
case two LZ factors should be used in MC simulations:

 which describes ET from initial state to the

bridge center and corresponding to ET from the
intermediate to the final state. The corresponding
simulation lattice is more complicated as compared
with that in Fig. 1 because we need to consider an
additional set of parabolic free energy surfaces

describing a bridge molecule5. In further calculations

we assume that = 0.01 and  = 0.99. Qual-

4 , see Refs.[3, 4].

5 , h is the energy separation

between the minimum and the crossing point of  and

 (see Eqs. (1), (2)). A value of 0.5 eV was used in our sim-

ulations, which presumes the “super-exchange” mechanism of
electron transfer via a bridge molecule.

κ

γ ≈ π λ Be k T

( )
2

ib
eπγ

( )
2

bf
eπγ

= λ − + + Δε2
( ) ( 1 2)bU q q h m

( )bU q ( )iU q
( )fU q

( )
2

ib
eπγ ( )

2
bf

eπγ

itatively such a choice of the LZ factors agrees with the
molecular model of Scanning Tunneling Microscope
employed in work [15]. We omit other computational
details which will be reported separately.

The results differ from those discussed previously
(Figs. 4, 7). The dependence of on the DOS (Fig. 8a)
was found to be significantly smaller in comparison

with the direct electron transfer path (  = 0.01). It
is interesting to note that in this case the “multistate”
LZ theory (Eq. (12)) strongly overestimate the effec-
tive transmission coefficient. The temperature effect
(Fig. 8b) looks also more pronounced and even quali-
tatively different from that shown in Fig. 7.

4. CONCLUDING REMARKS

The heart of the model we employed in this work to
describe heterogeneous ET reactions is a random bal-
listic walk on the two-dimensional network formed by
crossing points of the reaction free energy surfaces.
The model rests on the Monte Carlo technique and

κ

2 eπγ

Fig. 7. Dependence of  on temperature calculated for the

normal (η = 0) and activationless (η = 2.5 V) regions at

 = 0.1.
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was proven to be robust and f lexible to address differ-

ent kinetic regimes. Emphasis was put on investiga-

tions of the influence of the electrode overpotential,

DOS and temperature on the effective electronic

transmission coefficient. The effects we observed are

broadly interesting from a qualitative viewpoint albeit

quantitatively they are rather small. Some preliminary

results obtained for the bridge assisted ET look prom-

ising and call for a more detailed investigation. It has

been also shown that the “multistate” LZ model [13]

broadly does not provide reliable results in the inter-

mediate interval of electronic coupling. It is evident

that most of our findings are very difficult to check

directly in electrochemical experiment. We believe,

therefore that MC simulations in the framework of a

two-dimensional lattice model are a useful tool and

make it possible to gain a deeper insight into some

details of the mechanism of heterogeneous electron

transfer in a wide region of orbital overlap.

A while ago Schmickler and Mohr made an inter-

esting attempt to describe the electron transfer across

electrochemical interfaces in the whole range of elec-
trode—reactant interactions (including both diabatic
and adiabatic limits) [16, 17]. The authors addressed
neither Landau–Zener theory, nor a manifold of the
RFES and therefore did not deal with electronic trans-
mission coefficient. Instead of this they have
employed the Anderson–Newns formalism and found
non-perturbative analytical expressions for the time-
dependent occupation number of reactant, as well as
for the rate constant which looks in diabatic limit sim-
ilar to that found earlier in terms of the perturbation
theory [1–4]. In work [17] the rate constant of elec-
tron transfer was calculated on the basis of simulations
using the Brownian molecular dynamics, i.e., the sol-
vent friction effects were considered as well. However,
neither temperature, nor electrode overpotential
effects on the rate constant were investigated. Ref. [18]
should be also mentioned where the author combined
the LZ theory with the Kramers approach to describe
simple homogeneous redox processes. It would be
tempting to combine in future our approach with the
models developed in works [16, 17].

Fig. A1. Examples of “successful” (a) and “unsuccessful” (b) trajectories in MC simulations.
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APPENDIX A

Fig. A2. Partial transmission coefficients as a function of the  difference (η = 1 V,  = 0.1, T = 300 K).
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