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Abstract—Quantitative structure—property relationship models correlating the half-wave potentials (£, ;) of
the benzenoids and its derivatives were developed using both linear and non-linear modelling approaches.
Descriptors calculated from molecular structures alone were used to represent the £, of the benzenoids. A
set of 36 compounds were selected and suitable sets of molecular descriptors were calculated. A genetic algo-
rithm-partial least square (GA-PLS) method was used to select the most appropriate molecular descriptors
whilst a linear, quantitative structure—property relationship model was developed; using the selected descrip-
tors, a Levenberg—Marquardt artificial neural network (L—M ANN) was employed for the non-linear model
development. The stability and prediction ability of models were validated using leave-group-out cross-vali-
dation, external test set and Y-randomization techniques. The described model does not parameters require
experimental and potentially provides useful prediction for £, ;, of new benzenoids derivatives.
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1. INTRODUCTION

Half-wave potential (£, ;) is an important electro-
chemical property of organic compounds. This prop-
erty which is a characteristic constant for a reversible
oxidation—reduction system can be useful for predict-
ing electrochemical properties of other organic com-
pounds. There are some different electrochemical
methods which permit determination of the half-wave
potentials of a wide variety of organic and orga-
nomethalic compounds [1]. Quantitative structure—
activity/property relationships (QSAR/QSPR) stud-
ies, as one of the most important areas in chemomet-
rics, give information that is useful for molecular
design and medicinal chemistry [2, 3]. QSAR/QSPR
models are mathematical equations relating chemical
structure to a wide variety of physical, chemical, bio-
logical and technological properties. The main task of
QSPR is to obtain a reliable statistical model for the
prediction of properties/behavior of new chemical
substances and analytical systems. These relationships
also take an approach to the identification and isola-
tion of most important structural descriptors that
affect physicochemical properties. Model develop-
ment in QSAR/QSPR studies comprises different

! The article is published in the original.
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critical steps as (1) descriptor generation, (2) data
splitting to calibration and prediction (or training) and
validation (or test) sets, (3) variable selection, (4) find-
ing appropriate model between selected variables and
activity/property and (5) model validation.

In recent years, numerous quantitative
QSAR/QSPR models have been introduced for calcu-
lating the physicochemical properties of molecules
from chemical structure; the applications of
QSAR/QSPR in electrochemistry are described [4]. A
successful strategy for prediction of the reduction
potential is the construction of the QSPR models, by
which, structural features affecting £, ,, will be under-
stood too [4—7].

The electrochemical half-wave potential in some
cases it could be directly correlated with biological
properties of compound. Therefore, the aim of the
present study is estimation of ability optimal descrip-
tors calculated with linear multivariate regressions
(e.g. the partial least squares (PLS)) as well as the non-
linear regressions (Levenberg—Marquardt artificial
neural network (L—M ANN)) in QSPR analysis of
half-wave potentials of some benzenoids. The stability
and predictive power of these models were validated
using Leave-Group-Out Cross-Validation (LGO CV),
external test set, and Y-randomization techniques.
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Table 1. The experimental, calculate, RE and RMSE val-
ues E , of benzenoids derivatives for training set by L—M
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Table 2. The experimental, calculate, RE and RMSE val-
ues E , of benzenoids derivatives for test set by L—M ANN

ANN model

model

zflfc?izls Exp. (V) | Cal. (V) RE RMSE
Calibration Set
1 —1.98 —-1.97 0.50 0.002
2 —1.46 —1.35 7.69 0.025
3 —1.94 —1.86 3.93 0.017
4 —1.14 —1.08 5.14 0.013
5 —1.53 —1.51 1.09 0.004
6 —1.81 —1.77 2.38 0.009
7 —1.75 —1.65 5.43 0.021
8 —1.97 —1.78 9.82 0.042
9 —1.61 —1.58 1.79 0.006
10 —0.86 —0.81 5.56 0.010
11 —1.19 —1.14 3.85 0.010
12 —1.44 —1.41 2.08 0.007
13 —1.54 —1.53 0.78 0.003
14 —1.57 —1.53 2.62 0.009
15 —-1.79 —1.64 8.23 0.032
16 —1.65 —1.55 5.95 0.021
17 —1.55 —1.54 0.65 0.002
18 —1.25 —1.24 0.83 0.002
19 —1.67 —1.57 5.90 0.022
20 —1.4 —1.39 1.06 0.003
21 —1.73 —1.57 9.42 0.036
Prediction Set

22 —1.53 —1.48 3.19 0.018
23 —1.36 —1.28 6.21 0.032
24 —0.95 —0.96 1.05 0.004
25 —1.33 —1.26 4.97 0.025
26 —1.21 —1.17 2.91 0.013
27 —1.57 —1.60 1.91 0.011
28 —1.59 —1.48 6.96 0.042

en | Exp.v) | caLv) | RE RMSE
29 122 | —1.26 3.20 0.014
30 15 | —145 3.16 0.017
31 097 | —0.93 421 0.014
3 088 | —0.93 5.68 0.018
33 ~1.00 | —1.01 0.68 0.002
34 149 | —164 | 1007 | 0.053
35 —145 | —1.39 3.81 0.020
36 —136 | —145 6.77 0.033

2. COMPUTATIONAL
2.1. Data Set

All data of the present investigation was available
from the literature reported by Bergman [8]. This
dataset consists of 36 benzenoids derivatives. The
chemical structures of studied compounds are similar.
Through data collection, attention was made to choose
electrochemical data obtained at similar experimental
conditions. The molecular structures of studied com-
pounds for the training and test sets are shown in
Figs. 1, 2. A list of the studied compounds and their
experimental £ , values are shown in Tables 1, 2.
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2.2. Genetic Algorithm for Descriptor Selection

To select the most relevant descriptors with GA,
the evolution of the population was simulated. Each
individual of the population, defined by a chromo-
some of binary values, represented a subset of descrip-
tors. The number of the genes at each chromosome
was equal to the number of the descriptors. The popu-
lation of the first generation was selected randomly. A
gene was given the value of one, if its corresponding
descriptor was included in the subset; otherwise, it was
given the value of zero. The number of the genes with
the value of one was kept relatively low to have a small
subset of descriptors [9—11] that is the probability of
generating zero for a gene was set greater. The opera-
tors used here were crossover and mutation. The appli-
cation probability of these operators was varied lin-
early with a generation renewal. For a typical run, the
evolution of the generation was stopped, when 90% of
the generations had taken the same fitness. In this
paper, size of the population is 30 chromosomes, the
probability of initial variable selectionis 5 : V (Vis the
number of independent variables), crossover is multi
Point, the probability of crossover is 0.5, mutation is
multi Point, the probability of mutation is 0.01 and the
number of evolution generations is 1000. For each set
of data, 3000 runs were performed.

2.3. Data Pre-processing

Each set of the calculated descriptors was collected in
a separate data matrix D, with a dimension of (m x n),
where m and n are being the number of molecules and
the number of descriptors, respectively. Grouping of
descriptors was based on the classification achieved by
Dragon software. In each group, the calculated
descriptors were searched for constant or near con-
stant values for all molecules and those detected were
removed. Before applying the analysis methods, and
due to the quality of data, a previous treatment of the
data is required. Scaling and centering is one of the
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Fig. 1. The structure of the benzenoid hydrocarbons in the training set.
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Fig. 2. The structure of the benzenoid hydrocarbons in the test set.

pre-processing methods we need before performing
the regression methods combined with FE. The results
of projection methods depend on the normalization of
the data. Descriptors with small absolute values have a
small contribution to overall variances; this biases

Output layer

Hidden layer
Input layer

Fig. 3. Used three layer ANN.
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towards other descriptors with higher values. With
appropriate scaling, equal weights are assigned to each
descriptor, so that the important variables in the model
can be focused. In order to give all variables the same
importance, they are standardized to unit variance and
zero mean (autoscaling).

2.4. Y-randomization or Chance Correlations

Part of validating the models is to check for the pos-
sibility of chance correlations. This can be done by
performing the entire sequence of computations over
but with the dependent variables scrambled. This
scrambling destroys any relationship between the
descriptors and the dependent variable. No model that
exceeds chance performance should be found. The
results obtained are compared to the results achieved
with the actual computations to demonstrate that the
actual results were achieved by finding relationships
rather than by finding chance correlations.

2.5. Nonlinear Model

2.5.1. Artificial neural network. A three-layer back
propagation artificial neural network ANN (Fig. 3)
with a sigmoid transfer function was used in the inves-
tigation of feature sets. The descriptors from the cali-
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bration set were used for the model generation whereas
the descriptors from the prediction set were used to
stop the overtraining of network. And the descriptors
from the test set were used to verify the predictivity of
the model. Before training the networks, the input and
output values were normalized with auto-scaling of all
data [12, 13]. The initial weights were selected ran-
domly between —0.3 and 0.3. For the purpose of com-
parison of results, the same number of hidden layer
nodes was used for the ANN models from all other fea-
ture sets of each database. The goal of training the net-
work is to minimize the output errors by changing the
weights between the layers.

AW, = F,+aAW;, ,

ij,n

ey

in this, AW); is the change in the weight factor for each
network node, a is the momentum factor, and F'is a
weight update function, which indicates how weights
are changed during the learning process. The weights
of hidden layer were optimized using the Levenberg—
Marquardt algorithm, a second derivative optimiza-
tion method [14].

2.5.2. Levenberg—Marquardt algorithm. In Leven-
berg—Marquardt algorithm, the update function, F,,
is calculated using equations.

Fy = -8, (2)
g=J'e, 3)
T -1 T

F,=—-[J xJ+ul] xJ xe, “4)

where g is gradient and J is the Jacobian matrix that
contains first derivatives of the network errors with
respect to the weights, and e is a vector of network errors.
The parameter p is multiplied by some factor (A) when-
ever a step would result in an increased e and when a
step reduces e, L is divided by A [15, 16].

3. RESULTS AND DISCUSSION
3.1. Linear Model

3.1.1. Results of the GA-PLS model. PLS is a linear
modeling technique where information in the descrip-
tor matrix X is projected onto a small number of
underlying (“latent”) variables called PLS compo-
nents, referred to as latent variables. The Matrix Y'is
simultaneously used in estimating the “latent” vari-
ables in X that will be most relevant for predicting the
Y variables. The number of significant factors for the
PLS algorithm was determined using the cross-valida-
tion method. The prediction error sum of squares
(PRESS) obtained in the cross-validation was calcu-
lated each time that a new principal component (PC)
was added to the model. The optimum number of PLS
factors is the one that minimizes PRESS [17, 18]. Fig-
ure 4a shows the plot of PRESS versus the number of
factors (components) for the PLS model. As can be
seen from this figure, the best PLS model contained
3 components. The best GA-PLS model contains
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Fig. 4. (a) PRESS versus the number of factors (b) Plots of
predicted against the experimental £ 2 values by GA-PLS
model.

9 selected descriptors. For this in general, the number
of components (latent variables) is less than number of
independent variables in PLS analysis. The predicted
values of E, , are plotted against the experimental val-
ues for training and test sets in Fig. 4b. The statistical
parameters square correlation coefficient (R?), root-
mean-square error (RMSE) and relative error (RE)
were obtained for proposed models. Each of the statis-
tical parameters mentioned above were used for
assessing the statistical significance of the QSPR
model. The R?, mean relative error and RMSE for
training and test sets were (0.866, 10.95, 0.031) and
(0.802, 16.01, 0.056), respectively. The PLS model
uses higher number of descriptors that allow the model
to extract better structural information from descrip-
tors to result in a lower prediction error.

3.2. Nonlinear Model

3.2.1. Results of the L—M ANN model. With the
aim of improving the predictive performance of non-
linear QSPR model, L—M ANN modeling was per-
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Fig. 5. Plot of predicted Ej/, obtained by L—-M ANN
against the experimental values (a) for training set and
(b) test set.

formed. The networks were generated using the nine
descriptors appearing in the GA-PLS models as their
inputs and £, , as their output. For ANN generation,
data set was separated into three groups: calibration
and prediction (training) and test sets. All molecules
were randomly placed in these sets. A three-layer net-
work with a sigmoid transfer function was designed for
each ANN. Before training the networks the input and
output values were normalized between —1 and 1. The
network was then trained using the training set by the
back propagation strategy for optimization of the
weights and bias values [19]. The proper number of
nodes in the hidden layer was determined by training
the network with different number of nodes in the hid-
den layer. The root-mean-square error (RMSE) value
measures how good the outputs are in comparison
with the target values. It should be noted that for eval-
uating the overfitting, the training of the network for
the prediction of £, , must stop when the RMSE of the
prediction set begins to increase while RMSE of cali-
bration set continues to decrease. Therefore, training
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of the network was stopped when overtraining began.
All of the above mentioned steps were carried out using
basic back propagation, conjugate gradient and Lev-
enberge—Marquardt weight update functions. It was
realized that the RMSE for the training and test sets
are minimum when three neurons were selected in the
hidden layer. Finally, the number of iterations was
optimized with the optimum values for the variables. It
was realized that after 18 iterations, the RMSE for pre-
diction set were minimum. The values of experimen-
tal, calculated, percent relative error and RMSE for
training and test sets are shown in Tables 1 and 2. The
RMSE, mean relative error and R? for calibration,
prediction and test sets were (0.014, 4.03, 0.964),
(0.021, 3.88, 0.952) and (0.025, 4.69, 0.928), respec-
tively. Comparison between these values and other sta-
tistical parameter reveals the superiority of the L—M
ANN model over other model. The key strength of
neural networks, unlike regression analysis, is their
ability to flexible mapping of the selected features by
manipulating their functional dependence implicitly.
The statistical parameters reveal the high predictive
ability of L—M ANN model. The whole of these data
clearly displays a significant improvement of the
QSPR model consequent to nonlinear statistical treat-
ment. Plot of predicted E|/, versus experimental £
values by L—-M ANN for training and test sets are
shown in Figs. 5a and 5b. Obviously, there is a close
agreement between the experimental and predicted
E, , and the data represent a very low scattering around
a straight line with respective slope and intercept close to
one and zero. As can be seen in this section, the L—-M
ANN is more reproducible than GA-PLS for modeling
the half-wave potentials of benzenoids molecules.
Finally, in order to ensure the robustness of the L—M
ANN model, the Y-randomization test was performed
in this contribution. The dependent variable vector
(E} /) was randomly shuffled and a new QSPR model
was developed using the original independent variable
matrix. The new QSPR model is expected to have low
R? and Q? values. Several random shuffles of the y vector
were performed and the results are shown in Table 3. If
the R? and Q? values of these models were much lower
than those of the original model, it could be consid-
ered that the model was reasonable and had not been
obtained by the chance.

3.3. Discussions of the Input Parameters

By interpreting the descriptors in the model, it is
possible to gain some insight into factors affecting the
half-wave potential value and find out which structural
factor plays an important role during the reduction
reaction. The electron transfer process constitutes the
basic feature of chemical, biochemical and, especially,
electrochemical reactions. Thus, the ability of calcu-
lating redox potentials accurately using the theoretical
methods would be advantageous in a number of differ-
ent areas, particularly where the experimental mea-
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surements are difficult, due to complex chemical equi-
libria and reactions of the chemical species involved.

Constitutional descriptors are most simple and
commonly used descriptors, reflecting the molecular
composition of a compound without any information
about its molecular geometry.

The GETAWAY (GEometry, Topology, and Atom-
Weights AssemblY) descriptors try to match
3Dmolecular geometry provided by the molecular
influence matrix and atom relatedness by molecular
topology, with chemical information by using different
atomic weights (atomic mass, polarizability, van der
Waals volume, and electronegativity).

The WHIM descriptors are built in such a way as to
capture the relevant molecular 3-D information
regarding the molecular size, shape, symmetry, and
atom distribution with respect to some invariant refer-
ence frame. Both WHIM and GETAWAY descriptors
are quickly computed from the atomic positions of the
molecule atoms (hydrogens included). WHIM
descriptors are based on principal component analysis
of the weighted covariance matrix obtained from the
atomic Cartesian coordinates. In relation to the kind
of weights selected for the atoms different sets of
WHIM descriptors can be obtained. Unitary weights (1),
atomic mass (m), atomic van der Waals volume (v),
atomic electronegativity (e), atomic polarizability (p)
and atomic electrotopological state (s) are the avail-
able weighting schemes globally providing 66 direc-
tional and 33 global WHIM descriptors.

3D-MoRSE (3D-MOlecule Representation of
Structures based on Electron diffraction) descriptors
are based on the idea of obtaining information from
the 3D atomic coordinates by the transform used in
electron diffraction studies. These descriptors are cal-
culated by summing atom weights viewed by a diver-
gent angular scattering function.

Although these descriptors are often successful in
E|/, of benzenoids compounds, they cannot account
for conformational changes and they do not provide
information about electronic influence through bonds
or across space. For that reason, quantum chemical
descriptors are used in developing QSPR.

Quantum chemical descriptors can give great
insight into structure and reactivity and can be used to
establish and compare the conformational stability,
chemical reactivity and inter-molecular interactions.
They include thermodynamic properties (system
energies) and electronic property (HOMO energy).
Quantum chemical descriptors were defined in terms
of atomic charges and used to describe electronic
aspects both of the whole molecule and of particular
regions, such atoms, bonds, and molecular fragments.
Electronic properties may play a role in the magnitude
in a biological activity, along with structural features
encoded in indexes. Roughly, the HOMO level is to
organic semiconductors what the valence band is to
inorganic semiconductors and quantum dots. The
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Table 3. R? and Q2 values for L—M ANN model after sev-
eral Y-randomization tests

Model R? 0?
1 0.357 0.215
2 0.081 0.161
3 0.267 0.024
4 0.234 0.009
5 0.175 0.070
6 0.011 0.005
7 0.079 0.064
8 0.022 0.075
9 0.168 0.219

10 0.137 0.024

eigenvalues of HOMO as an electron donor represents
the ability to donate an electron. The HOMO energy
plays a very important role in the nucleophylic behav-
ior and it represents molecular reactivity as a nucleo-
phyle. Good nucleophyles are those where the elec-
tron residue is high lying orbital.

Charge descriptor are electronic descriptor defined
in terms of atomic charges and used to describe elec-
tronic aspects both of the whole molecule and of par-
ticular regions, such a atoms, bonds, and molecular
fragments. Charge descriptor calculated by computa-
tional chemistry and therefore can be consider among
quantum chemical descriptor. Electrical chargesin the
molecule are the driving force of electrostatic interac-
tions, and it is well known that local electron densities
or charge play a fundamental role in many chemical
reactions, physic-chemical properties and receptors-
ligand binding affinity.

3.4. Model Validation and Statistical Parameters

The applied internal (Ieave-group-out cross valida-
tion (LGO-CV)) and external (test set) validation
methods were used for the predictive power of models.
In addition, chance correlation procedure is a useful
method for investigating the accuracy of the resulted
model, by which one can make sure if the results were
obtained by chance or not.

Cross validation is a popular technique used to
explore the reliability of statistical models. Based on
this technique, a number of modified data sets are cre-
ated by deleting in each case one or a small group
(leave-some-out) of objects. For each data set, an
input—output model is developed, based on the uti-
lized modeling technique. Each model is evaluated, by
measuring its accuracy in predicting the responses of
the remaining data (the ones or group data that have
not been utilized in the development of the model). In
particular, the LGO-CV procedure was utilized in this
study. A QSPR model was then constructed on the
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basis of this reduced data set and subsequently used to
predict the removed data. This procedure was repeated
until a complete set of predicted was obtained. The
statistical significance of the screened model was
judged by the correlation coefficient (Q?). The predic-
tive ability was evaluated by the cross validation coef-

ficient (Q? or sz). The accuracy of cross validation
results is extensively accepted in the literature consid-
ering the O? value. In this sense, a high value of the sta-
tistical characteristic (Q? > 0.5) is considered as proof
of the high predictive ability of the model.

The data set should be divided into three new sub-
data sets, one for calibration and prediction (training),
and the other one for testing. The calibration set was
used for model generation. The prediction set was
applied deal with overfitting of the network, whereas
test set which its molecules have no role in model
building was used for the evaluation of the predictive
ability of the models for external set.

In the other hand by means of training set, the best
model is found and then, the prediction power of it is
checked by test set, as an external data set. In this
work, in each running program, from all 36 com-
pounds, 21 components are in calibration set, 7 com-
ponents are in prediction set and 8 components are in
test set).

The result clearly displays a significant improve-
ment of the QSPR model consequent to non-linear
statistical treatment and a substantial independence of
model prediction from the structure of the test mole-
cule. In the above analysis, the descriptive power of a
given model has been measured by its ability to predict
half-wave potentials of unknown benzenoids mole-
cules.

For the constructed models, some general statisti-
cal parameters were selected to evaluate the predictive
ability of the models for E|, values. In this case, the
predicted E|,of each sample in prediction step was
compared with the experimental acidity constant. The
PRESS (predicted residual sum of squares) statistic
appears to be the most important parameter account-
ing for a good estimate of the real predictive error of
the models. Its small value indicates that the model
predicts better than chance and can be considered sta-
tistically significant.

PREES = Z(y;—y,)z. (5)

i=1

Root mean square error (RMSE) is a measurement
of the average difference between predicted and exper-
imental values, at the prediction step. RMSE can be
interpreted as the average prediction error, expressed
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in the same units as the original response values. The
RMSE was obtained by the following formula:

1
_ IS 2 f
RMSE = L;Z(yi—y,»)} ) (6)

i=1

The other statistical parameter was relative error
(RE) that shows the predictive ability of each compo-
nent, and is calculated as:

_onl e 0 =90
RE (%) = 100{}12*--—% } )

i=1

The predictive ability was evaluated by the cross

validation coefficient (Q? or sz) which is based on

the prediction error sum of squares (PRESS) and was
calculated by following equation:

Z(yi_j}i)z

R,=0"=1-i=L (8)

> i)

i=1

Where y; is the experimental E) , in the sample /, y; rep-

resented the predicted E;/, in the sample i, y is the
mean of experimental £, , in the prediction set and n is
the total number of samples used in the test set [20].

The main aim of the present work was to assess the
performances of GA-PLS and L-M ANN for model-
ing the half-wave potentials of compounds. The pro-
cedures of modeling including descriptor generation,
splitting of the data, variable selection and validation
were the same as those performed for modeling of the
half-wave potentials of benzenoids derivatives.

4. CONCLUSIONS

The GA-PLS and L-M ANN modeling was
applied for the prediction of the half-wave potentials
values of 36 substituted benzenoid hydrocarbons. Two
methods seemed to be useful, although a comparison
between these methods revealed the slight superiority
ofthe L—M ANN over the GA-PLS model. High cor-
relation coefficients and low prediction errors con-
firmed the good predictability of two models. Applica-
tion of the developed model to a testing set of 8 com-
pounds demonstrates that the new model is reliable
with good predictive accuracy and simple formulation.
The QSPR procedure allowed us to achieve a precise
and relatively fast method for determination of £ , of
different series of benzenoids derivatives to predict
with sufficient accuracy the E), of new substituted
compounds.
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