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Abstract⎯Epigenetic effects are considered as a mechanism of the emergence of new inherited traits with
their transmission between generations through meiosis. Modern genomic evaluation does not explain the
entire phenotypic variance of traits. It is quite obvious that a significant part of the unaccounted dispersion
reflects epigenetic effects carried out through DNA methylation, histone and chromatin modifications, and
activity of noncoding types of RNA. Epigenetic effects could potentially be used in breeding programs. The
obtained data testify to the significant role of epigenetic factors in the expression of imprinting genes, cellular
processes, development of muscle tissue, and fat metabolism in animals. The ability of various additives in
the diet to induce epigenetic modifications with phenotypic variability has been convincingly proven. How-
ever, there are still many contradictions and limitations in the justification of the hereditary component of
epigenetics for introduction into animal breeding. Development of modern technologies, such as chromatin
immunoprecipitation with microchips of DNA (ChIP-Chip), next-generation sequencing (ChIP-Seq), and
epigenomic editing based on CRISPR-Cas9, gives grounds for optimism in solving problems of introducing
epigenetic phenomena in livestock breeding.
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INTRODUCTION

The term epigenetics, proposed by C. Waddington
[1], reflects one of the mechanisms of phenotypic
expression of genes. In the process of revealing new
genetic data, this term began to reflect the possibility
of the emergence of new inherited traits with their
transmission between generations through meiosis
without changes in nucleotide sequences of DNA,
where the expression of the genotype and the forma-
tion of phenotypic traits may depend on internal and
external factors. Despite the fact that the genome of
the cell is quite stable, the epigenome is very dynamic
throughout life and is determined by the complex
interaction of genetic and environmental factors [2].
The main epigenetic mechanisms change the expres-
sion of genes, which includes DNA methylation pro-
cesses, histone modification, activity of noncoding
RNA (ncRNA), and chromatin remodeling [3], con-
tributing to new phenotypic manifestations in the for-
mation of productivity [4], reproduction [5], aging [6],
and diseases [7, 8]. The development and introduction
of genomic selection provided an opportunity to sig-
nificantly enhance genetic progress in livestock breed-
ing [9, 10]. However, epigenetic traits remain unac-
counted in indices of pedigree value of animals. Inclu-
sion of the results of the analysis of these traits in the
breeding process would be useful in improving the

accuracy of the pedigree value of animals. It is gener-
ally believed that genes from both parents are equally
involved in the development of the embryo. However,
these views contradict the obvious genomic imprinting
and the manifestation of the differential activity of the
maternal and paternal alleles [11]. In mammals, more
than 100 genes with monoallelic expression are known
[12]. Epigenetic mechanisms regulate a wide range of
biological processes, including fetal growth and devel-
opment, metabolism, and behavior [13]. It is import-
ant that epigenetic information is preserved and trans-
mitted to the next generation [14]. The mechanisms of
epigenetic heredity probably evolved in the course of
evolution [15]. The cognition and use of epigenetic
mechanisms can have serious consequences for the
formation and analysis of quantitative traits [16] and
will ensure that information on epigenetic processes is
included in the overall assessment of breeding value,
followed by an increase in animal productivity and
resistance to diseases.

DNA METHYLATION
Methylation of the fifth carbon of cytosine (5-meth-

ylcytosine) is currently the best studied epigenetic
modification of DNA. DNA methylation is carried
out through enzymatic activity of DNA methyltrans-
ferases and is essential for genomic stability and main-
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tenance of development. For example, DNA(cyto-
sine-5)-methyltransferase 1 (DNMT1) maintains
mainly DNA methylation during replication, while
DNMT3a and DNMT3b are responsible for de novo
methylation of unmodified DNA. DNA methylation
occurs, as a rule, on cytosine-phosphate-guanosine
dinucleotides (CpG) [17] and is associated with tran-
scriptional repression, while hypomethylation, con-
versely, is associated with transcriptional activation.

In fertilization, the paternal genome is actively
demethylated, whereas in the maternal genome this
process occurs passively. Most of the blastocyst
genome is demethylated during implantation. After
implantation, the genome of the developing zygote
undergoes de novo methylation. After the formation of
primary germ cells, the genome is demethylated. This
marks the start of the second wave of reprogramming.
After sex determination and gametogenesis, the gene
is remethylated at different times, depending on the
sex. After implantation, the developing zygote under-
goes de novo methylation and completes the first wave
of reprogramming [18]. In the process of gametogene-
sis, the genome is remethylated for each sex at differ-
ent times and in varying degrees. The second wave of
reprogramming continues during the growth of the
oocyte [19]. In embryos of cattle, demethylation
occurs in the stage from eight to 16 cells [20]. As noted,
the paternal DNA is more demethylated than the
maternal DNA [21, 22]. The difference in methylation
levels between male and female pronuclei was
observed as early as 8 h after copulation in mice and
after 10 h in rats [23]. Thus, the maternal genome is
more resistant to the effects of active demethylation,
but loses most of the methyl groups of DNA during
development [24]. There are significant differences in
the features of DNA methylation in sperm and oocytes
[25–27]. There are specific differences in the course of
these processes. Thus, it should be noted that no evi-
dence of a global demethylation of the DNA of the
paternal pronucleus in the horse during the first cell
cycle was found [28]. Both parental genomes demon-
strated stable and similar levels of methylation and
hydroxymethylation during the pronuclear process.
However, there are reasons to assume that the properties
of the differentially methylated regions of the maternal
and paternal genomes differ [29–31]. During prenatal
development, primordial germ cells, which are gamete
precursors, undergo epigenetic reprogramming with
DNA demethylation, followed by sexual specific de novo
methylation with specificity for a particular sex [32, 33].

The best evidence of transgenerative epigenetic
inheritance in mice is the study of epialelles, such as
viable yellow and axin agouti, in which the levels of
DNA methylation of retrotransposons control the
expression of a neighboring gene [34]. DNA methyla-
tion of the intracisternal part of the retrotransposon is
inserted in front of the agouti gene and controls the
expression of this gene. This particle belongs to a small
group of long repetition terminals that appear to form
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germline resistance to reprogramming in sex cells and
early embryos of agouti mice leading to a range of coat
colors from yellow, yellow and brown spots to brown
color depending on the degree of DNA methylation
[35]. Methylation of the genome can be controlled by
hormonal signals and modifications involving damage
to alkylated nucleic acid elements that are closely
related to certain diseases [36]. Methylation persists
throughout both the preimplantation period and at
later stages of development [37, 38].

The change in the status of DNA methylation can
have a profound effect on the expression of genes of
cloned animals and the induction of epigenetic disor-
ders. Although most offspring from somatic cloning
are normal [39], some somatic cloning protocols are
associated with pathological side effects, probably as a
result of nonstandard epigenetic reprogramming [40].
It is important to note that the kinetics of DNA meth-
ylation and demethylation in cloned embryos after
nuclear transfer differs from that in normally fertilized
embryos [41]. Consequently, assisted reproductive
technologies may be responsible for some of the epi-
genetic disorders in the development process [5, 42].
Epigenetic reprogramming occurs aberrantly in most
cloned embryos, and incomplete reprogramming may
contribute to low cloning efficiency [43]. Compared to
normal fetuses, cloned embryos in the middle of preg-
nancy have subtle abnormalities of DNA methylation
[44]. Data are presented showing the association
between DNA methylation features and perinatal
mortality in cattle, together with the contribution of
epigenetic factors to phenotypic variability [45].

Considering epigenetic processes, one should note
that methylation is not the result of specific target
mechanisms, and it is better to consider it as part of the
general methylation processes in female and male
gamete lines. Only a fraction of these gametes survive
in the early stages of development; that is, there is
selection of preimplantation embryos.

Obtaining the profiled DNA methylation maps of
the entire genome makes it possible to identify the
nature of changes in DNA methylation that occur
during growth and development [46, 47]. Analysis of
genomic DNA methylation profiles makes it possible
to identify specific CpG sites associated with the phe-
notype. Observation data on the features of DNA
methylation made it possible to develop a classifier for
predicting DNA methylation levels provided high res-
olution of the CpG site [48]. Undoubtedly, these
approaches help determine genomic mechanisms that
interact with DNA methylation and suggest processes
involved in the modification of DNA methylation and
regulation of the connections with various epigenetic
processes. Epigenetic markers can change over time
owing to the cellular type of specificity [49]. There-
fore, it is not surprising that epigenetic effects play an
important role in the differentiation of cells [50],
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pathological processes [51], and, in particular, car-
cinogenesis [52].

In epigenetic studies of agricultural animals, next-
generation sequencing techniques based on DNA
methylation were used to study the contribution of
methylation to the phenotypic variability of the corre-
sponding economically important features. DNA
methylation responds to feeding and environmental
conditions leading to a change in the phenotype asso-
ciated with changes in productivity and the risk of ani-
mal disease [53]. Thus, the use of this method made it
possible to reveal the number and localization of
regions of differential methylation of DNA when
omega-3 fatty acids are added to the diet of sows,
which affect growth and inflammatory processes [54].
A comparison of DNA methylation profiles between
fast and slow growing broilers was carried out [55].
The study revealed candidate genes, including several
known growth factor genes (IGF1R, FGF12, FGF14,
FGF18, FGFR2, and FGFR3) with differential methyl-
ation, which potentially regulate muscle development at
the age of seven weeks. A total of 13294 methylated genes
were detected, including 4085 differentially methylated
genes, of which 132 were differentially methylated genes
associated with growth and metabolism.

POST-TRANSLATIONAL
HISTONE MODIFICATIONS

The structure of chromatin is under the control of
several mechanisms involving the modification of his-
tones and total chromatin, which play an important
role in transcription processes [56]. As is known,
eukaryotic DNA is tightly packed with the formation
of nucleosomes, which are formed into an octamer of
four histones (H2A, H2B, H3, and H4). In such a
structure, histones are susceptible to many post-trans-
lational modifications that form a potential for encod-
ing epigenetic information. Structural changes in
chromatin resulting from histone modification tend to
result in a set of effector proteins, such as transcription
factors, which modulate gene expression [2, 57]. In
addition to acetylation, histones undergo various
reversible post-translational modifications, including
methylation, ubiquitination, ADP ribosylation, and
phosphorylation [58]. Ubiquitination can carry both
inhibitory [59] and activating [60] effects, depending
on the modification of specific sites. The modification
of histones and DNA methylation pathways depend
on each other, and the amplifying effects occur as a
result of the interaction of the corresponding enzymes
and the factors associated with them [61, 62]. Chro-
matin modifications function in two mutually exclu-
sive ways [63] and can directly affect the chromatin
structure or can provide dynamic binding of platforms
for proteins with specific domains. An example of the
first method is acetylation of histones, which neutral-
izes the positive charge of lysine and thereby disrupts
the electrostatic interaction. This contributes to the
RUSSIAN JOURNAL OF GENETICS  Vol. 54  No. 8  
formation of chromatin with a reduced compact state
[64]. In addition, histone acetyltransferases function
as a transcriptional coactivator, and deacetylases func-
tion as repressors. These transformations provide a
stepwise model for the formation of transcriptional-
repressive heterochromatin [65]. Maternal chromatin
is organized in such a way that DNA methylation and
chromatin modifications often take place during fertil-
ization [66]. They include both nucleohistone modifi-
cations and chromatin proteins associated with active
and repressive configurations [67, 68]. As a result of
the development of the paradigm of allosteric control
of mammalian DNA methyltransferases, two new reg-
ulatory principles were discovered for them. Thus, it
has been shown that their catalytic activity is under the
allosteric control of N-terminal domains with autoin-
hibitory functions in a number of domains [69]. In
addition, the activity of DNA methyltransferases has
been found, which should be regulated in concert with
interaction with post-translational modifications.
Here, the state of enzymes DNMT1 and DNMT3,
their binding to DNA, and the catalytic mechanism,
as well as multimerization (the combination of protein
subunits in one complex) and the processes con-
trolling their stability in cells, play a big role. Of partic-
ular interest is the reprogramming of histone modifi-
cation when manipulating cloned embryos.

Methylation of lysine-4 of histone H3 is mainly
associated with transcriptionally active chromatin,
and methylation of lysine-9 of histone H3 is associated
with repressive chromatin [70]. The disruption of
reprogramming in cloned mice correlates with their
poor potential for early development. Similar data
were obtained on cloned embryos of cattle [71]. These
results indicate a link between methylation of DNA
and histones in mammalian embryos with the identi-
fication of associations between epigenetic markers
and the potential for the development of cloned
embryos. Similar disorders occurred in the differential
acetylation of histone H4 in blastomeres of cloned cat-
tle [72]. During the embryonic development of mam-
mals, along with DNA methylation, histone modifi-
cation plays an important role in regulating gene
expression and epigenetic reprogramming. In cloned
and in vitro fertilized preimplantation embryos of
cows in the stage before eight cells, the levels of acetyl-
ation and methylation of histones of H3K9as,
H3K18ac, H4K5ac, H4K8ac, H3K4me3, and
H3K9me2 were abnormally high [73]. These results
indicate that somatic cells in the recipient oocytes pro-
duce aberrant histone modifications in several places
before the donor genome of the cell is activated. Chro-
matin research involves repositioning or restructuring
of nucleosomes inside the chromatin to facilitate or
inhibit access to nearby DNA. This is mainly carried
out by ATP-dependent remodeling of chromatin com-
plexes and nucleosomes [74, 75]. Nevertheless, the
dynamics in the organization of chromatin in the
development process is not a unique system for all ver-
2018
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tebrates; for example, it has its specific features in
mammals (mice) and in birds (chickens) [76].

NONCODING RNA

Although DNA methylation and histone modifica-
tions are the most studied epigenetic mechanisms,
there are epigenetic processes that play an important
role in the regulation of gene function. A striking
demonstration is the role of noncoding RNAs, which
can indirectly affect the regulation of gene expression
and chromatin modification. There are several known
types of noncoding RNA involved in epigenetic hered-
ity: long noncoding RNAs (lncRNA), small interfer-
ing RNAs (siRNA), RNAs of 26–32 bp (piwi RNA or
piRNA), and microRNAs of 18–25 bp (miRNA),
which are involved in the regulation of transcription,
translation, and stability of mRNA [77]. Maternal
reserves of information RNAs can also be attributed to
these categories of RNA with epigenetic properties
[78]. Noncoding microRNAs of approximately 22 bp
are capable of controlling the activity of about 60% of
all protein-encoding genes and are involved in the reg-
ulation of almost every studied cellular process in
mammals [79, 80]. The number of microRNAs found
in various species of farm animals varies considerably
from a few dozen to several hundred [81]. The role of
microRNA in the formation of the productivity of
agricultural animals is associated with many processes
[82], including lactation and milk production [4, 83],
lipogenesis [84], and morbidity [7]. Long noncoding
RNAs (lncRNA) are a heterogeneous group of tran-
scripts longer than 200 bp, which play a noticeable
regulatory role in many biological processes [85, 86].
This type of RNA is the largest part of the noncoding
transcriptome of mammals [87]. LncRNA have com-
mon pathways of biogenesis with other classes of non-
coding RNA. Most lncRNAs result from the activity
of RNA polymerase II. Many lncRNAs function as
epigenetic modulators by binding to chromatin, emer-
gence of catalytic activity on specific sites in the
genome, and influence on gene expression [88].
Thousands of genes encoding the lncRNA have been
identified in mammalian genomes [89]. The regulat-
ing properties of lncRNA associated with pathological
states and development of the immune system and
aging [90, 91], as well as with the regulation of skin
pigmentation processes in cows [92], are noted. Other
studies [93] provided characteristics of 584 lncRNA in
muscles of cows, some of which were localized within
the loci of quantitative traits and correlated with traits
of meat productivity. There were 4227 lncRNAs iden-
tified in the mammary gland, including 26 lncRNAs
that differentially respond to a diet high in alpha-lino-
lenic acid, which suggests their role in the synthesis of
fatty acids and lipid metabolism [94]. It was shown
that microRNA-103, which consists of 20–24 nucleo-
tides, participates in various biological processes,
including brain development, lipid metabolism, adi-
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pocyte differentiation, hematopoiesis, and immunity,
and also participates in the differentiation of porcine
preadipocytes [95]. In cattle, microRNAs are regu-
lated by DNA methyltransferase 1 and are involved in
the development of the mammary gland and lactation
[96]. Evidence of the effect of stimulation by endoge-
nous miRNA-143 on the differentiation of intramus-
cular fat of cows through regulated expression of adi-
pocyte genes has been obtained [97].

Several studies of lncRNA in chickens have been
carried out to improve understanding of the biology
and differentiation of preadipocytes [98, 99]. Compre-
hensive analysis facilitated the detection of lncRNAs
and target genes that can contribute to the regulation
of various stages of skeletal muscle development. Cis-
and trans-regulation of target genes by differentially
expressed lncRNAs were determined and lncRNA
and gene interaction networks were constructed [100].
The available data suggest that the lncRNA function
contains a hidden layer of regulatory information that
not only acts as a mediator between DNA and protein
but also plays a role in genome organization and gene
expression [101]. Specific roles of lncRNA in the
development of various organs and tissue types have
been determined. For example, in neonatal cardiomy-
ocytes, the knockdown of specific lncRNA alters gene
expression and inhibits the normal development of
maturation of cardiomyocytes in mice [102] and can
lead to embryonic death [103]. Using the constructed
chicken ncRNA library, 125 ncRNAs were isolated,
which play an important role in the development and
differentiation of tissues during evolution [104].
Expression profiles of lncRNA and mRNA in three
different stages of skeletal muscle development in
chickens were determined [100]. Differentially
expressed lncRNAs were analyzed in cis- and trans-
interaction and used to construct correlation networks
of lncRNA genes. An important role of lncRNA in the
regulation of transcription [86, 105], in epigenetic
modification [106], and in organogenesis and devel-
opment [107, 108] was noted. The lncRNA group
functions as regulators of gene expression and also
participates in development and in a number of phys-
iological processes [109]. It should be emphasized
once again that lncRNA is the largest part of the non-
coding mammalian transcriptome [110]. By pairing
bases with mRNA, microRNAs regulate gene expres-
sion in animals through inhibition of translation initi-
ation, elongation, and other mechanisms [111]. Many
lncRNAs affect the expression of genes by binding to
chromatin-modifying proteins, altering the catalytic
effect on certain sites in the genome [112].

Analysis of the results of sequencing in chickens
identified the localization of nucleotide sequences of
lncRNA: 1493 as intergenic and 177 as intragenic, that
is, located within the protein-encoding genes [113].
There were also differences in the types of level of
mRNA expression in the mammary glands between
lactating and nonlactating cows [114, 115]. These
AN JOURNAL OF GENETICS  Vol. 54  No. 8  2018
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manifestations are associated with the action of genes
through a variety of biological pathways [116]. In the
mammary glands of goats, differential expression of
microRNA was detected between lactation and dry-
period peaks and between early and late lactation [117,
118]. It was shown that microRNA-15a inhibits the
expression of casein and the number of epithelial cells,
as well as the expression of the growth hormone recep-
tor gene, both through mRNA and via protein [119].
MicroRNA-103 of the mammary gland was involved
in the control of fat content in milk during lactation of
goats [83]. It was revealed that endogenous microRNA-
143 plays a role in the differentiation and proliferation
of intramuscular fat cells in cows [97]. These data on
the participation of epigenetic markers in the regula-
tion of the synthesis of milk lipids and muscles provide
the basis for developing ways to manage the quality of
milk and meat through the optimization of the con-
centration of fatty acids. The relationship of the state
of microRNAs of ovarian tissues in chickens with low
and high levels of productivity was analyzed [120].
Eleven known and six new microRNAs were detected.
All 11 known microRNAs were involved mainly in the
regulation of reproduction, such as steroid hormone
biosynthesis and dopaminergic synapses. Some of the
six miRNAs (for example, gga-miR-34b, gga-miR-
34c, and gga-miR-216b) regulate proliferation, cell
cycle, apoptosis, and metastasis. Thus, in recent years,
there has been an explosion in understanding of the
previously hidden role of RNA regulation [101]. Cur-
rently, there are a large number of databases of expres-
sion and analysis of the microRNA sequences [121].
Although many microRNAs have been identified, it is
obvious that there may be many more still undetected.
The use of genomic techniques with deep sequencing
has shown that there are tens of thousands of loci in
mammals that express large transcripts that do not
encode proteins but have intergenic and intron local-
ization, where many of these transcripts play a func-
tional role [122]. In accordance with their role in dif-
ferentiation and development, a number of genetic
and biochemical data indicate that one of the main
functions of lncRNAs and many small RNAs is the
regulation of epigenetic processes [123]. Indeed, it
seems that noncoding RNAs are an important compo-
nent of cellular biology, developmental biology, brain
function, and, possibly, even evolution [124]. The
complexity and interconnection of these systems is a
motivation for studying the vast and largely unknown
area of regulating biological processes through RNA.
It is possible to annotate transcriptional units and identify
functional SNPs through the use of epigenetic maps that
delineate thousands of lncRNA genes and hundreds of
thousands of cis-regulating elements [125, 126].

INFLUENCE OF THE ENVIRONMENT

It is known that the effects of chemicals [127],
nutritional supplements and nutrient availability [128,
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129], maternal behavior [130], pathogenic microor-
ganisms [131], and temperature [132] cause changes in
gene expression [130, 133]. An example is the afore-
mentioned change in the phenotype of agouti coloring
in mice under the influence of a maternal diet, includ-
ing folate and betaine [134]. The animal ration can
manifest itself as a source of epigenetic modifications
[135], including the expression of microRNAs in the
subcutaneous and visceral adipose tissue of cattle [84,
136, 137]. The introduction of methylating com-
pounds into the ration of pigs showed significant dif-
ferences in DNA methylation and gene expression
between groups in the generation F2 [138]. Differen-
tially methylated regions in gene promoters were sig-
nificantly associated with inhibition of expression of
obesity-related genes [139]. In cattle, the expression of
tissue-specific adipogenic and lipogenic genes of the
longest muscle in the back is regulated by the status of
DNA methylation [140]. The DNA methylation levels
of all five sites of the CpG promoter of the FABP4 gene
were lower (p < 0.001) in intermuscular fat than in the
muscular part. The mRNA levels of the PPARG1 and
FABP4 genes were negatively correlated with the level
of DNA methylation in the regulatory CpG regions of
the corresponding genes. Adding maize concentrate to
the diet of dairy cows leads to a change in the state of
methylation of specific genes involved in fat formation
and protein synthesis. Fatty acids can contribute to
changes in expression of specific genes during critical
growth periods [141]. Lipids and lipoprotein compo-
nents interact directly with the structure of chromatin
with subsequent influence on gene expression [142,
143]. Adding fodder rich in unsaturated fatty acids to
the diet of dairy cows produces significant changes in
the expression of two histone acetyltransferases [144].
There are various points of potential interaction
between nutrition and epigenetics, including the effect
of supplements or the deficiency of macroelements as
well as a number of secondary plant metabolites on
methylation [145, 146]. Targeted dietary supplements
with folic acid, choline, and betaine may increase
DNA methylation [147–149]. There is evidence of an
increase in DNA methylation levels in the regulatory
regions of the ZIP4 gene [150] in connection with the
use of zinc-containing supplements in the diet.

The change in feeding during late pregnancy can
affect the reproductive capacity of daughters [151]. In
heifers born to mothers who received a diet high in
protein in the second trimester of pregnancy, a
decrease in the number of antral follicles was observed
[152]. The restriction or excess of protein in the pig’s
diet during pregnancy influenced the expression of key
metabolic genes in the offspring [153, 154]. A low-
protein maternal diet during pregnancy and lactation
affects the hepatic cholesterol metabolism of offspring
by modifying the epigenetic regulation of the 3-
hydroxy-3-methylglutaryl coenzyme A reductase and
cholesterol-alpha-hydroxylase genes, which suggest
2018
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possible long-term effects in cholesterol homeostasis
later in adulthood [155].

Features of feeding affect the expression of
microRNA in subcutaneous and visceral adipose tis-
sue of cattle [136]. A higher amount of microRNAs
was found in animals treated with high-fat fodder
[156–158]. Epigenetic modifications unlock the loci
of the milk protein gene during the development and
differentiation of the mammary gland of the mouse.
The role of epigenetic factors in unlocking the milk
protein loci in the development and differentiation of
the mammary gland was demonstrated [159]. In addi-
tion, there is increasing evidence that epigenetic fac-
tors regulate milk production in cows [4]. There are
reports of differences in mRNA expression levels in
the mammary glands between lactating and nonlactat-
ing cows [114]. It is obvious that epigenetic markers
regulate the synthesis of lipids and the production of
milk. It remains to be determined how epigenetic fac-
tors can be controlled to improve the milk productivity
of cows.

There are a number of studies on the relationship of
the epigenetic state and pathological processes in ani-
mals [160, 161]. DNA methylation around the STAT5-
binding enhancer in the αS1-casein promoter is asso-
ciated with a sharp discontinuation of the synthesis of
αS1-casein during acute mastitis. Experimental infec-
tion of the mammary gland with pathogenic E. coli
revealed the involvement of epigenetic factors in the
synthesis of αS1-casein and the occurrence of mastitis
in cattle [162] through hypomethylation of the upper
promoter region of the alpha-casein S1 gene. It was
shown that the presence of bacteria changed the status
of methylation of the CD4 differentiation cluster pro-
moter in cows with mastitis [161].

With the help of the latest generation of deep
sequencing technologies, the involvement of microRNAs
in the development of viral and bacterial infections in
cattle was shown [163]. A number of studies have
shown that microRNAs are expressed in a wide range
of cattle tissues, including those associated with
immunity [164, 165]. It is becoming increasingly evi-
dent that microRNAs play a significant role in the for-
mation of cow immunity. Castration in pigs can signifi-
cantly affect the model of expression of microRNAs
involved in lipogenesis. Differentiated expressed miRNAs
can play an important role in fat deposition after cas-
tration [166, 167].

Thus, a number of external factors affect the for-
mation of phenotypic features, which may have a
direct relationship to the breeding and productive
qualities of animals.
RUSSI
EVALUATION OF PROSPECTS
OF INTRODUCTION OF EPIGENETIC 
EFFECTS IN LIVESTOCK BREEDING

Epigenomic mutations, as in the case with DNA
mutations, can carry positive, neutral, and harmful
effects with different potentials of adaptation to envi-
ronmental signals. Unfortunately, the main limitation
of studying the epigenomic effects in livestock breed-
ing is the insufficient recognition of the importance of
the contribution of these effects to the formation of
economically significant phenotypes, including the
risk of diseases. There is much evidence of the involve-
ment of the epigenome, in particular, microRNAs, in
many aspects of the formation of the productive qual-
ities of farm animals, such as milk production [168],
fat formation [84, 169, 170], early embryonic develop-
ment [82], and animal morbidity [8]. Usually, two
types of epigenetic inheritance are employed: inheri-
tance in the somatic cell line and preservation of
changes during mitosis [171], that is, transgeneration
epigenetic inheritance through the germline, which
controls patterns of gene expression with transmission
from one generation to the next [172]. Some authors
suggest models for the quantitative evaluation of epi-
genetic dispersion inherited in populations [173, 174].
However, it should be borne in mind that epigenetic
markers are inherited in the germline, at least in mam-
mals, in no more than three generations [175], since
epigenetic traits are usually removed during meiosis
and are not transmitted to the offspring unless the
fourth generation is subject to such influence. Some
epigenetic markers avoid this stage of cleansing.
Therefore, the majority of hereditary epigenetic dis-
persions do not cover any broad populations of ani-
mals [176]. In addition, there is the problem of differ-
entiation of the additive epigenetic effect from the
effect of epistasis, dominance, and other effects on
genetic dispersion [177], although epigenetic markers
are established in the early stages of development, and
adaptation takes place throughout life in response to
internal and external stimuli and leads to phenotypic
manifestation of a trait in the late stage of an animal’s
life [178].

It should be noted that the introduction of
improved breeding programs, where imprinting is
taken into account, will require making changes in the
existing standard breeding programs. This will require
the inclusion of variable figures for the breeding value
of producers and females, as well as an assessment of
the influence of dominance and additive genetic devi-
ations. It is necessary to reveal the details of the trans-
mission of hereditary information through epigenetic
processes and to more deeply assess the changes in the
epigenome that occur during the formation of germ
cells and the early ontogeny, and also to have more evi-
dence about the degree of influence of epigenetic fac-
tors on the formation of economic characteristics, for
example, on the synthesis of milk in cows [4, 168].
AN JOURNAL OF GENETICS  Vol. 54  No. 8  2018
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With the development of DNA sequencing technolo-
gies, the genomic part of the variability of animal traits
is currently assessed at a faster rate. Therefore, ways
should be developed to take into account the epigene-
tic contribution to the true value of the breeding value
of the individual. This is a new field of activity in ani-
mal breeding studies, in which the heterogeneity of
epigenetic markers and the differences in their tissue
affiliation and developmental stages complicate the
task. Transgenerative epigenetic inheritance is a field
for discussion in the scientific community, since it
includes radically new biological phenomena, affect-
ing even the inheritance of acquired characteristics.
There is much uncertainty in the problem of including
transgenerative inheritance of epimutations in breed-
ing programs. New research approaches need to be
developed to determine quantitative information on
phenotypic variability caused by epimutations [179].
The development of new technologies (immunopre-
cipitation of chromatin with microchips of DNA
(called ChIP-Chip), next-generation sequencing
(ChIP-Seq), editing of the epigenome based on
CRISPR-Cas9, and others) gives hope for solving the
problems of introduction of epigenetic effects in live-
stock breeding [180].
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