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Abstract⎯Salinity-alkalinity stress is a pivotal factor influencing plant growth, development, and yield.
γ-Aminobutyric acid (GABA) protects plants against a variety of environmental stresses. However, it is
remains largely unknown whether exogenous GABA increases the tolerance of Cucumis melon L. seedlings
via effects on the chloroplast antioxidant system. In this study, the role of exogenous GABA application on
the malondialdehyde content and antioxidant enzyme activities and the ascorbate-glutathione (AsA-GSH)
cycle in seedlings of muskmelon was investigated. Plants were treated with foliar spraying of GABA (50 mM)
under control or salinity-alkalinity stress conditions. Salinity-alkalinity stress induced cellular membrane
damage. Treatment with GABA protected muskmelon seedlings from salinity-alkalinity stress by enhancing
antioxidant enzyme activity and reducing malondialdehyde content. These effects of GABA resulted in
maintenance of the membrane integrity of the muskmelon seedling. In addition, the status of both GSH and
AsA redox played key roles in the regulation of the oxidative stress response in muskmelon seedlings under
salinity-alkalinity stress.
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INTRODUCTION
Salinity-alkalinity stress, one of the major limiting

factors in global agricultural crop production [1], is
caused by faulty irrigation practices combined with
excessive nutrients, poor rainfall, inappropriate soil
leaching, and strong evaporation [2]. This stress
results in over-accumulation of reactive oxygen spe-
cies (ROS), weakened photosynthesis, and cell death
[3, 4]. All ROS are strong oxidizers, including
hydroxyl radicals ( ), singlet oxygen (1O2), superox-
ide anions ( ), and hydrogen peroxide (H2O2) [5, 6].
High levels of ROS have harmful effects that result in
DNA damage, protein denaturation, enzyme activity
impairment, lipid peroxidation, carbohydrate oxida-
tion, pigment breakdown, and cell death [7]. Hence,
maintaining moderate levels of ROS is essential to the
ability of plants to withstand diverse abiotic and biotic
stresses.

Maintaining a subtle balance between ROS genera-
tion and scavenging is important for plants and primar-
ily controlled by the antioxidant defense system [8]. The
central antioxidant defense system includes the ascor-
bate-glutathione (AsA-GSH) cycle, which consists of
two dominating non-enzymatic antioxidants (GSH
and AsA) and four enzymes (ascorbate peroxidase
(APX), monodehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR), and glutathi-
one reductase (GR)). The two non-enzymatic antiox-
idants reduce ROS by spontaneous biochemical reac-
tions with the assistance of the four enzymes [9, 10].
Superoxide dismutase (SOD) also plays an important
role in the antioxidant system [11].

γ-Aminobutyric acid (GABA), a four-carbon non-
protein amino acid, is an important component of the
free amino acid pool in most prokaryotic and eukary-
otic organisms [12]. This amino acid can also be pro-
duced by the catabolism of polyamines [13]. Under
abiotic stress, GABA has been shown to stabilize intra-
cellular pH and acts as a source of carbon and nitrogen
for the tricarboxylic acid cycle [14]. In addition,
GABA enhances the activity of some antioxidant
enzymes and reduces malondialdehyde (MDA) con-
tent, which results in maintenance of membrane
integrity [15]. It has been reported that exogenous

1 The article is published in the original.
Abbreviations: APX⎯ascorbate peroxidase; AsA⎯ascorbate;
DHA⎯dehydroascorbate; DHAR⎯dehydroascorbate reductase;
GABA⎯γ-aminobutyric acid; GR⎯glutathione reductase;
GSH⎯glutathione reduced; GSSG⎯oxidized glutathione;
MDA⎯malondialdehyde; MDHAR⎯monodehydroascorbate
reductase; ⎯superoxide anions; SOD⎯superoxide dis-
mutase.
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GABA alleviates hypoxia damage by accelerating
polyamine biosynthesis and conversion, and by pre-
venting polyamine degradation in melon plants [16].

Muskmelon (Cucumis melon L.) is an economically
important horticultural crop that is widely cultivated in
China but is sensitive to salinity-alkalinity stress [14, 17].
Previous studies have illustrated that exogenous GABA
improves the photosynthesis of muskmelon seedlings
that are exposed to salinity-alkalinity stress [17]. How-
ever, there are few studies on the antioxidation effects of
GABA in muskmelon under salinity-alkalinity stress
conditions. Therefore, in this study, the salinity-alkalin-
ity stress tolerance and antioxidant system changes in
both GABA-treated and untreated leaves of muskmelon
plants were investigated.

MATERIALS AND METHODS

Plant materials. Muskmelon seeds (Cucumis
melon L., cv. Yipintianxia no. 208) were surface ster-
ilized in 10% Na3PO4 for 20 min, immersed in distilled
water for 6 h, and germinated at 27°C in the dark. After
two days, germinated seeds were sown in washed com-
mix medium (Xintiandi Co., Yangling, Shaanxi,
China), and placed in a seedling greenhouse with an
average day/night temperature of 26–30°C/16–18°C,
a 12 h light and 12 h dark photoperiod, and 50–90%
relative humidity. A total of 25 plants for each treat-
ment and three independent experiments were per-
formed.

Salt-alkaline and GABA treatment. Seedlings fully
expanded with four true leaves were grown in the
nutrient medium with or without 50 mM salinity-
alkalinity solution (NaCl : Na2SO4 : NaHCO3 :
Na2CO3 at a 1 : 9 : 9 : 1 molar ratio) which final con-
centration of 50 mM Na+ and pH of the final nutrient
solution is 8.6. The muskmelon seedlings were sub-
jected to the following four experiment groups:
(1) control (CK), normal nutrient medium plus leaf
spraying of 0 mM GABA; (2) control + GABA (CG),
normal nutrient medium plus leaf spraying of 50 mM
GABA; (3) stress (S), nutrient medium containing
50 mM salinity-alkalinity solution plus leaf spraying
of 0 mM GABA; and (4) stress + GABA (GS), nutri-
ent medium containing. Then, a 50 mM solution of
GABA in water was applied by spraying all leaves per
plant on a daily basis. This concentration of GABA
was chosen based on previous results [14]. Seedlings
were treated with the same amount of GABA or dis-
tilled water at 9:00 a.m. for seven consecutive days.
After 0, 1, 3, 5, and 7 days of stress treatment, the third
fully expended leaves of four experimental groups,
numbered basipetally starting at the uppermost fully
expended leaf, was collected to analyse malondialde-
hyde content, and antioxidant enzymes activities and
the content of antioxidant in the chloroplasts, respec-
tively. Isolated chloroplasts from the leaves using the
method described by Shu et al. [18] with a slight mod-
RUSSIAN JOURNAL OF PLANT PHYSIOLOGY  Vol. 65
ification were analyzed. Fresh leaves (15 g) were
homogenized for 3 s in a Polytron blender with 30 mL
of 330 mM sorbitol, 30 mM MES, 2 mM ascorbate,
and 0.1% BSA, adjusted to pH 6.5 with Tris. The
homogenate was filtered through four layers of
cheesecloth, and the dark green filtrate was centri-
fuged at 1800 g for 2 min. The pellets were resuspended
in 2 mL of buffer (330 mM sorbitol, 30 mM HEPES
and 0.2% BSA, adjusted to pH 7.6 with Tris), put into
a tube containing 8 mL of resuspension medium plus
40–80% (v/v) Percoll and centrifuged for 3 min at
2000 g. The interlayer between 40 and 80% Percoll
contained intact chloroplasts. All procedures were
carried out at 4°C, and the percentage of intactness of
chloroplasts was about 85%.

Extraction of chloroplast antioxidant enzymes and
antioxidants. 3 mL aliquot of chloroplast-containing
supernatant was mixed with 3 mL ice-cold HEPES
buffer (25 mM, pH 7.8) containing 0.2 mM ethylene-
diaminetetraacetic acid and 2% (w/v) polyvinylpyrro-
lidone. The mixture was then centrifuged at 12000 g
and 4°C for 20 min. The resulting supernatant was
used to assay the antioxidant enzyme activity and
determine the content of antioxidants (AsA and GSH)
as described below [19].

Malondialdehyde measurements. Malondialdehyde
(MDA) was measured according to the method of
Xu et al. [20]. The leaf samples (0.15 g) were homoge-
nized in 4 mL of 10% TCA and centrifuged at 10000 g
for 15 min. The supernatant (1 mL) was mixed with
1 mL of 0.6% thiobarbituric acid, heated at 95°C for
30 min and then was quickly cooled down on ice. After
centrifugation at 10000 g for 10 min, absorbance of the
supernatant was measured with an UV-visible spectro-
photometer at 450, 532 and 600 nm, respectively.

Measurement of SOD, APX, GR, MDHAR, and
DHAR activities. The SOD activity was assayed by
monitoring SOD-mediated inhibition of the photo-
chemical reduction of nitro blue tetrazolium [21]. One
unit of SOD activity was defined as the amount of
enzyme required for 50% inhibition of the reduction of
nitro blue tetrazolium as monitored by spectropho-
tometer at 560 nm. The APX activity was assayed by
monitoring the ascorbate oxidation rate using spectro-
photometer at 290 nm according to the method of
Nakano and Asada [22]. The GR activity was mea-
sured by tracking nicotinamide adenine dinucleotide
phosphate (NADPH) oxidation, which was deter-
mined by monitoring the decrease in absorbance at
340 nm over 3 min [23].

The activities of MDHAR and DHAR were assayed
according to the method described by Zhang et al., with
a slight modification [24]. MDHAR activity was
assayed using spectrophotometer at 340 nm in a 1 mL
sample containing 50 mM HEPES-KOH (pH 7.6),
25 mM AsA, 1 mM nicotinamide adenine dinucleotide
hydride (NADH), 0.5 units of ascorbate oxidase, and
50 μL of enzyme extract. DHAR activity was assayed
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Fig. 1. GABA decreased the MDA content of muskmelon
chloroplasts under salinity-alkalinity stress. 1⎯The musk-
melon leaves were treated with distilled water under nor-
mal condition; 2⎯the muskmelon leaves were treated with
50 mM GABA under normal condition; 3⎯the musk-
melon leaves were treated with distilled water under salin-
ity-alkalinity stress; 4⎯the muskmelon leaves were treated
with 50 mM GABA under salinity-alkalinity stress. Each
data point is the mean ± SE (n = 3).

2.0
1.8
1.6
1.4
1.2

0.8

0.4
0.6

1.0

0.2
0

0 1 3 5 7

1

2

3

4

M
D

A
 c

on
te

nt
, µ

m
ol

/g
 fr

 w
t

Time of treatment, d

Fig. 2. GABA improved the SOD activity of muskmelon
chloroplast under salinity-alkalinity stress. 1⎯The musk-
melon leaves were treated with distilled water under nor-
mal condition; 2⎯the muskmelon leaves were treated with
50 mM GABA under normal condition; 3⎯the musk-
melon leaves were treated with distilled water under salin-
ity-alkalinity stress; 4⎯the muskmelon leaves were treated
with 50 mM GABA under salinity-alkalinity stress. Each
data point is the mean ± SE (n = 3).
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using spectrophotometer at 265 nm in a 2.9 mL sample
containing 100 mM HEPES-KOH (pH 7.6), 25 mM
reduced GSH, 2 mM dehydroascorbate (DHA), and
50 μL enzyme extract. Protein was determined accord-
ing to the method of Bradford, using bovine serum
albumin as a standard [25].

Determination of AsA and GSH content. The AsA
content was determined according to the method of
Shu et al. [18] with a minor modification. The reaction
mixture contained 200 μL 5% trichloroacetic acid,
100 μL 0.4% H3PO4-ethanol, 100 μL 0.03% FeCl3-
ethanol, 200 μL 0.5% BP-ethanol, and 300 μL extract.
The sample was incubated at 40°C for 1 h, after which
the absorbance was measured using spectrophotome-
ter at 534 nm. The AsA content was calculated based
on an ascorbic acid standard curve.

The GSH content was assayed as described by Li
and Cheng [26] and determined by subtraction of oxi-
dized glutathione from total glutathione.

Statistical analysis. All data were statistically ana-
lyzed with SAS 9.0 software (SAS Institute, Inc.,
Cary, NC, USA) using Duncan’s multiple range test at
the P < 0.05 level of significance.

RESULTS
Effect of GABA on MDA Content in Salinity-Alkalinity 

Stressed Muskmelon Seedling Chloroplasts
Our results show that after three days under normal

conditions, there was a dramatically decrease in the
content of MDA in the CG (GABA alone)-treated
plants compared with CK (no treatment) plants.
RUSSIAN JOURN
Compared with the CK-treated plants, the MDA con-
tent in the S-treated plants was remarkably improved
and peaked on the seventh day at a level of 55.8%.
Treatment with salts and GABA (SG treatment) dra-
matically reduced the MDA content to 29.4% lower
than S-treated plants (Fig. 1).

Effect of GABA on the Chloroplast Antioxidant System
of Salinity-Alkalinity Stressed Muskmelon 

Seedling Chloroplasts

Treatment with GABA alone or with salts (CG or
SG-treated plants, respectively) under both normal
and salinity-alkalinity stress conditions dramatically
increased the SOD activity compared with the CK.
In contrast, under the same conditions, treatment
with only salts (S-treated plants) remarkably
decreased the SOD activity compared to the
CK-treated plants (Fig. 2). Five days after treatment,
SOD activity in S-treated plants was 38.1% lower
than that in CK-treated plants, whereas it was 34%
higher in SG-treated plants than in S-treated plants
(Fig. 2).

Compared to CK treatment, CG treatment
enhanced the MDHAR and GR activities after
three days (Figs. 3b and 3d). Compared with CK, the
S treatment improved the activities of APX, MDHAR,
DHAR, and GR early, and then decreased later, the
APX, MDHAR, and DHAR activities in the S-treated
plants peaked on day 3, whereas the GR activity
peaked on day 5 (Fig. 3). The SG treatment also
improved the activities of APX, MDHAR, DHAR,
AL OF PLANT PHYSIOLOGY  Vol. 65  No. 5  2018
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Fig. 3. GABA improved the antioxidase activities in AsA-GSH cycle of muskmelon chloroplast under salinity-alkalinity stress.
1⎯The muskmelon leaves were treated with distilled water under normal condition; 2⎯the muskmelon leaves were treated with
50 mM GABA under normal condition; 3⎯the muskmelon leaves were treated with distilled water under salinity-alkalinity
stress; 4⎯the muskmelon leaves were treated with 50 mM GABA under salinity-alkalinity stress. Each data point is the mean ±
SE (n = 3).
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and GR compared to CK. In particular, inhibition of
enzyme activities was alleviated by S treatment on day 7
(Fig. 3).

The CG treatment significantly increased the content
of ASA + DHA, AsA, GSH + GSSG, and GSH com-
pared with CK most of time (Fig. 4). The S treatment
dramatically improved the content of ASA + DHA,
AsA, GSH + GSSG, and GSH compared with CK
after five days of treatment, with the exception of AsA
content on day 5 (Fig. 4). The SG treatments exhibited
similar remarkable improvements in the GSH + GSSG
and GSH content compared with S treatment on
day 7 (Figs. 4b, 4d).

DISCUSSION
Chloroplasts are the most important organelle in

plants for the photosynthesis, growth, and yield for-
mation, but they are sensitive to salt stress and the
major source of ROS. Free tetrapyrroles that generate
highly reactive singlet oxygen or oxygen reduction
RUSSIAN JOURNAL OF PLANT PHYSIOLOGY  Vol. 65
through the Mehler reaction in the chloroplasts may
generate ROS, which in turn lead to membrane lipid
peroxidation [27]. Environmental stresses exacerbate
photoinhibition and, over a long period, may induce
photooxidative damage, resulting in accumulation of
ROS in chloroplasts. So, it is very important to scav-
enge the excessive ROS and maintain cellular homeo-
stasis. Superoxide anions ( ) may be quickly con-
verted into H2O2 by SOD [5], which is then converted
to H2O or O2 by an AsA and/or a GSH regenerating
cycle [28]. In the present study, seedlings of musk-
melon may increase chloroplast ROS accumulation
which was resulting in an increased membrane dam-
age under salinity-alkalinity stress (Fig. 1). In an effi-
ciently functioning antioxidant system, a high level of
antioxidant enzyme activity and high levels of non-
enzymatic components are maintained [28]. Reduced
GSH and AsA levels and reduced activities of some
key enzymes (APX, GR, MDHAR, and DHAR)
involved in the AsA-GSH cycle and SOD were
improved dramatically with SG treatment compared

2O−
  No. 5  2018
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Fig. 4. GABA improved the AsA and GSH redox status of muskmelon chloroplasts to defend against salinity-alkalinity stress.
1⎯The muskmelon leaves were treated with distilled water under normal condition; 2 ⎯the muskmelon leaves were treated with
50 mM GABA under normal condition; 3⎯the muskmelon leaves were treated with distilled water under salinity-alkalinity
stress; 4 ⎯the muskmelon leaves were treated with 50 mM GABA under salinity-alkalinity stress. Each data point is the mean ±
SE (n = 3).
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with S treatment (Figs. 2, 3, 4). These results suggest
that  may be reduced to H2O2 by SOD, which was
then scavenged by the AsA-GSH cycle induced by
GABA. An increase in MDHAR activity might pro-
vide reducing equivalents for APX, which maintained
the AsA-GSH cycle (Figs. 3, 4). In the present study,
AsA regeneration under salinity-alkalinity stress was
primarily driven by MDHAR and DHAR. GSH and
AsA acted as substrates for DHAR and APX, respec-
tively, and are considered the critical component of
the AsA-GSH cycle for maintaining intracellular
defenses against ROS-induced oxidative damage [9].
The increase in GR activity directly promoted conver-
sion of oxidized glutathione to GSH, which elimi-
nated H2O2 and reduced the accumulation of ROS in
chloroplasts [29], resulting in the stabilization of the
membrane.

In conclusion, salinity-alkalinity stress increased
the membrane damage in muskmelon, and exoge-
nous GABA alleviated the damage via SOD and the
AsA-GSH cycle, which scavenged the excessive accu-

2O−
RUSSIAN JOURN
mulation of ROS. Furthermore, both the GSH and
AsA redox status was crucial in the regulation of the
oxidative stress response. These results indicated that
GABA played an important role in the relief of the
harmful effects caused by oxidative stress.
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