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Abstract—The temperature dependence of the glass transition activation energy for amorphous organic poly-
mers and inorganic glasses is calculated using the Williams–Landel–Ferry equation for the relaxation time
(viscosity). The results obtained are in satisfactory agreement with the experiment. The nature of the depen-
dence of the glass transition activation energy on the temperature is discussed.
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INTRODUCTION
The nature of the transition of an amorphous sub-

stance from a liquid (highly elastic) to a glassy state is
still not fully understood. The glass transition of a liq-
uid is closely associated with an increase in viscosity
during cooling of the melt, and the activation energy
of glass transition, as a rule, coincides with the activa-
tion energy of a viscous f low (relaxation) in the liq-
uid–glass transition region.

The temperature dependence of the viscosity of
simple low-viscosity liquids, such as acetone, is well
described by the Frenkel equation [1]

(1)

with activation energy U = const. Here η0 is the pre-
exponential factor and R is the gas constant. However,
for glass-forming melts, the activation energy in for-
mula (1) in the glass transition region is quite strongly
dependent on temperature: U = U(T). In connection
with this, the empirical equations of viscosity are pro-
posed that implicitly take into account the depen-
dence U(T) Among them, the Williams–Landel–
Ferry ratio [2, 3] became widespread:

(2)

where C1 and C2 are the empirical constants, Tg is the
glass transition temperature, and τ is the relaxation
time. The validity of this equation was proved in many

works for various glassy systems [2–6], including
amorphous polymers.

For example, in [7, 8], the derivation of expression
(2) was proposed without specifying functions τ(T)
and η(T):

(3)

(4)

(5)

The expansion of the function lnη(T) near Tg in terms
of small dimensionless parameter λ = (T – Tg)/Tg was
used ([8]).

Thus, constant equations (2) acquire physical
meaning—they can be expressed through derivatives A
and B as

(6)

(7)

The present work is devoted to the assessment of
the temperature dependence of the glass transition
activation energy U(T) using the data on the parame-
ters of the Williams–Landel–Ferry equation C1 and
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Table 1. Parameters of the Williams–Landel–Ferry equation and the glass transition activation energy at T = Tg for amor-
phous organic polymers and inorganic glasses (according to [2, 4, 30])

Ug was calculated by formula (13).

Amorphous substances Tg, K C1, K C2, K Ug, kJ/mol

PbO–SiO2 (42.07 mol % PbO) 711 36 250 212

Na2O–B2O3 (2.8 mol % Na2O) 544 29 130 131

Sheet glass 807 36 305 241

Polyisobutylene 202 38 104 64

Poly(vinyl acetate) 305 38 104 96

Polyurethane 238 36 33 71

Natural rubber 300 38 54 95
C2. The calculation option U(T) is discussed without
specifying the type of function U(T). Since the main
laws governing the transition of an amorphous sub-
stance from a highly elastic to a glassy state are quali-
tatively identical for many glass-forming systems,
including amorphous organic polymers and inorganic
glasses (e.g., [4, 9]), the objects of our research are
inorganic polymers along with amorphous polymers.

CALCULATION OF THE TEMPERATURE 
DEPENDENCE OF THE GLASS TRANSITION 

ACTIVATION ENERGY USING THE 
WILLIAMS-LANDELA-FERRI EQUATION

It is easy to verify that Eq. (2) is algebraically
derived from the Vogel–Fulcher–Tammann relation
([4]):

(8)

where the empirical constant B0 has a temperature
dimension and is measured in kelvins. The parameters
of Eqs. (2) and (8) are related by equalities

(9)

(10)

Assuming the pre-exponential factors in the for-
mulas for viscosity (1) and (8) to be equal, we obtain
the following temperature dependence of the activa-
tion energy of a viscous f low:

(11)

Since for many amorphous polymers and inorganic
glasses the parameters of the Williams–Landel–Ferry
equation C1 and C2 are known [2–11], using expres-
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sions (9) and (10) it is advisable to go from dependence
(11) to the value U(T) as functions of these parameters:

(12)

This equality implies a simple relation for calculat-
ing the glass transition activation energy Ug = U(Tg) at
the glass transition temperature T = Tg is

(13)

For sheet (window) silicate glass, for example, C1 = 36
and Tg = 807 K [10], whence we have Ug = 241 kJ/mol.
The methods of relaxation spectrometry [4, 10, 11] for
this glass lead to almost the same value of Ug =
242 kJ/mol. For polyisobutylene (Tg = 202 K and C1 =
38) and natural rubber (Tg = 300K and C1 = 38) the
values of Ug, which are 64 and 95 kJ/mol, respectively,
are also consistent with the data of relaxation spec-
trometry [11].

It is known that many glassy systems pass from a
liquid to a glassy state at almost the same viscosity ηg ~
1012 Pa s (the approximate rule of constancy of viscos-
ity at Tg). High temperature viscosity limit η0 ~ η (T →
∞) also turns out to be approximately constant, η0 ~
10–3.5 Pa s. Therefore, the activation energy at the glass
transition temperature Ug = U(Tg) can be estimated by
formula (1) at T = Tg, ηg ~ η (Tg) ~ 1012 Pa s, and η0 ~
10–3.5 Pa s [4]:

(14)

which practically coincides with relation (13).
Consequently, the weak dependence of the param-

eter C1 on the nature of glasses C1 ~ const ~ 35–40
(Table 1) [2, 4] is explained by the approximate con-
stancy of viscosities ηg and η0:
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Fig. 1. Temperature dependence of glass transition activation energy U(T – Tg) for sheet silicate glass: the symbols refer to exper-
iment and the curve refers to calculations by formula (12).
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It should be noted here that the rule of constancy of
viscosity at Tg, according to modern research, is not
always justified ([12]). Nevertheless, for most of the
glasses studied, the values of Tg correspond to tem-
peratures at which viscosity is in the range from 1011 to
1012 Pa s. The constancy of the high temperature vis-
cosity limit η0 ~ const also turns out to be very approx-
imate. Therefore, relation (14) gives only the first
rough approximation. The assessment of Ug by for-
mula (13) is preferred.

Thus, to calculate U(T) in the glass transition
region according to formula (12) it is necessary to
know three quantities: C1, C2, and Tg. The data on
parameters C1, C2, and the glass transition temperature
Tg for many amorphous organic polymers are available
in the book [2]; for inorganic glasses, in the mono-
graph [4], which also describes one of the methods for
determining C1 and C2.

Figure 1 shows the temperature dependence of the
glass transition activation energy for sheet silicate
glass. The curve refers to the calculation by formula
(12), and the symbols refer to the experimental data.
The latter are obtained from the data on the viscosity
log η(T) using Eq. (1), from which it follows

(15)

As you can see, the points lie on the calculated
curve, which confirms the good applicability of the
Williams–Landel–Ferry formula. Similar plots U(T)
are constructed for a number of organic amorphous
polymers (e.g., Fig. 2 for poly(vinyl acetate)). For
some glasses and polymers Table 1 lists the values of
parameters C1, C2 and Tg included in relation (12), as
well as the value of Ug calculated by formula (13).

[ ]= − 02.3 log η( ) log η .U RT T
PO
ON THE POSSIBILITY OF USING
THE TAYLOR SERIES EXPANSION 

OF FUNCTION U(T)

It is of some interest to estimate the temperature
dependence of the glass transition activation energy
without specifying the function U(T). One of these
methods of calculating U(T) is presented below.

Let expand function U(T) near Tg in terms of a
small increment of temperature (T – Tg) and restrict
ourselves to the first three members of the series

(16)

(17)

(18)

In fact, the parameter of smallness in expansion
(16) is still the dimensionless quantity λ = (T – Tg)/Tg,
but Tg in the first and second degree is hidden in the
coefficients D1 and D2. Considering the viscosity in
dependence (1) as a complex function of temperature,
including derivatives (4) and (5), and using formulas
(6) and (7), we express D1 and D2 through parameters
C1, C2, and the glass transition temperature Tg
(Appendix):

(19)
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Fig. 2. Temperature dependence of glass transition activation energy U(T – Tg) for poly(vinyl acetate): the symbols refer to exper-
iment and the curve refers to calculations by Eq. (12).
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Coefficient D2 differs by C2 times from D1. Accord-
ing to C1, C2, and Tg and using formulas (16), (19), and
(20) the temperature dependence of the glass transi-
tion activation energy can be calculated.

Coefficients D1 and D2 calculated by formulas (19)
and (20) for sheet silicate glass and polyurethane were
compared with the characteristics of curves U(T – Tg)
obtained from the experimental data on the tempera-
ture dependence of viscosity (Table 2). The coeffi-
cients of curve U(T – Tg) as polynomials of the second
degree were calculated by the fitting method at the
fixed values of C1 and C2 (17.48 and 276.75, respec-
tively) and using the Origin program (Fig. 3). In the
POLYMER SCIENCE, SERIES A  Vol. 62  No. 5  2020

Table 2. Coefficients D1 and D2 calculated in different ways

* D3 = –3.198 × 10–7 ± 0.518 × 10–7; ** D3 = –3.773 × 10–5 ± 2.3

Calculation method

Sheet

Using formulas (19) and (20) at C1 = 17.48 and C2 = 276.75

Fitting of U(T – Tg) at C1 = 17.48 and C2 = 276.75

Description of U(T – Tg) by the second-degree polynomial

Description of U(T – Tg) by the third-degree polynomial*

Polyur

Using formulas (19) and (20) at C1 = 15.60 and C2 = 32.60

Fitting of U(T – Tg) at C1 = 15.60 and C2= 32.60

Description of U(T – Tg) by the second-degree polynomial

Description of U(T – Tg) by the third-degree polynomial**
second case, the temperature dependence of the acti-
vation energy was described by a polynomial of the
second degree, which allowed us to obtain the values
of D1 and D2. It was further taken into account that in
a wide temperature range, the role of the cubic term in
the Taylor series expansion of U may begin to manifest
itself. Therefore, the temperature dependence of the
activation energy was also interpreted as a polynomial
of the third degree (Fig. 4), which somewhat changed
the coefficient D2 (Table 2).

In general, within the framework of the approxi-
mation under consideration, a satisfactory agreement
between the theoretical and experimental values of the
coefficients is observed. The coincidence in all calcu-
85 × 10–5.

D1, kJ/(mol K) D2, kJ/(mol K2)

 glass

0.278 10–5

0.325 2.1 × 10–4

0.314 ± 0.012 2.400 × 10–4 ± 0.182 × 10–4

0.384 ± 0.013 5.675 × 10–4 ± 0.538 × 10–4

ethane

0.815 25 × 10–3

0.750 4 × 10–3

0.851 ± 0.050 4.83 × 10–3 ± 0.60 × 10–3

1.022 ± 0.117 1.018 × 10–2 ± 0.343 × 10–2
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Fig. 3. Description of the temperature dependence of the
glass transition activation energy by the second degree
polynomial for (a) sheet glass and (b) polyurethane: the
symbols refer to experiment and the curves refer to calcu-
lations using the Origin program.
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Fig. 4. Description of the temperature dependence of the
glass transition activation energy by the third-degree poly-
nomial for (a) sheet glass and (b) polyurethane: the sym-
bols refer to experiment and the curves refer to calculations
using the Origin program.
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lations is better for D1 and worse for D2 (Table 2). This
is because the calculations were carried out for a wide
temperature range, where the approximations cease to
be performed. Thus, the temperature dependence of
the activation energy in a fairly wide temperature
range is well described by the polynomial of the sec-
ond degree.

ASSESSMENT OF THE TEMPERATURE AREA 
OF APPLICABILITY OF THE THEORETICAL 

DERIVIATION OF THE WILLIAMS–LANDEL–
FERRY FORMULA

Obtaining the Williams–Landel–Ferry formula in
the form of expression (3) suggested that such values of
the smallness parameter λ = (T – Tg)/Tg, at which the
modulus of the quadratic term in the Taylor series is at
least an order of magnitude smaller than the modulus
of the linear term were taken into account [8]. Then we
PO
will estimate the values of λ for inorganic glass and
polyurethane, for which the quadratic term is an order
of magnitude smaller than the linear one.

Figure 5 shows the experimental dependences of
lnaT on λ for the inorganic glass and polyurethane
interpreted as the polynomial of the second degree.
The same dependences are described by the polyno-
mial of the third degree in Fig. 6. The coefficients of
polynomial B1 and B2 are related to A and B defined by
formulas (4) and (5) as B1 = –A and B2 = B. This
expansion for the two materials under consideration
has common features. The coefficients at λ in the first
and second degree in both cases have the same order
of magnitude with respect to modulus. The coefficient
at λ3 is negative (like the coefficient at λ in the first
degree). For the inorganic glass, its modulus is
approximately the same in order of magnitude as the
first coefficients of the series. For polyurethane, it is
an order of magnitude smaller.
LYMER SCIENCE, SERIES A  Vol. 62  No. 5  2020
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Fig. 5. Experimental dependences of lnaT on parameter
λ = (T – Tg)/Tg for (1) inorganic glass and (2) polyure-
thane and their description by the polynomial y(x) = B0 +
B1x + B2x2: the symbols refer to experiment and the curves
refer to calculations. For glass B0 = 0, B1 = –66.4 ± 2.8,
and B2 = 42.2 ± 3.6; for polyurethane B0 = 0, B1 =
‒151.6 ± 7.2, and B2 = 215.2 ± 20.7.
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Fig. 6. Dependences of lnaT on λ for (1) inorganic glass
and (2) polyurethane and their description by the polyno-
mial y(x) = B0 + B1x + B2x2 + B3x3: the symbols refer to
experiment and the curves refer to calculations. For glass
B0 = 0, B1 = –84.7 ± 2.1, B2 = 111.4 ± 7.3, and B3 =
‒54.5 ± 5.7; for polyurethane B0 = 0, B1 = –201.7 ± 5.9,
B2 = 588.8 ± 40.9, and B3 = –626.6 ± 67.7.
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The obtained values of the expansion coefficients
showed that the method of deriving the Williams–
Landel–Ferry equation for inorganic glass presented
in this work is valid at λ <0.1, that is, at temperatures
above Tg by approximately 80–90 K. In this tempera-
ture range, the derived relations between the coeffi-
cients and the Williams–Landel–Ferry formula itself
should work quite well.

ON THE NATURE OF THE DEPENDENCE 
OF GLASS TRANSITION ACTIVATION 

ENERGY ON THE TEMPERATURE

The main laws of the glass transition process are
qualitatively the same for the vast majority of amor-
phous substances, regardless of their nature: for inor-
ganic glasses, amorphous organic polymers, metal
amorphous alloys, aqueous solutions, and chalco-
genides, as is confirmed by the presence of universal
equations and rules in the glass transition region [4, 9–
11, 13–16].

However, for different classes of glasses the mobil-
ity of various kinetic units at Tg is frozen. The glass
transition of linear amorphous organic polymers is a
physical relaxation process associated with the loss of
segmental mobility at the glass transition temperature,
and the glass transition of inorganic glasses with a net-
work structure is a chemical relaxation process and is
related to the freezing of the process of switching
POLYMER SCIENCE, SERIES A  Vol. 62  No. 5  2020
valence bonds of the silicon–oxygen–silicon type.
The glass transition of densely crosslinked crosslinked
polymers (e.g., epoxides) also has its own specifics.

The existence of universal laws of the liquid–glass
transition means that the glass transition processes of
different systems can be described by a general theory
capable of predicting, for example, the nature of the
evolution of the macroscopic properties of a system.

The creation of such a general theory of glass tran-
sition is an extremely difficult task, which is unlikely to
be solved in the next few decades. The discussion on
the nature of glass transition has a century-long his-
tory (reviews [13–16]). The outlined picture is clearly
reflected in the existence of a large number of phe-
nomenological approaches. Let us briefly consider
one of them.

We come down from the idea that the physical
cause of the sharp increase in the glass transition acti-
vation energy with decreasing temperature is the con-
figurational change in the structure of the glass-form-
ing melt [15, 17, 18]. Moreover, the microscopic
nature of the configurational structural change is not
disclosed. In the developed model of delocalized
atoms [19–22], microscopic concepts (“energy of
delocalization of an atom,” “elementary volume nec-
essary for the ultimate displacement of an atom”)
appear formally. However, the model as a whole is
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phenomenological in nature and is applicable to vari-
ous amorphous systems.

In the framework of this model, for glass-forming
liquids, the glass transition activation energy (viscous
flow) in Eq. (1) is the sum of two terms [14, 23]:

(21)

where U∞ is the potential of transition of the kinetic
unit (atom, molecule) to a new local position and
Us(T) is the potential of the configurational change in
the structure, which is a function of temperature:

(22)

where Δεe is the energy of delocalization of the atom
(its maximum displacement from the local equilib-
rium position). Atomic delocalization is related to the
rearrangement of neighboring particles (short-range
fluctuation) and reflects a local configurational
change in the structure.

At elevated temperatures RT ≫ Δεe configurational
structural change potential Us(T) = 0 and viscosity
equation (1) taking into account expressions (21) and
(22) describes the dependence with a constant activa-
tion energy U = U∞:

(23)

Thus, the value of U∞ turns out to be the high-tempera-
ture limit of the activation energy of a viscous flow.

At low temperatures in the glass transition region,
the atomic delocalization energy Δεe is comparable
with the energy of thermal vibrations of the lattice
(~3RT), and the relative number Ne/N of delocalized
atoms responsible for f luidity above Tg decreases
according to law  [14]. The structure of
the melt becomes denser, and an activation jump of an
atom to a new position requires a preliminary local
configurational change (loosening) of the structure
near it: the potential of configurational structural
change Us(T) increases dramatically. This explains the
almost exponential increase in the activation energy of
fluidity in the glass transition region.

The idea of separating the activation energy of f lu-
idity into two components was expressed by
Ya.I. Frenkel [24]. It was further developed by
V.N. Filipovich and S.V. Nemilov [17, 18], as well as
by the scientific school of the University of Sheffield
[25–27], in which the two-exponential viscosity equa-
tion was obtained. With a more rigorous approach
under U(T) one should understand the free activation
energy [17, 18, 28, 29], as in the classic Eyring studies.
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Thus, the configurational change in the structure
described within the framework of the model of delo-
calized atoms is responsible for the temperature
dependence of the glass transition activation energy
(viscous f low) in the region of transition from a highly
elastic state to a glassy one.

CONCLUSIONS

For amorphous organic polymers and inorganic
glasses, methods for calculating the temperature
dependence of the glass transition activation energy
are considered U(T). This dependence is satisfactorily
described near the values of Tg using the Williams–
Landel–Ferry equation for viscosity (relaxation time).
It is shown that there is a way to evaluate U(T) using
the Taylor series expansion of function U(T) near the
glass transition temperature. In a first approximation,
it is enough to restrict ourselves to the linear and qua-
dratic terms of the series. Within the framework of the
model of delocalized atoms, a sharp increase in the
activation energy in the glass transition region is
explained by an increase in the potential of configura-
tional structural change upon cooling of the glass-
forming melt.

APPENDIX

Let represent Eq. (1) as

(1.1)

and take the derivative

According to equality (4), for parameter A we arrive
at the relation

(1.2)

which takes into account that the quantity D1 defined
by derivative (17):

From expressions (6) and (7) we obtain the following
formula for parameter A:
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Equating the right-hand sides of equalities (1.2) and
(1.3), we arrive at the relation

(1.4)

which given Ug = C1RTg (expression (13)) is converted
to Eq. (19) or

(19.1)

Formula (20) for the coefficient D2 we will find
from the following calculations:

(1.5)

Here D1 and D2 are determined by derivatives (17)
and (18). Further, in this relation for D1 we take into
account expression (1.4). Then,

(1.6)

From expressions (7) and (1.3) we have

Substituting the parameter B from this formula to
equality (1.6), we finally obtain Eq. (20) for D2.

The same result can be observed by directly substi-
tuting series (16) in the formula for viscosity (1) and
calculating the derivatives A and B.

The final expansion of the activation energy in the
Taylor series is as follows:

(1.7)

The quadratic term of the series can be neglected,
if it is substantially less than the linear, that is,

(1.8)

For sheet inorganic glass, for example, this means
requirement (T – Tg) ≪ 277 K; i.e., coefficient D1 can
be determined by drawing a tangent to the curve U(T)
20‒30 degrees higher than the values of Tg and mea-
suring the tangent of its angle. For polyurethane (C2 =
32.6 K) the corresponding temperature interval is
much smaller. Further, using formula (19.1) according
to D1 and Tg the coefficient C2 can be calculated (the
value of Ug was estimated by formula (13)).
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