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Abstract—For planar brushes made of grafted polyelectrolyte stars, an analytical theory based on a stepwise
approximation of the brush density profile is developed. Particular attention is paid to the effect of forma-
tion of a layered structure with the division of stars into two populations and the inf luence of arm charge
and salt concentration on this phenomenon. It is shown that an increase in the number of stars with an
extremely stretched arm by which the star is grafted to the surface is facilitated by an increase in the grafting
density, the number of arms, or the degree of ionization of the arms. In the latter case, the average brush
density decreases, while in the former two cases it increases. It is demonstrated that the theory based on
the three-step approximation of the density profile describes well the results of self-consistent field mod-
eling and the best agreement is achieved at a high degree of ionization, a large number of arms, and a high
grafting density.
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INTRODUCTION

Polymer brushes, that is, monolayers formed by
macromolecules densely grafted to an impermeable
surface, have been attracting the unflagging attention
of researchers for several decades. The strong overlap-
ping of the grafted macromolecules and their immo-
bility cause a considerable extension of chains as com-
pared to their unperturbed size in the direction per-
pendicular to the grafting surface. Among the unique
properties of polymer brushes, barrier (protection
against nonspecific sorption of proteins and biological
overgrowth of surfaces and stabilization of colloidal
dispersions) and tribological properties (reduction of
friction between surfaces coated with polymer
brushes) are of great practical importance [1–5].

Modification of the surface with grafted polymers
opens the possibility of creating smart surfaces capable
of responding to external stimuli (exposure to light and
varying temperature and solvent composition) by
changing the conformations of macromolecules form-
ing a brush [6–8]. Owing to the dense grafting and
strong overlapping of the chains, these changes are
“consistent,” which provides a well-defined response
of a brush to an external stimulus. Mixed brushes
formed by macromolecules of various chemical nature
can act as such smart surfaces [9]. In this case, changes
in external conditions can affect the hydrophilicity or
hydrophobicity of the surface.

Another classic example of smart or stimuli-
responsive brushes is polyelectrolyte brushes, the state
of which can be controlled by changing the ionic
strength of the solution (salt concentration in the solu-
tion) or pH, if the brush is formed by chains of an ion-
izable (pH-sensitive) polyelectrolyte.

Speaking of smart and stimuli-responsive brushes,
it is worth noting that the brush can be a “matrix” for
a switch based on a single chain embedded into the
brush which differs from brush-forming chains in
chemical nature and/or degree of polymerization. In
[10–12], the chain embedded in the brush was capable
of adsorbing on the grafting surface (and the chains
forming the brush were inert to it). Then the “matrix”
brush served as a kind of barrier located near the
attracting surface. This makes the adsorption transi-
tion not smooth, as in the case of ordinary adsorption
on the plane, but sharp (in this case, naturally, the
energy of attraction of the units to the surface corre-
sponding to the adsorption transition increases com-
pared with that in the absence of the barrier).

Of great interest are brushes in which branched
macromolecules are grafted to the surface. Relatively
recently, attention has been drawn to the possibility of
using macromolecules of complex branched architec-
ture as a material for creating polymer brushes. Theo-
retically, brushes made of grafted, regularly branched
macromolecules have been studied since the mid-
1990s [13–15]. The development of methods for the
synthesis of regularly branched macromolecules (in
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particular, dendrons) and the development of methods
for their grafting to the surface made it possible to create
such brushes in the laboratory [16]. In addition, “den-
dronized polymers”—the analogs of graft copolymers,
in which the side chains are regularly branched den-
drons [17, 18]—were obtained.

The attractiveness of dendron brushes is that, by
grafting one macromolecule (one dendron) by its root
spacer, a large amount of polymer material can be
bound to the surface via a single grafting point. At the
same time, the thickness of the brush is limited by the
limiting span of the dendron. This enables one to cre-
ate thinner and denser layers compared to brushes
composed of linear chains.

The simplest approach to constructing an analyti-
cal theory of dendron brushes involves the use of a
Flory-type mean-field approach—an analog of the
Alexander–de Gennes model [19, 20] for an ordinary
brush of linear macromolecules. This approach allows
one to obtain power-law dependences for the main
characteristics of the brush, such as brush thickness,
polymer density in the brush, and equilibrium free
energy, on system parameters (for a neutral brush
made of dendrons with f lexible spacers, these are the
grafting density, spacer length, number of generations,
and functionality of branching points). A theory of
this type was first proposed by D. Boris and M. Rubin-
stein [21] for dendrimers (actually, spherical dendron
brushes) and generalized for planar, spherical, and
cylindrical geometries by M. Kröger et al. [22]. An
essential point in the development of theories of this
kind was the assumption concerning the mechanism
of extension of dendron spacers. According to [23],
there are two limiting scenarios of dendron extension.
In the first case, only one “longest path” is stretched
in the dendron connecting its point of grafting to the
surface to one of the free ends. In another extreme
case, all dendron spacers are equally stretched.

The first analytical theory of dendron brushes tak-
ing into account the nonuniformity of the density pro-
file and the unequal stretching of dendrons in the
brush was proposed by G.T. Picket in 2001 for a planar
brush [24]. It was based on the assumption that the
monomer units of dendrons are in the field of a qua-
dratic (parabolic) self-consistent potential, as in the
case of the brush consisting of linear macromolecules.
This potential includes the so-called topological coef-
ficient, which depends on the number of generations,
the functionality of branching points, and the length
of the spacers in the dendron.

As further analysis showed, the theory based on the
quadratic potential and the infinite Gaussian extensi-
bility of the dendron spacers is valid only in the region
of low grafting densities. Studies of dendron brushes
by the numerical Scheutjens–Fleer self-consistent
field calculations [23] and computer simulations [25,
26] using the models with the finite extensibility of
polymer chains (dendron spacers) made it possible to
PO
reveal that grafted dendron brushes have a nontrivial
internal structure. At a high grafting density, the den-
drons in the brush are divided into several groups (or
“populations”), which vary in the degree of stretching
[23, 26, 27]. This is clearly manifested even by the sim-
plest representative of the class of dendron brushes—
brushes made of dendrons of the first generation or
brushes composed of arm-grafted stars [25, 28]. For
them, at a high grafting density, two populations of
stars coexist in the brush and the brush becomes two-
layered. Some stars have a strongly, almost ultimately,
stretched arm, by which they are grafted to the surface
(“stem”). The free arms of such stars are directed from
the grafting surface toward the solvent and form the
outer layer. The remaining stars are stretched weakly
and fill the inner near-surface layer of the brush. A
schematic representation of the brush made of grafted
stars with the two-population (two-layered) structure
is given below.

The two-population structure of brushes made of
stars was studied in detail [28–31]. It was found that
the main reason of the two-population structure is the
finite extensibility of the arms of stars; under the
Gaussian (that is, infinite) extensibility of the arms, it
is impossible to obtain the two-population structure.

Until recently, the studies of dendron brushes con-
cerned mainly uncharged systems. At the same time,
polymer brushes composed of branched polyelectro-
lytes are of undoubted interest; their research began
relatively recently. O.V. Borisov and E.B. Zhulina
developed the analytical theory of dendron brushes
made of a strong polyelectrolyte [32]. Brushes made of
dendrons of arbitrary generation were considered in
the framework of the scaling analysis and a brush
model with a uniform density profile. A more detailed
self-consistent field (SCF) theory was proposed in the
same paper for brushes made of dendrons of the first
generation or brushes of polyelectrolyte stars arm-
grafted to the surface. When constructing the theory,
the Gaussian elasticity of the star arms, that is, their
infinite extensibility, was assumed. As already indi-
cated, this approach does not allow one to describe the
situation with the division of stars into two popula-
tions and the separation of brushes into two layers. It
should be noted that in polyelectrolyte brushes the
chains are stretched more strongly than those in neu-
tral brushes (due to the osmotic pressure of counteri-
ons in the “osmotic” regime or renormalization of the
LYMER SCIENCE, SERIES A  Vol. 62  No. 1  2020



STRUCTURE OF A PLANAR BRUSH 3

Fig. 1. (Color online) (a) Two types of stars in the “two-layered” brush and (b) one-step and (c) two-step approximation of the
profile of the volume fraction of polymer in the “two-layered” brush of stars.
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second virial coefficient in the “salt” regime); there-
fore, in the polyelectrolyte brush, the division of den-
drons into populations will be even more pronounced.

The present work is devoted to the theoretical study
of brushes formed by grafted polyelectrolyte stars
(charged first-generation dendrons) with a fixed
degree of ionization (the case of strong polyelectro-
lyte) using the Scheutjens–Fleer self-consistent field
approach and the construction of a “minimal” Flory-
type theory describing the conformational properties
of such brushes. Particular attention will be paid to the
formation of a layered two-population structure.

MODEL AND RESEARCH METHODS

The System under Study

Consider a planar brush made of grafted stars, each
of which contains p arms consisting of n monomer
units. Monomer unit size a is taken as the unit length.
Stars are grafted onto an impenetrable planar surface
at the density σ (the number of stars per unit grafting
surface). The brush is immersed in a solvent, which
thermodynamic quality with respect to the polymer is
characterized by the Flory parameter χ. In this paper,
we restrict ourselves to considering the case of an
athermal solvent corresponding to χ = 0. The arms of
stars are linear chains of polyelectrolytes with a fixed
degree of ionization of the arms α (strong polyelec-
trolyte). The ions of monovalent salt are also present
in the solution, the volume fraction of salt ions
is 2Φs.
POLYMER SCIENCE, SERIES A  Vol. 62  No. 1  2020
Analytical Theory

According to the two-population structure of the
brush made of stars, the stars in the brush are divided
into two groups or “populations.” Near the grafting
surface, stars with weakly stretched arms predominate.
Stars belonging to the second population are charac-
terized by a strongly stretched arm, by which the star is
grafted to the surface (“stem”), and their free arms are
directed to the periphery of the brush.

The simplest Flory-type mean-field theory for a
two-layered brush made of stars was proposed by
H. Merlitz et al. [29]. It combined the elements of the
Alexander–de Gennes model with the allowance for
the division of stars into two populations (Fig. 1a). It
was believed that the polymer density in the brush is
constant; that is, the polymer concentration in two
layers is the same (Fig. 1b). Another feature of the
model was the neglect of the elastic contribution of
weakly stretched stars to free energy. It was assumed to
be negligibly small compared to the similar contribu-
tion of strongly stretched stars and to the contribution
of volume interactions (polymer–polymer and poly-
mer–solvent). For strongly stretched stars, their final
extensibility was taken into account. Later on, the
authors of [29] applied a similar analytical approach to
the description of brushes made of second-generation
dendrons [33].

In [31], we used the approach developed in [29],
introducing a single change into it; namely, the condi-
tion of constant polymer density inside the brush was
eliminated: the density profile had a two-step form
(Fig. 1c). Such a difference in density does not mean
that there is a density jump at the boundary between
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Fig. 2. (Color online) (a) Three types of stars in the brush and (b) three-step approximation of the profile of the volume fraction
of polymer in the brush of stars.
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the layers; it corresponds to the difference in the aver-
age density of the polymer in the layers.

A drawback of the model developed in [31] was that
the stretching of stars belonging to a weakly extended
population was not taken into account. According to
self-consistent field calculations [28] and Langevin
[25] and Brownian [26] dynamics simulations, the dis-
tribution of the branching points of stars from the
weakly extended population turns out to be quite wide
(Fig. 3), so that not all stars in it are stretched weakly.
By ignoring the stretching of stars from the “near-sur-
face” population when constructing the theory, we
thereby make this population of stars thermodinami-
cally more advantageous and artificially reduce the
fraction of strongly stretched stars. In polyelectrolyte
brushes, electrostatic interactions additionally stretch
the macromolecules forming the brush, and this
requires a more accurate consideration of the stretch-
ing of stars.

One way to take into account the elastic contribu-
tion of weakly stretched stars is to divide such stars into
two groups, selecting moderately stretched stars in a
separate “class.” Thus, all the stars in the brush will be
artificially divided into three groups and the brush
itself will be divided into three parts with thicknesses
H1, H2, and H3 (Fig. 2a). We will assume that, within
each of the groups, the stars are stretched equally. For
example, for all strongly stretched stars, branching
points are located at the same distance from the graft-
ing surface (Fig. 2a) equal to H1 + H2 and the ends of
the free arms are situated at distance H = H1 + H2 +
H3. Let the fraction of such stars be equal to λ1.

The second group of stars is moderately stretched
stars. Suppose that the stars of this group are stretched
so that their free ends are located at the same distance
from the grafting surface as the branching points of
strongly stretched stars, H1 + H2, and the branching
points are at distance H1 from the grafting surface. Let
us denote the fraction of such moderately stretched
stars of the total number of stars λ2.

Finally, we will still assume that the remaining
stars, whose fraction is λ3 = 1 – λ1 – λ2, are very
weakly (slightly) stretched and completely located in
PO
the near-surface layer with a thickness of H1; their
contribution to the conformational free energy will not
be taken into account.

In accordance with this idea, the brush is divided
into three layers (Fig. 2b). In the first layer adjacent to
the grafting surface, there are very weakly stretched
stars, “stems” of moderately stretched stars, and a part
of “stems” of strongly stretched stars. In the second
layer, there are free arms of moderately stretched stars
and parts of stems of strongly stretched stars. Note
once again that the first and second layers are two
parts of the near-surface layer, in which stars of the
population with weakly stretched arms are located [25,
26, 28].

Within the framework of the proposed model, the
density profile of the polymer in the brush has a three-
step form: in the first layer with thickness H1, the den-
sity is ϕ1; in the second layer with thickness H2,
ϕ2 < ϕ1; and in the outer layer with thickness H3 =
H ‒ H1 – H2, ϕ3 < ϕ2 < ϕ1.

Taking into account the above assumptions, the
density of the polymer in the layers is given by expres-
sions

(1)

(2)

(3)

where ζi = Hi/n is the height of layers i = 1, 2, 3
reduced to the length of the star arm. Here we took
into account that the “stem” of a strongly stretched
star from the first group is stretched homogeneously;
therefore, the fraction of “stem” units in the layer H1
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STRUCTURE OF A PLANAR BRUSH 5
and H2 is H1/(H1 + H2) and H2/(H1 + H2), respec-
tively.

The free energy of the brush consists of the follow-
ing contributions:

(4)

Here Fconf is the conformational free energy, Fint is the
contribution of polymer-solvent interaction, Fsol is the
contribution of the translational entropy of solvent
molecules, and Fion is the contribution related to the
translational entropy of mobile ions present in the sys-
tem.

The contribution to the conformational free energy
Fconf is provided only by stars of the first and second
groups (strongly and moderately stretched). It can be
easily calculated if we accept that the “stem” of the
star from the ith group (i = 1 or 2) is stretched by force
fi. Then each of q = p – 1 free arms, which are
stretched homogeneously and equally, is subjected to
the action of force fi/q, since the balance of forces act-
ing from the “stem” side and free arms should be ful-
filled at the branching point. Thus, force fi acts as a
parameter that can be conveniently used to calculate
the elastic free energy of stretched stars. This means a
temporary transition to a thermodynamic ensemble of
a fixed force.

Consider a freely-jointed chain on a simple cubic
lattice stretched by the applied force fi directed along
the axis Oz. The statistical weight of one monomer
unit in the field of force fi is calculated as follows:

(5)

where λz = 1/6 is the probability of a step along axis Oz
and λxy = 1 – 2λz = 2/3 is the probability of a step in
plane Oxy. (Hereinafter, energy is expressed in kBT
units). Since in the freely-jointed chain the units are
independent, the statistical sum of the chain can be
represented as the product of the statistical sums of the
individual units, that is, the statistical sum of the stem

. The logarithm of the statistical sum gives
the Gibbs free energy of the “stem” of the star from the
ith group:

(6)

The average distance between chain ends is
obtained by differentiating the Gibbs free energy with
respect to the force, which is a parameter conjugate to
the distance; therefore,

(7)
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In a similar manner, we obtain the Gibbs free
energy for one free arm of a star, which, as already
noted, is subjected to the action of tensile force fi/q:

(8)

The Gibbs free energy of a strong (i = 1) or moder-
ately (i = 2) stretched star has the form

(9)

To pass from the Gibbs free energy G to the Helm-
holtz free energy F, we will use the Legendre trans-
form: F = G + Hf, where H is the average distance
between the ends of the chain stretched by force f
related to the Gibbs free energy H = –∂G/∂f. As a
result, the Helmholtz conformational free energy tak-
ing into account the contribution of two types of stars
(strongly and moderately stretched) may be written as

(10)

where ϕj is the volume fraction of the polymer in the
layers; j = 1, 2, 3 is set by expressions (1)–(3), and the
reduced layer height ζj is defined as follows:

(11)
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(13)

In this case, it should be taken into account that
force f1 stretches the stem of a strongly stretched star at
the distance (in reduced units)
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which gives the condition relating forces f1 and f2:
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From Eq. (15), we can obtain an explicit expression
for force f1 as a function of f2:

(16)

Here

(17)

The free energy of polymer–polymer and poly-
mer–solvent interactions per grafted star is expressed
as

(18)

where summation is carried out over the layers
(Fig. 2b) and ni is the number of monomer units per
star which are located in the ith layer. This value can be
rewritten as

(19)

(χ is the Flory parameter). It is assumed that salt
counterions and ions are equivalent to solvent mole-
cules in terms of their interaction with the polymer;
therefore, the same value of the Flory parameter χ is
used for them.

Reference System: Polyelectrolyte Solution
in Equilibrium with Salt Solution

To study the properties of brushes made of grafted
polyelectrolyte stars, it is necessary to take into
account the corresponding contribution associated
with immobilized (bound to the polymer) and mobile
(counterions and co-ions of the dissociated salt)
charges to the free energy of the brush. We will assume
that the condition of local electroneutrality is fulfilled
for the brush: the counterions necessary to neutralize
the charges immobilized on the brush stars are kept
inside the brush; therefore, the brush as a whole
remains electrically neutral. Then the main contribu-
tion to free energy will be provided by the osmotic
pressure of the trapped counterions and the entropy of
the mobile counterions. Outside the brush, the system
will also be assumed to be locally electrically neutral.

For accurate calculation of the contribution associ-
ated with immobilized and mobile charges to free
energy, it is convenient to consider the reference sys-
tem, that is, a solution of an infinitely long PE chain
with a fixed charge α which is in equilibrium with a
solution of a univalent salt (e.g., NaCl) [34].

The chain is located in a cell with a semi-imperme-
able wall through which solvent and mobile ions can
pass, while the polymer chain cannot pass. It is
assumed that the polymer solution is homogeneous
and the volume fraction of the polymer in this part of
the cell is constant and equal to ϕp. The solution also
contains solvent molecules (water), which occupy a
fraction of volume equal to ϕ0, and positively and neg-
atively charged ions with volume fractions ϕ+ and ϕ–,
respectively. In the framework of the lattice model, we
will assume that the monomer unit, solvent molecule,
and positively or negatively charged ions occupy one
lattice unit. Accordingly, the incompressibility condi-
tion must be satisfied

(20)

The volume fractions of positively and negatively
charged ions (cations and anions) in solution are
related by the electroneutrality condition

(21)

In the external medium, the polymer is absent;
there are only solvent molecules and mobile ions, the
volume fraction of which is equal to Φ+ and Φ–.
For the external medium, the conditions of electro-
neutrality

(22)
and incompressibility

(23)
(Φ0 is the volume fraction of solvent in the external
medium) should be fulfilled. Let us denote Φs = Φ+ =
Φ–; then Φ0 = 1 – 2Φs.

The free energy of a polymer solution is the free
energy of mixing

(24)

Here V is the volume of the system occupied by the
polymer, f is the density of free energy in the brush,
fmix is the density of the free energy of mixing in the
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STRUCTURE OF A PLANAR BRUSH 7
in the external medium, and ϕi is the volume fraction
of these components in the brush. The subtraction of
the contributions in expression (24) is required to
account for the changes in the free energy of the com-
ponents upon their mixing with the polymer (upon
transition from the external solution to the part con-
taining the polymer).

The expression for the free energy density in the
part occupied by the polymer contains only the
entropy contributions of low molecular weight com-
ponents (we believe that there is no additional attrac-
tion or repulsion between them, which corresponds to
a zero value of the Flory parameter χij = 0):

(25)
The chemical potential of low molecular weight

components in the external medium is  = logΦi
(i = 0, +, –). Thus, the free energy of mixing per unit
volume (density of the free energy of mixing) is

(26)

This expression should be minimized with respect
to ϕ–: dfmix/dϕ– = 0, which leads to the relation

(27)

This condition is similar to the Donnan membrane
equilibrium condition; it takes into account the
explicit volume of ions and represents a quadratic
equation with respect to ϕ–, which is convenient to
solve by making the substitution ϕ– = y – αϕp/ 2. Then
ϕ+ = y + αϕp/2, y = (ϕ+ + ϕ–)/2, and ϕ0 = 1 – ϕp – 2y,
and Eq. (27) takes the form

(28)

or

(29)

Note that the dependence on the degree of ioniza-
tion α is contained only in the last term of the left side
of the equation. Its solution is given by the following
expression

(30)

Taking into account that

(31)

we obtain the expression for the free energy density:

(32)

This expression includes contributions of the trans-
lational entropy of mobile ions and solvent molecules
(that is, the contributions Fion and Fsol in expression (4)
for the free energy of the brush).

Free Energy of a Brush Made of Polyelectrolyte Stars 
with a Fixed Charge

The free energy of the brush composed of PE stars
is given by the expression

(33)
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Fig. 3. (Color online) (a) The density profile of the polymer, the distribution of (b) branching points and (c) end groups, and
(d) the density profiles of salt counterions and ions for the brush of polyelectrolyte stars grafted with a grafting density σ = 0.1 and
the number of arms p = 3. The degree of ionization of the arms of stars α = (1) 0, (2) 0.1, (3) 0.3, and (4) 0.5. Volume fraction of
salt in solution Φs = 10–4. Color drawings can be viewed in the electronic version.
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ith layer (Eqs. (11)–(13)), and the dependence y(ϕi) is
given by expression (30).

Brush free energy F turns out to be a function of
four variables: f1, λ1, f2, and λ2; here, variables f1 and f2
are related by condition (15). Minimization of free
energy was carried out numerically by introducing the
Lagrange multiplier related to the condition (15).

The Numerical Scheutjens–Fleer
Self-Consistent Field Method

In this work were carried out using the numerical
Scheutjens–Fleer self-consistent field method, which
is widely used to model grafted polymer layers—poly-
mer brushes. The Scheutjens–Fleer method and its
modifications for studying polymer brushes of various
types were repeatedly described in the literature;
therefore, in this paper, we allow ourselves to omit a
detailed description of this method, which can be
found, for example, in the monograph [35]. Features
of the implementation of the self-consistent field
method for brushes made of grafted stars are described
in [28].

To solve the problem of a planar brush, the so-
called single-gradient version of the Scheutjens–Fleer
method is used which is based on the assumption that
the brush is laterally uniform, the x and y components
PO
of the gradient of the polymer volume fraction parallel
to the grafting plane of chains are equal to zero, and
only the z component of the density gradient perpen-
dicular to the plane is not equal to zero. This means
that the density of the polymer is only a function of z:
ϕ = ϕ(z). Electrostatic interactions in the system are
taken into account in the framework of the Poisson–
Boltzmann equation [36].

In the present work, the calculations were per-
formed using the SFBox program developed at
Wageningen University (Netherlands), which allows
one to obtain the density distributions of the polymer
as a whole and of individual segments, including
branching points and end groups, as well as integral
thermodynamic characteristics, for example, the free
energy. It is important that, in this case, there is no
need to make assumptions concerning the nature of
the conformations of stars in the brush, introducing
the corresponding model simplifications, to which
one must resort when constructing the analytical the-
ory.

RESULTS AND DISCUSSION
Numerical Self-Consistent Field Modeling Results
In the self-consistent field calculations, the results

of which are presented in this paper, brushes com-
LYMER SCIENCE, SERIES A  Vol. 62  No. 1  2020
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Fig. 4. (Color online) (a) The density profile of the polymer, the distribution of (b) branching points and (c) end groups, and (d)
the density profiles of salt counterions for the polyelectrolyte brush made of stars with the number of arms p = 3. The degree of
ionization of the arms α = (1) 0 and (2–5) 0.3; grafting density σ = 0.1; salt concentration Φs = (2) 10–1, (3) 10–2, (4) 10–3, and
(1, 5) 10–4.
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posed of stars containing arms of n = 100 units
immersed in an athermal solvent, which corresponds
to the zero value of the Flory parameter χ = 0, were
studied. Consider a brush of three-arm stars (p = 3)
with a constant grafting density (σ = 0.1) immersed in
a solution with a low salt concentration (Φs = 10–4).
Figure 3a shows the evolution of the polymer concen-
tration profile in the brush ϕ(z) with variation in the
degree of ionization of grafted stars, z is the distance
from the grafting surface. The density of the polymer
in the brush monotonically decreases from the grafting
surface to the periphery. As the degree of ionization
increases, the thickness of the brush grows (the dis-
tance from the grafting plane z at which the density
vanishes) while the maximum density at the grafting
surface and the average density of the polymer in the
brush both decrease. Thus, it can be concluded that
there is a general increase in the stretching of stars in
the brush in the direction perpendicular to the grafting
plane with an increase in the degree of ionization of
the arms.

A more detailed analysis of the brush structure fol-
lows from the distributions of branching points of stars
(nbp) and end groups of free arms (ne). To compare
these distributions for brushes with different grafting
POLYMER SCIENCE, SERIES A  Vol. 62  No. 1  2020
densities, it is convenient to normalize them to unity
and represent them in the form

(34)

where ϕbp(z) and ϕe(z) are the density profiles of
branching points and end groups. This normalization
ensures equality of the area under the curves nbp(z) and
ne(z) to unity.

Figure 3b shows the evolution of the distribution of
the branching point with increasing charge density on
the arms of polyelectrolyte stars. In a neutral star, the
distribution is virtually unimodal—there is one pro-
nounced maximum and a small shoulder on the right.
Increasing the degree of ionization of the arms α leads
to broadening of the distribution, which corresponds
to a general extension of the chains and an increase in
the thickness of the brush, and transformation of the
right shoulder into a full maximum, the height and
sharpness of which grow with increasing α. The maxi-
mum position is limited by z = n = 100, which corre-
sponds to the full stretching of the “stem.” At the same
time, the extended near-surface part of the distribu-
tion does not vanish; this means the absence of “dead
zones” for the branching points in the brush.

( )
ϕ ϕ= =

σ − σ
bp e

bp e
( ) ( )( ,),

1
( )n z

p
z

z zn
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Fig. 5. (Color online) Charge density distribution in the
polyelectrolyte brush of stars with the number of arms p =
3 and the degree of ionization of the arms α = 0.3 grafted
with a grafting density of σ = 0.1. Φs = (1) 10–1, (2) 10–2,
(3) 10–3, and (4) 10–4.
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Very similar changes also occur in the distribution
of the ends (Fig. 3c): in the absence of charges on the
arms, there is one maximum and a small “shoulder,”
which becomes more pronounced and becomes a
maximum with an increase in the degree of ionization,
and the distribution width as a whole increases with
increasing α.

This type of distribution of the ends and branching
points corresponds, as was shown in [23] and proved
in [28], to the division of stars in the brush into two
populations: there is a part of stars with a strongly,
extremely stretched stem, which corresponds to a
sharp maximum on the right on the distribution of
branching points nbp(z) in Fig. 3b, and free arms of
stars directed into the solvent, which corresponds to
the peripheral part of the distribution ne(z) in Fig. 3c.
At the same time, there is another population of stars
in the brush that are stretched fairly weakly—they cor-
respond to the extended parts of the distribution pro-
files of branching points and ends that begin at the
grafting surface. The number of stars with a strongly
stretched stem increases with increasing degree of ion-
ization, which is associated with an increase in the
number of counterions held in the brush (Fig. 5d) and
an increase in the osmotic pressure that stretches the
brush.

Effect of Salt Concentration on the Structure
of a Brush Made of Stars

The effect of salt concentration on the structure of
a polyelectrolyte brush made of stars is illustrated in
Fig. 4, which presents the data for the brush composed
PO
of three-arm stars p = 3 with a fixed degree of ioniza-
tion of the arms α = 0.3.

It follows from the polymer density profile (Fig. 4a)
that, with increasing salt concentration, the brush
becomes denser and its height decreases. This is due to
the fact that the charge of star arms is screened: the
number of salt counterions and coions outside
increases (Fig. 4d) and the release of the stars’ own
counterions outside becomes disadvantageous in
terms of the entropy. They remain inside the brush,
forming a “coat” around the chains. In Figs. 4b
and 4c, the bimodal distributions of branching points
and end groups, respectively, are also seen. This find-
ing indicates the division of stars into two populations,
especially at low salt concentrations.

To verify that the condition of local electroneutral-
ity in the brush is satisfied, the distribution of charge
density in the system ϕq(z) = αϕ(z) + ϕ–(z) – ϕ+(z)
was calculated. As follows from Fig. 5, the local charge
density in the brush is zero and only insignificant but
compensated deviations from zero are observed at the
borders of the brush: near the grafting surface of stars
and on the periphery.

Above, we described the two-population structure
of the brush made of stars using various polymer dis-
tributions in the system: the polymer density profile
and the distributions of branching points and ends. To
characterize the structure of the brush, it is also help-
ful to use its integral characteristics, such as the aver-
age density of the polymer in the brush and the frac-
tion of strongly stretched stars, which make it possible
to unveil general patterns of the behavior of the
brushes with a change in various external parameters.

Since existence of the two-population brush struc-
ture is indicated by both the distribution of branching
points and the distribution of ends, two methods can
be proposed for determining the fraction of strongly
stretched stars in the brush λ1 (Figs. 1a, 2a). Using
normalized distributions, λ1 can be calculated as fol-
lows:

(35)

where j = bp or e (branching points or ends) and the
lower limit of summation z = zmin, j corresponds to the
right minimum on the curve nj(z) The value of λ cal-
culated from the distribution of branching points (j =
bp) is the fraction of units with a strongly stretched
“stem,” and the value of λ1 found from the distribution
of ends (j = e) is the fraction of stars forming an exter-
nal “brush” with arms directed toward the periphery.
As was shown for neutral brushes [28], both methods
give the same value of λ1. This indicates that the arms
directed toward the periphery of the brush belong to
stars with the strongly stretched “stem,” which con-
firms the proposed two-population structure of stars in
the brush. In the case of the brush made of polyelectro-

≥
λ = 

min,

1 ,( )
j

j
z z

n z
LYMER SCIENCE, SERIES A  Vol. 62  No. 1  2020



STRUCTURE OF A PLANAR BRUSH 11

Fig. 6. (Color online) Dependences of the average volume fraction of polymer ϕ on grafting density σ in brushes made of stars
with p = (a, b) 3 and (c, d) 5. The degree of ionization of the arms of stars α = (1) 0, (2) 0.1, (3) 0.3, and (4) 0.5; Φs =
(a, c) 10‒4 and (b, d) 10–1. Points are the results of numerical modeling, and curves are the results of the theory.
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lyte stars, the definition of λ1 in two ways also gives the
same values.

Another integral characteristic, average polymer
density in the brush ϕ, can be obtained from the poly-
mer density profile ϕ(z):

(36)

The results of calculating these characteristics
according to the self-consistent field approach and
comparison with the data obtained by numerically
solving the equations of the analytical theory devel-
oped in the previous sections will be presented below.

Effect of the Degree of Ionization on the Structure
of a Brush Made of Stars

Figures 6 and 7 show the volume fraction of the
polymer and the fraction of strongly stretched stars λ1
as a function of the grafting density of stars for brushes
composed of three- and five-arm stars which are

ϕ ϕ
ϕ =

ϕ
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obtained at low (Φs = 10–4) and high (Φs = 0.1) salt
concentrations. First note that the range of variation
in grafting density is bounded above by a value less
than unity. This is the maximum possible grafting den-
sity, at which the polymer density in the brush is max-
imal, and the brush itself does not contain solvent
molecules. In this case, the volume of the brush per
star (V = H/σ) is occupied by the star itself and the
trapped counterions in order to fulfill the electroneu-
trality condition; that is, V = (1 + α)pn. Equating the
expressions for the volume, we arrive at the depen-
dence of the height of the solvent-free brush on the
grafting density: H = N(1 + α)σ, where N = np is the
total number of monomer units in the star. The maxi-
mum possible brush height is twice the arm length:
Hmax = 2n; therefore, the maximum allowable density
of grafting of polyelectrolyte stars with a degree of ion-
ization α to the surface of the brush is

(37)

The above expression can be rewritten in a more
general form for a brush made of regularly branched
dendrons of arbitrary generation with identical spacers

σ =
+ αmax
2 .

(1 )p
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Fig. 7. (Color online) Dependences of the fraction of strongly stretched stars λ1 with p = (a, b) 3 and (c, d) 5 on the grafting den-
sity σ. The degree of ionization of the arms of stars α = (1) 0, (2) 0.1, (3) 0.3, and (4) 0.5; Φs = (a, c) 10–4 and (b, d) 10–1; λmax =
(a, b) 0.75 and (c, d) 0.624. Points are the results of numerical modeling, and curves are the results of the theory. The horizontal
line shows the maximum possible fraction of strongly stretched stars.
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, where  is the number of
monomer units in the maximum path connecting the
point of grafting of the dendron to the surface to any of
its end groups (for a star  = 2n) and N is the total
number of units in the dendron (for a star N = np). The
maximum allowable grafting density decreases with
increasing α, since the number of counterions that
must be trapped in the brush grows and this requires
additional volume.

The maximum grafting density corresponds to the
average volume fraction of polymer equal to ϕmax=
1/(1 + α), and the fraction of stars with the extremely
stretched stem λ1(σmax) = p/[2(p – 1)] [30], which is
independent of the degree of ionization α.

With an increase in the grafting density, the average
polymer density and the fraction of strongly stretched
stars in the brush grow because, owing to compaction
of the brush, the stars are forced to be located on its
periphery. Similar effects are also caused by an
increase in the number of arms in grafted stars. The
fraction of strongly stretched stars also increases with
increasing degree of ionization, although the average
density of the polymer decreases. This fact can be

σ = + αmax [ ( )]  / 1N1 1

1

PO
explained by an increase in the number of counterions
trapped in the brush and, as a consequence, by a rise
in the osmotic pressure, which leads to the stretching
of stars. This also contributes to the transition of stars
to the upper population. An increase in the salt con-
centration in the solution causes screening of the
charge and decrease in the stretching and swelling of
the stars in the brush and, as a result, a decrease in λ1.
Note that the results of the analytical theory are in
quantitative agreement with the average polymer den-
sity obtained from numerical SCF calculations. The
more stars are stretched in the brush (that is, the
higher the grafting density, the number of star arms,
and the degree of ionization and the lower the salt
concentration), the better this agreement is.

On the Need to Take into Account the Stretching
of Stars from a Weakly Stretched Population

In the present work, the theory describing the two-
population structure of brushes made of grafted poly-
electrolyte stars was developed. It is based on the
three-step approximation of the density profile and
the division of the stars that make up the brush into
LYMER SCIENCE, SERIES A  Vol. 62  No. 1  2020
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Fig. 8. (Color online) Dependences of (a) the average volume fraction of polymer ϕ and (b) the fraction of strongly stretched stars
λ1 of three arms on the grafting density σ at the degree of ionization of the arms of stars α = (1) 0.1 and (2) 0.5 in the brush
immersed in solution with a low salt concentration Φs = 10–4. Points are the results of numerical modeling, and curves are the
results of the theory for models with the two-step (dashed lines) and three-step (solid lines) approximation of the density profile.
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three groups in order to allow for the elastic free energy
of stars belonging to a weakly stretched population
(Fig. 2). In earlier theories based on one-step (Fig. 1a,
[29]) and two-step (Fig. 1b, [31]) approximations of
the density profile and separation of stars into two
groups, corresponding to the division into two popu-
lations, the stretching of weakly stretched stars was
neglected. It is clear that, for the brushes made of
polyelectrolyte stars, the theory relying on this simpler
model can be developed. Such calculations were also
carried out within the framework of this study. The
dependences shown in Fig. 8 indicate that the model
with the two-step approximation of the profile and
neglecting the elastic contribution of weakly stretched
stars is insufficient for an adequate description of
brushes made of polyelectrolyte stars. This primarily
concerns the case of a low salt concentration and a
high degree of ionization, where the electrostatic
effects are more pronounced. Obviously, the model
with the three-step approximation of the density pro-
file is expected to give a more accurate estimate for the
average volume fraction of the polymer in the brush.
In addition, it leads to a higher fraction of strongly
stretched stars, since a partial account of the elastic
energy of weakly stretched stars reduces the advantage
of this population compared to the “two-step” model.

CONCLUSIONS

This work is devoted to the theoretical study of the
planar brush of grafted polyelectrolyte stars with a
fixed degree of ionization of monomer arm units
immersed in a salt solution. It is known that the char-
acteristic feature of brushes made of stars is formation
of a layered structure with the division of stars into two
populations; therefore, this effect and the influence of
the charge of arms and the concentration of salt in the
system on it were given special attention. The system
POLYMER SCIENCE, SERIES A  Vol. 62  No. 1  2020
was investigated by using two approaches: on one
hand, modeling was performed using the numerical
Scheutjens–Fleer self-consistent field approach,
which allows obtaining detailed information on the
structure of the brush in the form of distributions of
polymer density, branching points, end groups, and
mobile cations and anions. On the other hand, a sim-
ple Flory-type analytical theory was developed with
the three-step approximation of the density profile of
the polymer in the brush and the isolation of three
groups of stars in the brush—strongly, moderately, and
weakly stretched. Electrostatic effects were taken into
account in the theory under the local electroneutrality
approximation, and the correctness of such an
approximation was confirmed by SCF modeling. To
calculate the contribution associated with the entropy
of mobile ions to the free energy, the reference system,
that is, a single infinitely long chain of polyelectrolyte
occurring in solution in equilibrium with the external
medium, was considered. The theory also takes into
account explicitly the finite volume of ions.

It was shown that an increase in the number of stars
with an extremely stretched arm, by which the star
grafts to the surface, is facilitated by an increase in the
grafting density, the number of arms, or the degree of
ionization of the arms. In the latter case, the average
brush density decreases, while in the former two cases
it increases. It is shown that the theory describes well
the results of SCF modeling. The best agreement is
observed at a high degree of ionization, a large number
of arms, and a high grafting density. We should note
that in this range of parameters, numerical SCF calcu-
lations become more time-consuming. The developed
approach can be generalized to the case of a brush
formed by ionizable (pH-sensitive) stars and to
another type of lattice or continuum model for brush-
forming macromolecules.
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