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Abstract—An approach to description of stress–strain curves in the uniaxial stretching of polymer glasses to
the forced elasticity limit is proposed. The equation of the stress–strain curve is a power dependence of
reduced stress on reduced strain, where exponent n is the ratio of the elastic modulus of a polymer (at the
specified rate of loading and temperature) and the modulus corresponding to the forced elasticity limit at the
same temperature. Temperature-time dependences of exponent n for poly(methyl methacrylate) and poly-
carbonate are measured under the hard regime of loading, at the strain rate from 10–2 to 10–5 s–1, and at tem-
peratures from 60 to 100°С and from 20 to 120°С, respectively. It is shown that exponent n is sensitive to the
temperature and the time of loading (strain rate).
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At present, polymeric materials are used exten-
sively in various branches of industry and are
employed not only for functional [1–3] but also for
constructional purposes [4–7]. In the latter case,
severe requirements are imposed on them with respect
to the level of physicomechanical properties [8] and
specific features of the relaxation behavior, in particu-
lar, temperature–strain–time relationships for the
development and decay of rubbery deformation [9–
11], and their conservability under exposure to heat-
and-humidity and climatic effects.

The solution of tasks aimed at creating new engi-
neering polymeric materials with the desired level of
physicomechanical properties and relaxation behavior
and at forecasting the characteristics necessary for
strain–strength calculations [12–14], including for
nonstandard testing conditions [15], calls for gaining
insight into the specific features of deformation of
these materials.

There are currently various approaches to describ-
ing the relaxation behavior (nonlinear properties) of
polymeric materials: differential equations of mul-
tielement models; ancestral-type equations; Boltz-
mann–Volterra equations; principles of temperature–
time or stress–time analogs; theories of statistical seg-
mental state, f low, and viscoelasticity; logistic-type
equations; etc. [16–22].

A considerable contribution to understanding of
the nature and mechanism of the physicomechanical
behavior of polymer glasses as a class of materials was
made in [23–26], where the concept of the generalized
physicomechanical behavior of polymer glasses was

presented. The authors of [23–26] obtained the gener-
alized stress–strain curve in reduced coordinates
(stress and strain were normalized to values corre-
sponding to the forced elasticity limit) and proposed
the following ratio:

, (1)

where  is the strain corresponding to the forced
elasticity limit,  is the stress corresponding to the
forced elasticity limit (MPa), and  is the elastic
modulus (GPa), which is constant, with an accuracy
of ±8%, for all the glassy polymers regardless of their
chemical nature, rate, temperature, and deformation
mode.

Equation (1) may be written as

(2)

and may be treated as a special case of Hook’s law
defining the linear dependence with a coefficient of
1.6 between stress and strain (in the given case,
between the reduced values). However, this equation
describes only the initial quasi-elastic portion of the
generalized stress–strain curve approximately to

 and the portion of the diagram for
 remains uncovered.

In this study, an approach to describing stress–
strain curves of polymer glasses to the forced elasticity
limit ( ) is proposed. The collected data
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are of interest to engineering applications and are also
of importance for gaining insight into the relaxation
behavior of polymer glasses.

EXPERIMENTAL
The objects of research in this study were an

organic glass based on PMMA with a glass-transition
temperature of Tg = 120°С and an organic glass based
on PC with Tg = 150°С.

All tests were performed on a Zwick/Roell Z050
electromechanical universal testing machine with a
nominal load of 50 kN. Longitudinal strain was
measured by a strain macrosensor with an accuracy
rating of 1.0 in accordance with EN ISO 9513. The
sensor knives were pressed to the surfaces of the
sample with a force not above 1 N. The base of
strain measurements was 70 mm. The tests were
performed using trowel-shaped samples with a
cross-sectional area of 10 × 10 mm2 and a base
length of 90 mm. Tests at reduced and increased
temperatures were conducted in a thermal cryocab-
inet; the time of storage of the sample in it before
testing was no less than 60 min.

The uniaxial stretching of PMMA and PC samples
in the hard regime of loading was performed at the
specified strain rate of 10–2, 10–3, 10–4, and 10–5 s–1

(the strain control). The testing temperature for
PMMA samples was from 60 to 100°С; for PC sam-
ples, from 20 to 120°С. Тhe uniaxial stretching tests of
PC samples were conducted at a rate of 7, 25, and
70 mm/min (the displacement control). In this case,
the strain rate was determined by the linear regression
method on a portion of the time–strain diagrams from

 to . This parameter was from 8.2 × 10–3

to 5 × 10–5 s–1. The testing temperature was varied
from –60 to 150°С.

In all cases, the samples were loaded to a strain 10–
20% higher than the strain corresponding to the forced
elasticity limit. The stress–strain diagrams under all
loading regimes for both polymers showed local max-
ima corresponding to the onset of development of a
forced elasticity limit (necking). Portions of diagrams
before forced elasticity limits were involved in the
analysis.

The values of modulus  were determined from
the experimental data by the least-squares procedure
for two strain ranges of 0.01–0.2 and 0.01–0.3%. The
initial strain in both cases was taken to be 0.01% to
exclude the noisy part of the data corresponding to the
onset of testing (loading). The values of modulus 
were calculated from the experimental data by the
method of secant passing through the origin and the
point corresponding to the forced elasticity limit (the
local maximum at which necking begins on the test
portion). Exponent n in the exponential dependence
of reduced stress on reduced strain proposed in this
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study was determined by approximation of the experi-
mental stress–strain diagrams to the forced elasticity
limit in reduced coordinates according to the least-
squares procedure.

RESULTS AND DISCUSSION

It is known that the temperature and rate of testing
exert a marked effect on the pattern of stress–strain
diagrams of polymer glasses. At the same time, their
rearrangement in reduced coordinates, where stress
and strain are normalized to the values corresponding
to the forced elasticity limit, yields the generalized
stress–strain curve [26] having a common view for dif-
ferent straining conditions.

The experimental study of the deformation of poly-
mer glasses to the forced elasticity limit showed that,
even in reduced coordinates, the patterns of diagrams
are appreciably different. This phenomenon is espe-
cially pronounced on the diagrams obtained at the
same rate of testing but at different temperatures
(Fig. 1a). Note that the elastic modulus  on the ini-
tial portion may go beyond the introduced limitation
(±8%) of Eq. (1).

In order to describe the experimental curves
obtained in the uniaxial stretching of polymer glasses
to the forced elasticity limit, it is proposed to use equa-
tion of the stress–strain curve that is a power depen-
dence of reduced stress on reduced strain:

. (3)

Equation (3) makes it possible, with a high accu-
racy, to describe the stress–strain curves of polymer
glasses for various rates of testing and temperatures.
Figure 2 presents the experimental diagrams measured
for PC at a strain rate of 10–3 s–1 and a temperature of
24, 100, and 150°С and their approximating curves
with exponent n = 2.5, 2.0, and 1.72.

Exponent n in Eq. (3) has a physical meaning of the
reduced elastic modulus at the specified temperature
and rate of loading. This assumption can be easily
proved if we write the equation of the tangent to the
plot of Eq. (3) at the origin:

, (4)

or

, (5)

where , GPa.
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It is seen that all the parameters of Eq. (3) have a
physical meaning: stress, strain, the modulus corre-
sponding to the forced elasticity limit, and the elastic
modulus of the polymer for the specified rate of load-
ing and temperature.

Note that Eq. (1) written as

(6)

may be derived from Eq. (4) as a particular case of the
tangent at the origin to the plot of Eq. (3) at n = 1.6.

Dependence (1), in accordance to the dissertation
by M.S. Arzhakov [26], holds for polymers formed by
such synthetic procedures as polymerization, includ-
ing copolymerization and polycondensation, among

=0

f.el

1.6E
E

which are PMMA, PVC, PS, PC, copolymers based
on methyl methacrylate with methacrylic acid and
butyl methacrylate, etc. The application of Eq. (1) to
describing initial quasi-elastic deformation of the
mentioned polymers also opens wide prospects to
apply the proposed equation of the stress–strain
curve (3) for describing full (to the forced elasticity
limit) stress–strain curves with allowance for nonlin-
earity related to the development of rubbery defor-
mation.

In the general case, exponent n may be calculated
from the experimental data by two methods: using the
least-squares procedure to approximate the stress–
strain diagram by Eq. (3) and as the ratio of the elastic
modulus of the polymer calculated from the stress–
strain diagram on some final portion at the specified
rate of loading and temperature and the modulus cor-
responding to the forced elasticity limit, which is esti-
mated by the secant method using two points, namely,
the origin and the forced elasticity limit.

Because of nonlinearity of the stress–strain dia-
gram which manifests itself from the very beginning of
the loading process, exponent n calculated by the sec-
ond method will always be lower than exponent n
determined by the first method, when n is calculated
for a certain “initial” portion of the stress–strain dia-
gram rather than for the time (point) of the onset of
straining.

Because the software of modern testing machines
makes it possible to fairly easily calculate exponent n
via the second method, avoiding the labor-consuming
approximation of the diagram portion to the forced

Fig. 1. (a) Plots of reduced stress vs. reduced strain for PC
samples at a temperature of (1) 24, (2) 60, (3) 80, (4) 100,
(5) 130, and (6) 150°С and a strain rate of 10–3 s–1; (b) (7,
8) initial portions of generalized stress–strain curve in
accordance with Eq. (1) with allowance for a deviation of
±8%.
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Fig. 2. Approximation of the experimental data for PC at
n = 2.5, 2.0, and 1.72 and temperature of (1) 24, (2) 100,
and (3) 150°C, respectively.
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Fig. 3. Dependences of the ratios of elastic moduli 
estimated from the stress–strain diagram on exponent n
obtained by approximation of the stress–strain diagram by
Eq. (3) (a) at  for (1) PMMA and (2) PC and
(b) at  (3) and  (4) for both mate-
rials; (c) under loading with (5) the strain control and (6)
the displacement control for PC at ; the dot-
ted curve refers to Eq. (5).
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elasticity limit through Eq. (3), the accuracy of deter-
mining exponent n by these methods was estimated
(Fig. 3).

Averaged over all testing regimes, the accuracy of
determining exponent n by the second method with
respect to the first one was 12% for  and
16% for  regardless of the type of polymer
and the character of loading. The above data demon-
strate that the values of exponent n are considerably
underestimated in the case of the second method. This
finding should be taken into account when the second
method is used in the engineering practice.

On the basis of the data considered above, expo-
nent n in Eq. (3) was found to be sensitive to the tem-
perature and rate of straining. Figure 4 shows its tem-
perature–rate dependences under the hard regime of
loading for PMAA (the strain control) and PC (the
strain and displacement controls). The table presents
the ranges of variation in exponent n.

A comparison the temperature–rate dependences
obtained for PC in the temperature range from 20 to
120°С under two testing regimes, namely, the strain
control and the displacement control (Figs. 4b, 4c),
shows that there is good agreement between them.

An analysis of the obtained 3D surfaces makes it
possible to conclude the following. First, for both
polymers, there is the tendency toward a decrease in
exponent n with an increase in the strain rate from 10‒5

to 10–2 s–1, especially in the case of strain control. Sec-
ond, for PC at all loading rates (the displacement con-
trol), the maximum of n values is observed at a tem-
perature of 20°C. Hence, it follows that for PC there
are values of temperature and rate of loading at which
the curvature of the stress–strain diagram shows a
maximum.

Thus, the proposed stress–strain equation (3)
describes the dependence of stress on strain with a
high accuracy and holds much promise. It provides an
opportunity to build a smooth curve devoid of disad-
vantages of the experimental stress–strain diagram,
among which the presence of noises is the principal
one. Moreover, it makes it possible to enhance the
accuracy of calculations, for example, the stress–
strained state of polymer articles [14], by using contin-
uous stress–strain dependences instead of discrete
values. Finally, this approach offers a way to construct
the stress–strain diagram under testing regimes (tem-
perature, loading rate, etc.) different from the experi-
mental ones by means of determining the values of n
via interpolation on the surface exponent n–tempera-
ture–rate of loading (Fig. 4).

ε ε <f.el/ 0.2
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Fig. 4. Temperature–rate dependences of exponent n during loading with the strain control for (a) PMMA and (b) PC and (c)
with the displacement control for PC.
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Translated by T. Soboleva

Values of exponent n

Polymer Tg, °C N T, °C Controlling signal

PC 150 1.52–3.08 20–120 Strain
PC 150 1.10–2.71 –60 to 150 Displacement
PMMA 120 2.14–3.27 60–100 Strain
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