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Abstract—Following Edwards’ ideas we present main experimental results and the theory of random hetero-
geneities in neutral and charged networks obtained by instantaneous as well as chemical cross-linking of a
melt and semidilute solution of linear chains. We study how random monomer density patterns in such net-
works change after swelling and stretching. We also describe main features of monomer density correlation
functions, which determine the neutron and light scattering on spatial heterogeneities. We show that large-
scale cross-link density patterns written into network structure in the melt or semidilute state, can be revealed
upon swelling by monitoring the monomer density patterns. We demonstrate that while isotropic deforma-
tions in good solvent yield magnified images of the original pattern, anisotropic deformations distort the
image. We study how the monomer density image changes under different solvent conditions and discuss the
difference between deformations of the density images in gels and ordinary solids. Possible tests of our pre-
dictions and some potential applications are proposed.
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INTRODUCTION

Sam Edwards started his research in PhD on the
structure of the electron using techniques of quantum
field theory. Later, he realized that he could apply the
field theory methods outside particle physics to solve
many complex problems in condensed matter physics
and polymers. Over the course of nearly half a century,
using such advanced techniques Sam Edwards has led
polymer science into one of the most developed direc-
tions of physics. He published seminal papers on the
statistical mechanics of polymers with excluded vol-
ume [1], the theory of polymer solutions at intermedi-
ate concentration [2] and statistical mechanics with
topological constraints [3].

In the classical tube model, proposed by Edwards
[4] for polymer networks with strongly entangled lin-
ear strands, each strand is confined by its neighbors to
a tube-like region. In collaboration with M. Doi [5, 6]
he introduced the reptation process to the theory of
polymer dynamics: entangled long chain molecules
diffuse as if they were confined to the entangled tube.
Employing the technique known as the replica trick he
proposed [7] a new approach to the description of
thermodynamics of polymer networks. To those who
came after him, Sam Edwards gave very efficient tool
for further researches.

Many polymer networks and gels display inhomo-
geneity of their cross-linking density, along with addi-

tional topological defects such as dangling chain
ends, cross-linker shortcuts, and chains forming
loops. The origin of this heterogeneity and its char-
acterization by light, neutron, and X-ray scattering as
well as by NMR spectroscopy and optical, electron,
and X-ray microscopies is reviewed in [8]. First
attempts to take such heterogeneities into account
were made by using the model of randomly cross-
linked networks containing fractal regions, such as
regular Sierpinski gaskets [9] and percolation clusters
[10]. In [11] it is shown that the fractal heterogeneities
yield extra contributions to the deformation process
since such networks can be swollen and deformed by
defolding the fractal regions without significant elastic
entropy penalty.

The defolding of long strands in a network is lim-
ited by their entanglements. The effect of entangle-
ments on heterogeneities in polymer networks is stud-
ied in [12] using molecular dynamics simulations of
polymer networks made by either end-linking or ran-
domly crosslinking a melt of linear precursor chains.
The end-linking leads to nearly ideal monodisperse
networks, while random cross-linking produces
strongly polydisperse networks. The main conclusion
of this work is that the microscopic strain response,
diameter of the entanglement tube, and stress–strain
relation are all insensitive to the heterogeneities due to
the linking process by which the networks were made.

Dynamic response of inhomogeneous polymer
network modeled as an assembly of noninteracting
crosslinked regions (domains) of various sizes is stud-1The article is published in the original.
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ied in [13]. It is shown that the averaging over different
domain sizes can significantly change time depen-
dence of the relaxation modulus of the polymer net-
work. In case of exponential size distribution it follows
a stretched exponent law, whilst the theory predicts a
power-law time dependence for regular polymer net-
works.

The Edwards replica trick is widely used to describe
polymer networks, both physical [14] (in equilibrium
with respect to bond breakage and formation) and
chemical (with fixed topological structure) [15]. The
replica method is applied in Ref. [16] to develop the
density functional approach to describe networks
formed by random cross-linking a melt of polymer
chains. The characteristic size and amplitude of the
spatial nonuniformities of the network due to defects
of its structure and topological restrictions are calcu-
lated in [17]. The replica approachis also used to show
that inhomogeneities can arise as consequences of a
stretching of polymer networks [18].

Following Edwards’ ideas, in [19] we performed a
comprehensive statistical mechanical analysis of the
Edwards model of gels, formed by chemical cross-
linking of semi-dilute polymer solutions. Although
this theory provides a complete solution of the statisti-
cal mechanics of polymer gels, it uses replica trick
which is unfamiliar to the majority of people in the
polymer community. A more intuitive phenomeno-
logical approach capturing all the main physical ingre-
dients of the complete theory is developed in [20].

In this work, we apply this approach to study spatial
heterogeneities developed in swollen and deformed
polymer networks. The non-triviality of this problem
stems from the fact that information about network
structure is “encrypted” in the pattern of cross-links
joining polymer chains, which represent very small
fraction of the network volume. The memorization of
initial cross-link pattern is, however, only partial, as a
result of the thermal f luctuations that occur in the
new, post-cross-linking equilibrium state. Conforma-
tions of polymer strands in such networks with fixed
topological structure can be varied in a wide range
depending on experimental conditions, so polymer
networks can be significantly deformed without irre-
versible damage to their structure.

Below we outline a theory of polymer gels which
accounts for the frozen inhomogeneity of their struc-
ture, as well as for the fact that gels behave as solids on
large scales and as liquids on small scales (smaller than
the length scale of monomer f luctuations in the net-
work). We demonstrate that this theory reproduces all
the qualitative features observed in neutron and light
scattering experiments on neutral and charged gels.

One of the main questions to which we answer in
our work is: what information can be “written” in
cross-link pattern, and under what conditions it can be
“read” back? Once a homogeneous (on length scales
large compared to its “mesh” size) network is formed,

one can generate large-scale patterns in it by further
cross-linking, followed by swelling (and possibly
stretching) of the network, resulting in a gel inhomo-
geneously swollen by solvent. This can be done, for
example, by adding light-sensitive cross-links to a
transparent network. Focusing a laser beam in regions
inside the gel one can “write” information into gel
structure in the form of 2D or 3D patterns of cross-
linking density. In this paper we show that although
such information is hidden at preparation conditions,
it can be recovered by swelling the gel since unobserv-
able variations of cross-link density in the melt are
transformed into observable variations of monomer
density in the swollen gel.

Regions of a gel with increased cross-link concen-
tration can be considered as inclusions with enhanced
elastic modulus, see Fig. 1a. If such inclusions deform
differently from polymer matrix, as in case of any nor-
mal elastic solids, they would induce elastic stresses in
the gel and initial pattern would be significantly dis-
torted due to long range character of elastic interac-
tions, see Fig. 1b. This scenario determines, for exam-
ple, the elastic properties of amorphous polycrystal-
line solids but it does not apply to polymer gels,
because of the unusual character of gel elasticity. We
show that in swollen gels that are isotropically
stretched by absorption of solvent, the observed
monomer density pattern is not distorted and is simply
an affinely stretched variant of the initial cross-linking
pattern, see Fig. 1c. Such gels can serve as a magnify-
ing glass that enlarge the initially written pattern with-
out distorting its shape. The corresponding magnifica-
tion factor can be very large in case of super-elastic
networks.

THERMODYNAMICS OF RANDOM 
HETEROGENETIES

We consider networks formed by cross-linking a
melt or a semidilute solution of polymer chains. Due
to the randomness of the cross-linking process the
structure of such a network is strongly irregular. Upon
network swelling density heterogeneities appear which
can be imaged on a light-sensitive screen. The so-
called “speckle patterns” observed in such experi-
ments remain unchanged for a few hours and days, see
Inset in Fig. 2. In this section we develop thermody-
namic description of random heterogeneities in poly-
mer networks. To understand how such random den-
sity patterns depend on network structure we consider
networks synthesized at different preparation condi-
tions: in a melt as well as in semidilute polymer solu-
tions, cross-linked both instantaneously and at equi-
librium conditions. In case of instantaneous cross-
linking, one begins with the melt or solution at equi-
librium and—so rapidly that hardly any relaxation has
time to occur—one introduces permanent bonds
between some random fraction of the pairs of chain
segments that happen, at the instant of cross-linking,
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to be nearby one another. In case of chemical cross-
linking one can “freeze” the instantaneous configura-
tion of reversible bonds between chains in equilibrium
polymer melt or solution using single-pulse ultraviolet
laser excitation or quickly lowering the temperature.

Elastic Free Energy of Network with Heterogeneities
We first study gel structure on macroscopic length

scales far exceeding the radius of monomer f luctua-
tions R (or, alternatively, the average mesh size of the
undeformed network), when the network can be
treated as a (soft) elastic solid. Elastic deformation of
a solid can be described by deformation gradient ten-
sor F with components

(1)

where x0 and x are coordinates of the same material
point in preparation and in deformed state of the gel.
It is convenient to assume that the gel is deformed with
respect to preparation state in two stages:

(2)

Thus, the gel is first stretched with respect to its prepa-
ration state by factors λk along axes k = x, y, z. Since
coordinates of such a reference state x = λx0 deform
affinely (with components xk = λkx0k), we get the gra-
dient tensor and the monomer density in this state

(3)

where ρ0(x0) is monomer density in the undeformed
preparation state. Even though such affinely deformed

∂=
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−= λ δ ρ = ρ ⋅ λ λ λref ref 1
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state does not minimize the free energy and therefore
is not an equilibrium state of the deformed gel, we use
it as a reference state.

Fig. 1. (Color online) (a) Elastic modulus profile in undeformed solid. Density profile in isotropically deformed solids; (b) In
normal elastic solid softer regions at edges deform more than rigid regions in the central area; (c) polymer networkis isotropically
stretched by factors λ1 = λ2 = 1.5; and (d) anisotropically stretched by factors λ1 = 2, λ2 = 1.
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Fig. 2. Instant monomer density profile ρ(x) in polymer
networks (dotted line) and different averages: ρeq(x) =
〈ρ(x)〉 is thermodynamic average (over time intervals, solid
line) and   =  is statistical average (over space). The
amplitude of frozen heterogeneities is defined as Δρ(x) =
ρeq(x) – , the amplitude of thermal f luctuations is
δρ(x) = ρ(x) – ρeq(x). The inset shows a typical experi-
mentally observed dependence of the time-averaged scat-
tering amplitude at a given angle 〈I〉T on the position of the
sample (speckle pattern).
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The true equilibrium state of the deformed network
has an inhomogeneous monomer density profile and
is defined by introducing a displacement field u(x)
defined with respect to the above reference state:

(4)

and we get gradient tensor and monomer density of the
equilibrium state as function of coordinates x of the
reference state

(5)

. (6)

Following the classical theories of gel elasticity [20,
21] the gel free energy can be written as:

(7)

Here f(ρ) is the osmotic (interaction) part of the free
energy of the gel, with monomer density ρ. The polymer
contribution to the elastic modulus of the cross-linked
melt is proportional to the local cross-link density

(8)

where N is the number of statistical segments (“mono-
mers”) of an average network chain, kBT is thermal
energy, kB is Boltzmann constant and T is tempera-
ture.

We now express the free energy, Eq. (7), in terms of
the displacement field, referred to the final deformed
(and, depending on the deformation, possibly aniso-
tropic) state. For this we need to substitute Eq. (5) into
Eq. (7) and introduce the change of variables x0 → x.

Under this transformation, the gradient operators in
the two states are related by

, (9)

and the volume element transforms as

(10)

In a swollen state the monomer density is small
and the interaction energy can be expanded as f(ρ) ≅
kBTBρ2/2 where B is second virial coefficient.

Expanding the free energy in powers of u and integrat-
ing over the volume of the undeformed network we get

(11)

Here (x0) represents the variations of cross-link den-

sity,
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(12)

The term with constant modulus   upon integration
contribute a surface term which balances the exter-
nally applied force.

In the Fourier representation, the free energy asso-
ciated with deformations and fluctuations about the
affinely deformed state can be rewritten as

(13)

The tensor (q) is a quadratic form in q, the coeffi-
cients of which are the elastic moduli of the deformed
network (these moduli depend on the extension ratios
λk) [19]:

. (14)

The tensor of elastic moduli is obtained by dividing the

tensor (q) by q2. We conclude that the modulus of
an anisotropically deformed network (for which some
of the {λk} differ from each other) depends on the

externally imposed deformation and is, in general,
anisotropic.

Since the reference state is not an equilibrium state,
gel energy in Eq. (13) contains a term linear in u. The

random force  is the source of spatial inhomogene-
ities. It can be written as a sum of two contributions
[20, 21]:

. (15)

The cross-link contribution to the force density is
given by

(16)

and its statistical properties are completely defined by
those of the density of cross-links in the state of prepa-

ration of the network. The random force  distin-
guishes between different network structures which
have the same density distribution in the preparation
state. The correlator of this force associated with the
frozen-in f luctuations of network structure in the
deformed state is

(17)

While the preceding analysis neglects the contribution
of entanglements to the elasticity of gels, it can be
extended to the case of entangled networks. We con-
sider entanglements using the famous Edwards idea of
effective potential representing effective tube. The
entanglements give an additional contribution to the

elasticity tensor (q) which can be calculated for arbi-
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trary wave vectors q in the model of nonaffine tube
[22, 23]:

(18)

Ne is number of monomers between neighboring
entanglements and b is monomer size. Since the topo-
logical constraints are weakened on small scales, the
entanglement modulus quickly decays with q.

Random Heterogeneities

It has been known from experiments that the scat-
tering intensity increases by introducing cross-links
due to cross-linking heterogeneities. Stein [24] discov-
ered the heterogeneities in cross-linking rubber by
light scattering. Mallam with coworkers [25] observed
that the scattering intensity S(q) of polyacrylamide
(PAAm) gels with different cross-link concentrations
increased with increasing cross-link density. The
upturn in S(q) at low wavevectors q is recognized as to
be due to the presence of static inhomogeneities, the
amplitude of which increases with increasing cross-
link density. Below we present theoretical background
for the description of random heterogeneities in swol-
len/deformed gels.

Random inhomogeneous density profile. We refer to
the Fourier transform of the deviation from the aver-
age monomer density as the “density” distribution,
since the latter can be recovered from it by the Fourier
transform,

. (19)

The equilibrium monomer density profile is given
by [21]

. (20)

The density profile in the “elastic reference state” [19]

(q) maximizes the entropy of polymer network. The

density (q) vanishes in the short wavelength limit q ≪
R–1, since there can be no spatial inhomogeneities in a
network on length scales smaller than the monomer
fluctuation radius R. The radius R depends on the
structure of the network under consideration and in

the mean field approximation R ≅ bN1/2, where b is the
monomer size [19]. A more general expression for R
which applies to the semi-dilute regime will be given
later. As can be seen from Eq. (20), the equilibrium
density profile is more homogeneous than that of the
corresponding elastic reference state.

The thermal structure factor of the gel in Eq. (20) is

(21)
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where Q = Rq is the dimensionless wavevector nor-
malized by the monomer f luctuating radius. The term

Q2/2 in the denominator of the first term of the right
hand side of Eq. (21) gives the usual Lifshitz entropy of

polymer solutions [26]. The term (4Q2)–1, first intro-
duced by de Gennes for heteropolymer networks [27],
describes the suppression of density f luctuations on
length scales larger than the monomer f luctuation

radius R. The function (q) retains its angular depen-
dence on the anisotropic deformation, even in the
limit q → 0.

Note that there are two types of averages, i.e., the
thermal or time averages and ensemble or space aver-
ages, denoted by 〈X〉 and , respectively. The Fourier
component of the thermal correlator of density f luctu-
ations δρ(x) = ρ(x) – ρeq(x) (see Fig. 2) is:

(22)

The density in the “elastic reference state” is ran-
dom value characterized by the correlator

(23)

The first term in the brackets comes from the cor-
relator of the force density associated with the frozen-
in variations of network structure (see Eq. (17)). The
second term in the brackets in Eq. (23) is proportional
to the correlator of affinely deformed density pattern
in the reference state S0(λ ⋅ q) which strongly depends

on network preparation conditions:

1) In case of cross-linking in a melt the density
fluctuations are suppressed and S0(q) = 0. The fact

that v(q) does not vanish tells us that even though
there are no density f luctuations, there are still finite
inhomogeneities of cross-link density, which can be
revealed upon swelling.

2) For instantaneous cross-linking of a semi-dilute
polymer solution S0(q) is given by the Ornstein–Zer-

nicke expression [19]

(24)

which is finite for any second virial coefficient B0 at
network preparation conditions.

3) In case of chemical cross-linking the full struc-
ture factor of the gel in the state of preparation is given
by that of a polymer liquid, Eq. (24), with B0 → B0 →
( N)–1. The difference is because some of the mono-
mers act as cross-links, giving additional attraction
contribution to the second virial coefficient. The
amplitude of heterogeneities grows when approaching

the cross-link saturation threshold at B0 N = 1 at
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teristic size of heterogeneities at preparation condi-
tions

diverge [19].

Scattering intensity. The scattering intensity on
wavevector q is proportional to the structure factor,
which is given by the sum

, (25)

of contributions of the thermal f luctuations, Eq. (22),
and the inhomogeneous equilibrium density varia-
tions due to defects of the topological structure of the
network

, (26)

where bar means ensemble average.

By uniaxially stretching a gel, an increase in the
scattered intensity at low q is observed in the stretching
direction, which is enveloped by elliptical patterns at
larger values of q with maximum oriented normal to
this axis. This behavior is opposite to that expected by
the theories assuming only thermal f luctuations and
called “abnormal butterfly patterns”, see Figs. 3a, 3b.
These elliptical patterns at large wavevector q originate
from the correlator of static inhomogeneities,
Eqs. (26) and (23), which contains the term S0(λ ⋅ q)

that “remembers” the affinely deformed inhomoge-
neous structure of the network. The butterfly patterns
along the stretching axis in the small q range are due to
strong angular dependence of the thermal structure
factor, Eq. (21). This function comes into numerator
of the thermal correlator in Eq. (22), describing “nor-
mal butterfly patterns”. At high cross-link concentra-
tions the correlator of static inhomogeneities gives the
main contribution to the scattering intensity. Since the

function (q) comes into denominator of Eq. (26),
this expression describes “abnormal butterf ly pat-

ξ ≅ ρ −0 0/ 1R B N

= 〈 ρ 〉 = + ��

�

2
( ) | ( )| ( ) ( )S D Cq q q q

= ρ =
+
v

�

�

�

2

eq 2

( )
( ) | ( )|

[1 ( )]
C

Bg
qq q

q

�g

terns”. As a result, under uniaxial extension, a cross-
over occurs from normal to abnormal butterfly scat-
tering patterns with increase of the strength of inho-
mogeneity or the swelling ratio [28]. In addition to
such butterfly scattering patterns we also predicted
“Lozenge” patterns (see Fig. 3c) if only a part of all
network chains, i.e. their deuterated fragments can
scatter neutrons, in accord with scattering experiments
[29].

The static inhomogeneity in poly(N-isopropyl
acrylamide) gel (PNIPA) has been investigated in Ref.
[30] by using small-angle neutron scattering (SANS)
and neutron spin echo. The scattering amplitude S(q)
obtained by SANS has been successfully decomposed

into thermal and static components, respectively, (q)

and (q) in Eq. (25). It was revealed that (q)
becomes dominant in the q-region where the abnor-
mal butterfly scattering is observed under stretching.
As the temperature increases toward the temperature

for volume phase transition, (q) of a squared Lorent-

zian shape increases more drastically than (q) of a
Lorentzian shape. These experimental findings are
also well described in the theoretical framework of this
section.

In Ref. [31] gels prepared by two methods of cross-
linking were studied using SANS technique. One is
chemical cross-linking with BIS and the other is
gamma-ray cross-linking of a PNIPA solution. It is
shown that the degree of the inhomogeneity is much
larger in the chemically cross-linked gels than in the
gamma-ray cross-linked gels, and experimental data
are in quantitative agreement with predictions of our
theory for scattering intensity S(q) on chemically and
instantaneously cross-linked gels, respectively.

The spatial inhomogeneity in poly(acrylamide)
(PAAm) gels has been investigated with the static light
scattering technique in [32]. A critical polymer net-
work concentration was found at which the degree of
the inhomogeneity in PAAm gels attains a maximum

�D
�C �C

�C
�D

Fig. 3. (a) Typical abnormal butterfly pattern observed in uniaxially stretched (in the direction indicated by the arrows)
NIPA/AAc gel. Theoretically predicted scattering function S(q): (b) scattering on variations of the total density (“butterf ly”); (c)
scattering on deuterated fragments of the network strands (“lozenge”).
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value. This maximum is predicted by the theory pre-
sented in this section and can be explained as a result
of two opposite effects of the initial monomer concen-
tration on the gel inhomogeneity. Increasing mono-
mer concentration increases both the effective cross-
link density and the polymer concentration of the
hydrogels. While the inhomogeneity becomes larger
due to the first effect, the latter effect decreases the
apparent gel inhomogeneity. The interplay of these
two opposite effects determines the spatial inhomoge-
neity in PAAm gels.

Heterogeneities in charged gels. A study of the
structure factor of weakly charged polyelectrolyte gels
under uniaxial stretching was carried out by Mendes
et al. [33], who observed after introducing ions to the
gel a disappearance of the butterfly pattern and an
increase in scattering intensity in the direction perpen-
dicular to the stretching. The origin of this maximum
has been elucidated in SANS experiment by Shi-
bayama et al. on weakly charged polymer PNIPA/AAc
gels in deformed state [34]. An anisotropic scattering
maximum is observed in this experiment indicating
that the spatial distribution of the charged groups
changes by gel deformation and therefore, is strongly
coupled with the static inhomogeneities.

All the observed patterns of SANS intensity were
well reproduced using generalization of the above the-
ory to the case of charged polymer networks [21]. The
only effect of electrostatic interactions is to replace the
second virial coefficients B0 and B by effective virial

coefficients. This has to be done for both the final state
and for the state of preparation:

,

where

,

is the inverse of the Debye-Hückel structure factor, κ–1

is the Debye screening length, f is degree of ionization
(fraction of charged monomers) and lB is the Bjerrum

length. (q) is obtained by substituting κ = κ0 and

f = f0 into the above equation. As shown in [35] the

above theoretical prediction for S(q) well reproduces
the observed scattering intensity functions of weakly
charged PNIPA/AAc gels.

The new and unexpected results obtained in [21]
concern the existence of finite wavelength instabilities
in the gel, associated with the onset of microphase
separation. What distinguishes between microphase
separation in gels and in other (complex f luid) systems
is the fact that while in the latter the appearance of a
peak in the scattering profile reflects the enhancement
of thermal f luctuations about the homogeneous equi-
librium state of a liquid, in gels the phenomenon is

→ ≡ +( ) 1/ ( ),
DHB B B sq q

→ ≡ +0 0 0 0( ) 1/ ( )
DHB B B sq q

π=
κ +

2

B

2 2

41

( )
DH

l f
s qq

0

DHs

associated with the reorganization of the local struc-
ture of an inhomogeneous solid and the appearance of
a spatial modulation in the equilibrium density profile
at a wavelength 2π/q*, even before the onset of the
microphase separation transition. The random inho-
mogeneous density distribution is reconstructed into a
new equilibrium profile which can be described as a
linear combination of plane waves the amplitudes of
which are peaked about |q| = q*. The transition leads to
the formation of lamellar domains, each of which is
characterized by a different orientation of the lamellar
planes. Under uniaxial deformation, the “directors”
of the domains become oriented along the principal
axes of compression. Since periodic static density vari-
ations lead to the formation of permanent dipole
moments, similar effects can be obtained by the appli-
cation of electric fields.

In general, an introduction of cross-links to a poly-
mer solution leads to an increase in the scattering
intensity due to static inhomogeneities. However, a
reverse phenomenon, called the “inflection” in scat-
tering intensity, was predicted by the above theory [36]
and observed in weakly charged gels and polymer
solutions [37]. While the gel becomes more inhomo-
geneous with increasing the degree of cross-linking in
a good solvent, the inhomogeneities can be suppressed
in a poor solvent, although in relatively small region of
cross-link concentration. However, this phenomenon
is interesting due to its physical significance.

Scaling Theory of Heterogeneities
Strong thermal f luctuations in good solvents lead

to the breakdown of the mean field approach used in
previous sections. Below we adapt this approach using
the well-known de Gennes blob picture of semi-dilute
solutions [38] and obtain a scaling description [39, 40]
of heterogeneities in gels in good solvents. The key
idea is the spatial scale separation: while static density
inhomogeneities exist only on scales comparable to or
larger than the monomer f luctuation radius R, ther-
mal density f luctuations are dominated by smaller
scales and are quite similar to those in semi-dilute
polymer solutions.

Consider a gel prepared by random cross-linking of
chains in a semi-dilute polymer solution in a good sol-
vent at the monomer density ρ0 that is swollen to den-

sity ρ < ρ0. We have to consider monomer density

fluctuations in both the initial (where the gel was pre-
pared) and the final (where it is being studied) states of
the gel.

On length scales smaller than the correlation
lengths

(27)

density f luctuations are large and the gel behaves as a
polymer solution (“liquid-like” regime). On scales
larger than the blob size (i.e., for wave vectors q0 = 1/ξ

− − − −ξ = ρ ξ = ρ5/4 3/4 5/4 3/4

0 0 and ,b b
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and q = 1/ξ), density f luctuations are small and we can
use our mean field description, with appropriately
renormalized parameters [19]

(28)

(29)

where the subscript fp stands for “fixed point” values
that differ from the “bare” ones. The renormalized

second virial coefficients   and B fp were calculated
in reference [19]:

(30)

Eqs. (27)–(30) complete our discussion of the
renormalization of our model: in order to describe a
gel in a good solvent on length scales larger than the
thermal correlation length, we only have to replace the
bare parameters in the previously derived expressions
for the free energy, correlation functions, etc., by their
renormalized values.

At the equilibrium swelling (ρ = ρeq) in the absence

of additional deformations the total free energy of the
gel per chain is:

(31)

and it is minimized at the density [41]

, (32)

corresponding to maximum swelling ratio

(33)

Note that similar expression for λeq is obtained in
mean field model of a gel with second virial coefficient
B ≅ b3.

AMPLIFICATION OF CROSS-LINKING 
DENSIRY PATTERN

Below we assume that the gel was initially cross-
linked in a polymer melt and then a pre-programmed
pattern in cross-link concentration (i.e., a well-
defined region of higher cross-link density compared
to that of the surrounding network) is created in the
network using, say, a light-sensitive cross-linking
technique. The free energy of such network is given by
Eq. (11) where G(x0) is the polymer contribution to the

elastic modulus of the cross-linked melt (which is pro-
portional to the local cross-link density)

, (34)

and (x0) represents the variations of cross-link den-

sity introduced by the second cross-linking step (see
Fig. 1a). Notice that the reference state describes a
stretched network with inhomogeneous cross-link
density but a homogeneous monomer density.

−→ = ρfp 3 1/8

0 0 0( ) ,b b b b
−→ = ρ λ → λfp 3 1/8 fp fp

0( ) , /k kb b b b b b

fp

0B

→ = ρ → = ρfp 3 3 1/4 fp 3 3 1/4

0 0 0( ) , ( ) .B B b b B B b b

= + ≅ ρ + ρ ρos el 3 5/4 5/12

ch ch ch B eq 0 eq[ ( ) ( / ) ],A A A k T N b

ρρ ≅
3 1/4

0
eq 3 3/5

( )b
b N

λ = ρ ρ ≅ ρ1/3 3 1/4 1/5

eq 0 eq 0( / ) ( ) .b N

= +0 0
ˆ( ) ( )G G Gx x

Ĝ

Minimizing the free energy in Eq. (7) with respect
to displacements u at the preparation state (all λk = 1)

we find that in a melt the cross-links and the mono-
mers will remain at their previous positions and the
elastic reference state will not change after relaxation.
We conclude that information about the pattern writ-
ten on network structure is hidden in preparation state
and can only be revealed after swelling.

Equilibrium Density Profile

Below we analyze how density pattern deforms
under several different solvent conditions.

Good solvent: unentangled gel. The equilibrium
deformation of the deformed gel with given cross-link

density pattern (x) is found by minimizing its free
energy, Eq. (11). The solution of differential equation
for minimum condition [42]

(35)

can be expressed through Green’s functions of the
Laplace equation in 2 and 3 dimensions, respectively:

. (36)

Here we defined

. (37)

In case of isotropically stretched/swollen gel with
all λk = λ the equilibrium monomer density depends

on local cross-link concentration,

(38)

We conclude that under isotropic deformation, the
monomer density in a swollen gel produces an undis-
torted, uniformly stretched image of the pattern of
cross-link density originally “written” on the homo-
geneous network (compare Figs. 1a and 1c).

Equilibrium displacement is expressed through the
variation of monomer density, Eq. (38), as

. (39)

We conclude that although density variations in
isotropically deformed gels are strictly local, there is
long-range strain field decaying as power law of the
distance |x – y|. This strain induces a stress distribution
in the gel, which can be observed by measuring the
birefringence of transmitted light (stress-optical law
[43]).

Ĝ

− −
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In anisotropically deformed networks the pattern is

strongly distorted (compare Figs. 1a, 1d) and (x)
decays as power law of a distance |x – y| from the local-

ized cross-link density inhomogeneity (y). Observe
that variations of monomer density are largest along
the direction of stretching. This effect is closely related
to the well known “butterfly” picture (see Fig. 3) in
contour plots of neutron scattering from random
inhomogeneities of network structure in anisotropely
deformed swollen gels (see section Random Heteroge-
neities and [44]).

Our consideration can also be extended to describe
patterns obtained by cross-linking a semi-dilute poly-
mer solution with free energy calculated in section
Scaling Theory of Heterogeneities. Since both elastic
and osmotic terms in the gel free energy are multiplied

by the same scaling factor (ρ/ρ0)
1/4 scaling renormal-

ization of free energy does not change the results
obtained for the mean field model. We conclude that
density patterns such swollen gels deform affinely
(non-affinely) under isotropic (anisotropic) deforma-
tion, just like in the case of cross-linking in the melt.

Good solvent: entangled gel. The entanglement
contribution to the free energy, Eq. (11), can be sim-
plified in the most interesting case of isotropic defor-
mation [45]:

(40)

The entanglement elastic modulus,   ≅ kBT /Ne

(see Eq. (18)), is proportional to density of entangle-
ments, /Ne (Ne is number of monomers between

neighboring entanglements). Repeating the calcula-
tions that led to Eq. (38), we find the equilibrium
monomer density

(41)

We conclude that entanglements reduce the mono-
mer density contrast, and that their contribution
decreases with increasing stretching factor λ. The lat-
ter effect originates in the slippage of entanglements
towards to the permanent crosslinks in strongly
stretched networks [45]. In case of large network
deformation λ > N/Ne, the confinement due to entan-

glements is not important since the local entangle-
ments do not “exist” anymore.

θ-Solvent. In a θ-solvent the second virial coeffi-
cient vanishes (B = 0) and Eq. (35) reproduces without
distortion affinely stretched initial pattern

(42)

Small deviations from affinity are expected because
of the non-vanishing third virial coefficient. Thus, we

ρ�

�G

⎛ ⎞∂Δ = Σ λ ⎜ ⎟∂ λ⎝ ⎠
∫

2

e

3
.

2

k
e kl

l

G u dA
x

x

eG ρ

ρ

( )Δρ λ=
ρ λλ + λ +

2

2 os

e

( ) ˆ .G
G G K

x x

−Δρ ρ = λ ⋅1ˆ( )/ ( )/ .G Gx x

show that the pattern always stretches affinely in a
θ-solvent, even under anisotropic deformations.

Poor solvent. Strong enhancement of the contrast
between the high and the low monomer density
regions can be obtained by placing the gel (with fixed
boundaries—otherwise it would collapse) in a poor
solvent with negative second virial coefficient B < 0. In
case of very poor solvent with

(43)

the gel becomes unstable with respect to formation of
dense filamentous structures [46]. Below we consider
the case of mildly poor solvent close to θ-conditions
with small B < 0 and positive γ2 > 0.

At small γ2 the amplitude of density variations ρ(x)
can be significantly increased because of the small
denominator in Eq. (38) and we have to take into
account corrections due to second order in u term

, (44)

in expression (Eq. (5)) for monomer density,

(45)

where

(46)

To first order in ε we find

(47)

where the equilibrium displacement in ε(u) is deter-
mined as

(48)

We conclude that the correction term in Eq. (47)
may significantly enhance the contrast between the
high and the low monomer density regions of the pro-
file (Fig. 4). This effect is most pronounced near the
corners of the pattern where several edges converge
and it leads to distortion of the otherwise affinely
stretched profile at these points.

We conclude that when the amplitude of cross-link
density variations is sufficiently low, the image
stretches affinely with the isotropic deformation but
that for larger density contrasts the image becomes
distorted, especially near the edges and corners of the
pattern.

Contribution of Random Heterogeneities
Frozen-in random heterogeneities of network

structure can change the image beyond recognition
[47]. The free energy of a gel with frozen-in het-
erogeities was derived in [20]. The only source of het-
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erogeneities in the melt with fixed monomer density is
statistical distribution of cross-links in the state of
preparation that arises as the consequence of the ran-
dom process of cross-linking. This frozen-in distribu-
tion is described by an additional contribution to the
free energy, see Eq. (13):

(49)

where f rand(x) is density of random Gaussian force,
characterized by correlation function given by
Eq. (17). Comparing the amplitude of frozen-in f luc-
tuations on a scale r ≫ R with variations of elastic

modulus   on this scale we conclude that the contri-
bution of frozen-in heterogeneities can be neglected if

(50)

where  is average cross-link concentration and thus,
frozen-in heterogeities have no influence on large-
scale patterns. The suppression of frozen-in heteroge-
neities of monomer density is due to strong overlap of
network chains on scales r ≫ R [48].

DISCUSSION

We studied the combined effect of swelling and
deformation on inhomogeneous networks, prepared
by cross-linking a melt and semidilute solution of
polymer chains. It is well-known that cross-link den-
sity heterogeneities that have no effect on the mono-
mer density in the state of preparation (a melt or a
concentrated polymer solution), can be revealed by
swelling the gel and observing the enhancement of

Δ = −∫
rand rand

( ) ( ) ,A df x u x x

Ĝ

≈ 3 1/2ˆ/ 1/( ) ,G G cr

c

light, X-ray and neutron scattering from the resulting
monomer density inhomogeneities [49–52]. In this
paper we focused on a related phenomenon, namely
that when large-scale cross-link density patterns are
written into the network structure, the hidden image
can be revealed by swelling and stretching the gel and
observing the corresponding patterns of monomer
density. The predicted effect has been observed in
computer simulations of networks with non-uniform
concentration of cross-links: see Figs. 11 and 13
in [53].

Using the mean field theory of elasticity of polymer
gels we showed that stretching/swelling in good sol-
vent acts as a magnifying glass: while isotropic stretch-
ing reproduces an enlarged but otherwise undistorted
version of the original pattern, anisotropic stretching
distorts this pattern, see Fig. 1.

We compare these results with those obtained for
ordinary elastic solids with inhomogeneous elastic
moduli and found that in this case even isotropic
deformations lead to distorted patterns, see Fig. 1.
Physically the difference between elastic energy of a
solid and of a gel stems from the fact that while in sol-
ids there is a stress-free state of equilibrium (crystal
lattice) that minimizes the energy of interaction
between the atoms, the equilibrium state of gels is not
stress-free. Polymer networks are made of entropic
springs and, in the absence of osmotic pressure due to
permeation by good solvent or due to excluded volume
interactions in the melt state, such networks would
collapse to the size of a single spring. The finite length
of entropic springs in the swollen gel is the result of
osmotic pressure which can be replaced by equivalent
isotropic stretching forces that act on the outer bound-
aries of the gel [54].

The difference between gels and solids becomes
apparent when considering two simple toy models of
heterogeneous gel and solid as two Hookean springs
with moduli k1 and k2, connected in series as in Fig. 5:

a) Gel model. Osmotic pressure is represented by a

force f os applied to free ends of the connected springs.
Since we want to model a gel with spatially-varying of
density of cross-links, in which there are two different
average lengths of chains between cross-links, the
spring constants of the corresponding entropic springs
are different, k1 ≠ k2. The equilibrium lengths of the

Gaussian springs,  = f os/k1 and  = f os/k2, are

entirely determined by the osmotic force that isotrop-
ically stretch the “gel”. If we apply additional force f,
each of the springs will deform affinely with distance r1

+ r2 between the ends to which the force is applied

(“boundaries” of the system):

(51)

eq

1r
eq

2r

+= λ = λ λ =
+

eq eq 1 2
1 1 2 2 eq eq

1 1

, , .
r rr r r r

r r

Fig. 4. (Color online) Density profile in poor solvent for
initial cross-link concentration profile shown in Fig. 1a.
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b) Solid model. The springs of a “solid” have equi-

librium lengths  and  even in the stress-free state.

During stretching due to force f applied to the ends of

the two-spring system, such a solid deforms non-

affinely:

(52)

with the soft spring (k1 < k2) stretched more than the

rigid one.

These two simple toy models illustrate why under

isotropic deformations, cross-linking density patterns

in gels are stretched affinely, whereas soft regions in

solids would undergo larger deformation compared to

more rigid regions, thus distorting the original pattern.

CONCLUSIONS

Over the past twenty years, basic problems of gels

description have been elucidated, such as change of

strands conformations during swelling/deswelling,

dynamics of phase transitions in gels [55] and soon.

Although from the very beginning the heterogeneities

were recognized as one of the most essential features

of gels [56], it took long time to formulate their theo-

retical description due to complexity of this problem.

Up to today, the understanding of the gel structure has

greatly improved owing to both theoretical develop-

ments and a large number of experimental studies.

Effect of cross-links on heterogeneous structure of

polymer gels, abnormal butterfly patterns, microphase

separation, and so on, are well understood with the aid

of the approaches discussed in this paper. However,

many questions still remain unsolved, such as defor-

mation mechanism of heterogeneous super-tough

eq

1r
eq

2r

= + λ − +
+

= + λ − +
+

eq eq eq 2
1 1 1 2

1 2

eq eq eq 2
2 2 1 2

1 2

( 1)( ) ,

( 1)( )

kr r r r
k k

kr r r r
k k

networks, kinetics of crack growth and phase transi-

tions in such networks. And we hope that the proposed

approaches can help to answer these questions in the

near future.

Finally, we would like to comment on possible

applications of our results. In most applications

involving gels such as biomimetic sensors, actuators

and artificial muscles [57], macroscopically inhomo-

geneous (layered) gels undergo shape transitions when

the thermodynamic conditions are changed or in

response to application of external fields [58].

In case of internally heterogeneous networks, the

cross-link density pattern imprinted into the gel struc-

ture by, say, activation of light-sensitive cross-links

(or alternatively, using hydrogels cross-linked by com-

plementary ssDNA chains whose local elastic proper-

ties can be modified by binding ligands, viruses, etc. to

these physical cross-links [59, 60]), can be micro-

scopic (micron size) and therefore would have little

effect on the shape of the gel. Upon swelling and/or

isotropic stretching in good solvent, the magnified

density pattern can be imaged on a light-sensitive

screen.

The contrast can be significantly enhanced by

stretching the entire gel in poor solvent. Gel boundar-

ies should be fixed in order to avoid contraction of the

gel. Gel contraction can also be prevented by focusing

a laser beam only on a part of the localized pattern and

heating it, resulting in local change of the quality of

solvent. Although kinetics of shape transitions in the

bulk gel is very slow, the laser beam scanning speed can

be high enough since relaxation time of the spot of a

small size r > R is very short, τR ≅ r2/D. Here D is the

collective diffusion constant introduced by Tanaka

et al. [61], D = (4 /3 + Kos)/ζ, where ζ is the friction

coefficient between network and solvent. The image

contrast can be adjusted during the “reading” by vary-

ing the heating power.

G

Fig. 5. (Color online) Two springs models, demonstrating (a) affine deformation of gels and (b) non-affine deformation of solids.

(a)
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The sensitivity of the image to quality of solvent can
be useful for sensor devices. The distortion under
anisotropic deformation disappears in θ-solvent,
whereas the pattern distortion in a poor solvent can be
used in image edge detection technique.

One of the most important contributions of Sam
Edwards was an understanding that it is not enough to
rely on the government to provide the resources for
new researches. Rather, best way to initiate the
research was to become much more closely associated
with the needs of industry.

Sam Edwards contributions to physics in general
were immense. He involved many people into his proj-
ects, remaining approachable to all his colleagues and
students. And he managed to engage senior figures in
industry and government due to hosting dinners were
people came in contact being delighted with his mag-
nificent wine collection.
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