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Abstract—The major attribute of polyelectrolyte solutions is that all chains are strongly correlated both electro-
statically and topologically. Even in very dilute solutions such that the chains are not interpenetrating, the chains
are still strongly correlated. These correlations are manifest in the measured scattering intensity when such solu-
tions are subjected to light, X-ray, and neutron radiation. The behavior of scattering intensity from polyelectro-
lyte solutions is qualitatively different from that of solutions of uncharged polymers. Using the technique intro-
duced by Sir Sam Edwards, and extending the earlier work by the author on the thermodynamics of polyelec-
trolyte solutions, extrapolation formulas are derived for the scattering intensity from polyelectrolyte solutions.
The emergence of the polyelectrolyte peak and its concentration dependence are derived. The derived theory
shows that there are five regimes. Published experimental data from many laboratories are also collected into a
master figure and a comparison between the present theory and experiments is presented.
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INTRODUCTION
When similarly charged polymer chains are dis-

persed in polar solvents such as water, they are strongly
correlated in space even under extremely dilute condi-
tions. Every polymer chain is subjected to fields from
all other chains even under conditions where the aver-
age distance between any two chains is several orders
of magnitude larger than their radius of gyration. Such
long-ranged correlations present difficulties in inter-
preting experimental data from light-, X-ray-, and
neutron-scattering measurements. The challenge
becomes much more complicated when the polymer
chains interpenetrate into each other by gaining
entropy and mitigating the Coulomb repulsion
between them. A theoretical formulation of electro-
static correlations of polyelectrolyte chains, where
each chain is itself a topologically correlated object, is
a difficult task. The theoretical framework necessary
to treat such strongly correlated polymer system was
created by Sir Sam Edwards [1, 2].

Sir Sam Edwards opened the gateway to modern
polymer physics by mapping the various chain confor-
mations of a f lexible polymer chain as a collection of
different paths of an electron in a self-generated
potential field. He showed that a polymer chain can be
equivalently treated as a field theory problem and that
the probability distribution of a chain with a certain
end-to-end distance is simply a Feynman path integral
used in field theory. During the pre-Edwards days,
polymer chains were treated as random walks made of

contiguous segments, with potential interactions
among distant segments treated only perturbatively.
When many polymer chains are present in a solution,
only theories pertinent to small molecular systems, such
as the Bragg-Williams theory and Weiss theory of mag-
netism, were in practice, without the capacity to treat
conformational fluctuations of polymer chains [3].

Edwards’ entrance to the field of polymers changed
the scene completely. His theory attracted other great
physicists such as de Gennes into the polymer field.
Since Edwards’ field theoretic methods enabled calcu-
lations of correlations of polymer concentration fluctu-
ations, new efforts were also initiated to measure such
correlations using neutron scattering and other tech-
niques. Stoked by such new efforts, the field of polymer
science emerged as an extremely active research area
with tremendous progress in the fundamental under-
standing of the collective behavior of polymers.

Sam Edwards contributed to solving many of the
most difficult problems in polymer physics: size,
shape, and fractal nature of an isolated polymer chain,
structural correlations in solutions, knots in polymers,
entanglements, polymer dynamics, rubber elasticity,
phase transition in liquid-crystalline polymers, and
polymer glasses. It all started with the introduction of
a Hamiltonian (now known as the Edwards Hamilto-
nian) in his original field theory formulation [1] of a
single chain and the subsequent discovery [2] that the
inter-segment excluded volume interactions inside a
chain are screened by the collective behavior of other
interpenetrating chains, beyond a certain distance,
now known as the Edwards length. He also invented1The article is published in the original
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the replica trick in the context of the physics of rubber
where certain degrees of freedom are quenched while
the others are allowed to explore the phase space.
Edwards’ scientific interests were not confined only to
polymers. Other subjects of his interest include elec-
trons in disordered media, turbulence, spin glasses,
and granular media.

Indeed, Sam Edwards was a great scientist. As a
person, he was even greater. He was kind and generous
in sharing his ideas and wisdom with students. His
hospitality to visitors and colleagues was legendary.

Returning to the scientific subject of the paper,
extensive experiments were conducted on polyelectro-
lyte solutions using light, X-ray, and neutron scatter-
ing [4–17]. For salt-free polyelectrolyte solutions, the
most characteristic feature of the dependence of scat-
tering intensity on the scattering wave vector  is the
presence of a scattering peak, known as the polyelec-
trolyte peak, at . When sufficient amount of small
molecular electrolyte is added, this peak disappeared.
The peak position for salt-free polyelectrolyte solu-
tions depends on the polyelectrolyte concentration ,
and this dependence can be cast empirically as

(1)

The value of  changes from  to , and then to
, as the polyelectrolyte concentration is progres-

sively increased, with crossover behaviors between the
various regimes.

It is widely recognized that  corresponds to
infinitely dilute solutions where the average spacing
between any two adjacent chains scales (geometri-
cally) as . For semidilute solutions, where  is

above the overlap concentration , but not very high,
the scaling arguments [18] show that the correlation
length  scales as . Hence it has been argued [4]
that a Bragg-like peak is expected at .
The calculations of scattering intensity in the semidi-
lute salt-free polyelectrolyte solutions reported so far
in the literature show that  instead. These
calculations are based on the random phase approxi-
mation (RPA) originally introduced by Edwards for
uncharged polymer solutions [2]. When RPA is used,
Edwards showed that the contribution to the free
energy of the solution from polymer chain conforma-
tions (for uncharged polymers) is negative [2, 19],

(2)

where  is the Boltzmann constant times the abso-
lute temperature,  is the volume of the solution, and

 is the Edwards length proportional to . There-
fore, the f luctuation contributions to the osmotic
pressure  and the osmotic compress-
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ibility  are negative. This implies that the
polymer solutions are thermodynamically unstable
unless the mean field terms arising from translational
entropy and two-body interactions dominate. On the
other hand, experiments and scaling arguments show
that the osmotic pressure  in semidilute solutions of
uncharged polymers is dominated by  and that

 [20]. The discrepancy between RPA and
experiments in both the sign and the value of the expo-
nent should be noted. Edwards recognized that this
misfit lies in keeping only the one-loop calculation in
RPA and ignoring higher order correlations as
depicted in Fig. 1a. When the higher order correlations
are treated, although approximately, it was possible
[21] to show that

(3)

with  progressively changing from  behavior in
the semidilute regime (strong concentration f luctua-
tions) to  behavior in the concentrated regime
(weak concentration f luctuations).

The scattering intensity from polyelectrolyte solutions
has been calculated by several authors [4, 22–26]. The
key result is that . This result is essen-
tially based on the implementation of RPA and hence it
suffers from the same difficulty as in the situation for
uncharged polymers (Eq. (2)). Now, not only the
osmotic pressure contribution from chain fluctuations is
negative, but also the osmotic compressibility is negative
and divergent as the polyelectrolyte concentration is
reduced ( ). Therefore, it is necessary
to go beyond RPA and consider higher order diagrams
depicted in Fig. 1b. The present author performed such a
higher order calculation and showed that [27]

(4)

where  crosses from  in semidilute condi-
tions to  in concentrated conditions for salt-
free solutions. In salty solutions,  crosses from

 in semidilute conditions to  in
concentrated conditions, as known for solutions of
uncharged polymers.

The primary goal of the present paper is to derive
full interpolation formulas for the scattering intensity
of polyelectrolyte solutions at various concentrations
above  by heavily relying on the author’s earlier
work [27] and in the spirit of the Edwards methodol-
ogy of collective coordinates [2, 19].
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In addition, formulas for scattering intensity at
concentrations below the overlap concentration are
derived by identifying two regimes: ‘gas-like’, when
chains are far away from each other such that they are
not correlated even electrostatically, and ‘liquid-like’,
when chains are electrostatically correlated but not yet
overlapping with each other. Finally, a comment is
made related to the anomalous enhancement of scat-
tering intensity at very small scattering angles in addi-
tion to the occurrence of the polyelectrolyte peak for
salt-free polyelectrolyte solutions.

THEORY
Consider a system of  f lexible polyelectrolyte

chains each containing  segments,  counterions,
 ions of species  from dissolved salt, and  solvent

molecules in volume . Let  be the fixed degree of
ionization per chain so that each of the  segments
of the chain carries a charge of  where  is the elec-
tronic charge. The total number of counterions is

 where  is the valency of the counte-
rion. Let  be the charge of the i-th charged species.
Following Edwards [1], we represent the polymer
chain as a continuous curve of length , where

 is the Kuhn step length. The Helmholtz free energy
 of the system is given by
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Here  is the position vector of the arc length
variable  of the -th chain.  is
the interaction energy between two segments of the
chain separated by a distance ,

(6)

where  is the Edwards excluded volume pseudopo-
tential, which is related to the Flory-Huggins parame-

ter  according to .  is the Dirac delta

function and . The second term on the right
hand side of Eq. (6) represents the Coulomb interac-
tion energy between the segments, where  is the
Bjerrum length
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Fig. 1. (Color online) Polymer diagrams. (a) One-loop diagram used in RPA. The segments s and s' interact with each other,
mediated by the potential fields (denoted by green arrows) generated by all other chains in the solution. (b) Higher order correla-
tions involve additional segments s1 and s2. The diagram on the left can be effectively accounted for in RPA by appropriate geo-
metrical summation, but the diagram on the right must be accounted for in addition to RPA [21, 27].
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with  and  being the permittivity of vacuum and the
uniform dielectric constant of the solution, respectively.
In writing this second term, we have assumed that the
total charge  of the chain is uniformly distributed
along the chain skeleton. The short-ranged interactions
between the polymer segments and solvent molecules
and between solvent molecules are given by

(8)

where  and  are the corresponding pseudopo-
tential excluded volume parameters. The electrostatic
interactions between charged segments and various
ions are given by

(9)

Integration over the positions of counterions, salt
ions, and solvent molecules gives within the Debye-
Hückel theory of electrolyte solutions [27]

(10)

where  denotes the free energy contribution from all
chains and  denotes that of the neutralizing back-
ground. As derived in [27],

(11)

where  is the number concentration of the i-th species,
. The inverse Debye length  is defined by

(12)

It should be noted that the expression for  given
by Eq. (11) is strictly valid only in the region of validity
of the Debye-Hückel theory, namely the local electric
potential being less than . Extensions can be made
to go beyond the linearized Poisson-Boltzmann for-
malism [28, 29].

The polymer contribution to the free energy, , is
given by
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with  defined as

(15)

Defining the local monomer concentration  as

(16)

and its Fourier transform as

(17)

Eq. (13) becomes

(18)
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nents as  and  are related by .  is the
Fourier transform of  of Eq. (14),
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with  given by Eq. (15) and the zero-wave vector
limit of  given by
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(23)

The label  for the chain is unnecessary in the
above equation as all chains are now decoupled and
every effective chain is the same. In the above equa-
tion,  is defined as

(24)

Using the identity

(25)

Eq. (22) becomes

(26)

Adding and subtracting  in the argument of the
exponential in this equation, where  is the average of

 over the -field, we get

(27)

Writing  as quadratic in ,
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Performing the  integrals in Eq. (32) gives the
effective interaction

(33)

Therefore,  defined through Eq. (28) is related to
 by the above equation. It must be remarked that the

inverse Fourier transform of  gives the effective
pairwise interaction  between any two segments of
a labeled chain in the solution. The properties of 
are already discussed in Ref. [27].

Performing the  integrals in Eq. (32) gives
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(41)

RESULTS

The effective interaction energy between segments
is given by Eqs. (33) and (38) as

(42)

As derived in Ref. [27] by approximately account-
ing for the higher order terms depicted in Fig. 1b,  is
given by Eq. (3.19) of [27]. In the present paper, the
combinatorial numerical factor  in Eq. (3.19) of [27]
is taken as unity. The result is
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where  and  are given by Eqs. (3.30) and (3.40) of
Ref. [27], respectively. The limits of  for salt-free
( ) and salty ( ) conditions are
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(49)

The effective Kuhn length  representing the
renormalization by the effective interaction  between
the segments is given by ([27])

(50)

and

(51)

Based on the above equations, the scattering function
 and the effective interaction  can be calculated for

any polyelectrolyte concentration above the overlap con-
centration. We provide here only the asymptotic limits
where analytical results are readily available.

Salty Solutions :
Combining Eqs. (43) and (46),

(52)

so that from Eqs. (38) and (39),

(53)

and

(54)

For semidilute conditions, , Eqs.
(48) and (50) give

(55)

(56)

For concentrated conditions, ,
, and

(57)

For salty conditions, the scattering intensity
 is written as

(58)

where  is proportional to  and ,
respectively, in semidilute and concentrated solutions.
The free energy is given in [27] with the contribution
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from polymer f luctuations being positive at all con-
centrations. The scattering intensity given by the above
formula depends on the scattering wave vector 
monotonically as shown in Fig. 2a (for  nm3).

Salt-Free Solutions :
Combining Eqs. (43) and (47),

(59)

and from Eqs. (38) and (39),

(60)

and

(61)

Therefore, the scattering intensity  fol-
lows as

(62)

For semidilute conditions, ,
Eqs. (49) and (51) give

(63)

(64)

On the other hand, for concentrated solutions,
, , and

(65)
The scattering intensity given by Eq. (62) exhibits the

polyelectrolyte peak as illustrated in Fig. 2b, by choosing
the typical values of  and  as  and  nm, respec-
tively. In general, the peak position  is given by

(66)

For semidilute solutions,  and only for very
high concentrations, ,

(67)

At all concentrations, the contribution from chain
fluctuations to the total free energy of the system
remains positive ([27]).

For polyelectrolyte concentrations sufficiently
larger than the concentration of added salt, dynamic
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light scattering shows [4] two modes of relaxation,
known as the fast and slow modes. Concomitant to the
onset of the slow mode, the scattering intensity at very
small angles is anomalously high [4]. It has been

Fig. 2. Dependence of scattering intensity I(k) on the
angular averaged scattering wave vector k. (a) Salty condi-
tions, using Eq. (58) for v0 = 1 nm3. (b) Salt-free condi-
tions, using Eq. (62) for wc = 8.8 nm and ξ2 = 10 nm. (c)
Influence from the presence of aggregates, using Eq. (69)
for wc = 8.8 nm; ξ2 = 3 nm, and Rg,agg = 300 nm.
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widely recognized that the slow mode arises from
aggregates of many chains which are present in the
background of homogeneously distributed polyelec-
trolyte chains. Although these aggregates constitute
only a minor amount in the solution, they can scatter
significantly. We approximate their scattering per seg-
ment by

(68)

where  is the radius of gyration of the aggregate.
Adding this to the scattering intensity for the salt-free
solution (Eq. (62)),

(69)

A typical plot of  versus  is given in Fig. 2c for
the choice of  nm,  nm, and

 nm.

DISCUSSION
The dependence of the polyelectrolyte peak posi-

tion on the concentration and the crossover from
 in semidilute solutions to  for very

concentrated solutions are derived above for .
When the chains are not interpenetrating (for

), the long-ranged electrostatic correlations
are still significant making interpretation of scattering
data extremely difficult [30, 31].

For , the polyelectrolyte solutions can be
further classified into electrostatically uncorrelated
‘gas-like’ dilute regime and electrostatically correlated
‘liquid-like’ dilute regime [4, 20].

Electrostatically Uncorrelated 
Dilute ‘Gas-Like’ Regime

When the polyelectrolyte concentration is
extremely low, the average separation distance 
between any two chains is so large that the strength of
the electrostatic interaction between them is vanish-
ingly small. Under these conditions,

(70)

so that

(71)

Defining the polyelectrolyte concentration  as
the concentration at which the average distance
between any two chains is the Debye length,
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the ‘gas-like’ regime corresponds to .

Electrostatically Correlated 
Dilute ‘Liquid-Like’ Regime

In this regime, , the average distance
 between two chains is shorter than the Debye length

and yet the chains have not overlapped, such that
. Under these conditions, the structure

factor , which is proportional to the scattering
intensity , is approximately the product of the
form factor  and the inter-molecular structure
factor given by [32]

(73)

where  depends on the pair-potential 
between two chains, with center of mass separation
distance , according to

(74)

For a pair of polyelectrolyte chains in dilute solu-
tions,  has recently been derived [30] as

(75)

Here, erfc is the complementary error function [33].
For , this result reduces to the physically
apparent screened Coulomb potential between two
chains,

(76)

Substituting this result in Eq. (74) and performing
the high-temperature expansion as usual [32], we get
in the limit of ,
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The form factor for a polyelectrolyte chain in dilute
solutions can be approximated as
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form of  is chosen so that it gives the correct result
for extracting  from scattering experiments in the
limit of  and the correct fractal dimension for

,

(79)

Combining Eqs. (73), (77) and (78),

(80)

This exhibits a maximum at

(81)

For sufficiently large values of CNwcRg > 1, this
result gives

(82)

so that a general result for the polyelectrolyte peak in
dilute solutions with electrostatic correlations is

(83)

Therefore, the exponent for the concentration depen-
dence of km is the same for both the dilute correlated
regime and the semidilute regime. However, the
numerical prefactor can be slightly different as pointed
out by Ref. [4].

Putting all of the above results together, five
regimes may be identified for salt-free polyelectrolyte
solutions, as sketched in Fig. 3. (i) Infinitely dilute,
electrostatically uncorrelated ‘gas-like’ regime,

 with ; (ii) dilute, electrostatically

correlated ‘liquid-like’ regime,  with

; (iii) semidilute,  with

; (iv) concentrated,  with

; and (v) hydrated melt, .

The extensive literature on the investigations of the
concentration dependence of  in salt-free aqueous
solutions of sodium poly(styrene sulfonate) of differ-
ent molecular weights, using light, X-ray, and neutron
scattering is summarized in Fig. 4. The presence of
different concentration regimes and crossover behav-
iors between these regimes are evident from Fig. 4. For
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each molar mass, the overlap concentration is esti-
mated by using the formula

(84)

where  is the molecular weight and  is the Avoga-
dro number. For a rigid rod of contour length ,  is

. Since we know that a f lexible polyelectrolyte
chain is never fully extended in the experimental situ-
ations of interest [34], we may take the span along the
most extended direction as , a value typically
observed in computer simulations of short polyelec-
trolyte chains [35]. Therefore,

(85)

This is the lowest bound for , because the radius of
gyration is smaller than  for all molecular
weights considered in Fig. 4.

The overlap concentration , estimated by using
Eq.(85), for the molar masses of 8, 18, 72, 100, 220,
252, 780, 1132, and 1200 kDa are 1218, 240, 15, 7.8,
1.61, 1.22, 0.13, 0.06, and 0.054 g/L, respectively. The
light scattering data of Drifford and Dalbiez [7] on

 kDa and Johner et al. [11] on  kDa

are for , showing . The small angle
X-ray (SAXS) data of Kaji et al. [9] on ,

and  kDa are for  showing again .
Similarly, the neutron scattering data of Nierlich et al.

[5] exhibit  behavior for . For M =

18 kDa,  g/L and the SAXS data [9] for

 show both the ‘gas-like’ regime with 

(for ) and the ‘liquid-like’ regime with
. For  kDa, SAXS data [9] show only

the ‘gas-like’ regime as  is much above the concen-
trations investigated for this molar mass. The SAXS
data of Nishida et al. [14] for  kDa at concen-

trations 200–700 g/L (much above  = 1.22 g/L)
show the km ~ C1/4 law, expected for very concentrated
solutions. The data [14] for M = 252 kDa at C ~
1000 g/L represent essentially molten sodium poly(sty-
rene sulfonate). The above described experimental
observations are consistent with the theoretical deriva-
tions derived in Fig. 3 for the concentration dependence
of the polyelectrolyte peak position in salt-free condi-
tions.

As a side remark, it may be mentioned that the
above results for the free energy can be used to deter-
mine the phase diagram of polyelectrolyte solutions.
As has been previously demonstrated by the author
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Fig. 3. Five regimes for the concentration dependence of the polyelectrolyte peak in salt-free polyelectrolyte solutions: (i)
Infinitely dilute, electrostatically uncorrelated ‘gas-like’ regime, 0 < C < Cκ; (ii) dilute, electrostatically correlated ‘liquid-like’
regime, Cκ < C < C*; (iii) semidilute, C* < C < C**; (iv) concentrated, C** < C < C***; and (v) hydrated melt, C*** < C. The
values of the exponent δ in km ~ Cδ for the various regimes are shown in the figure. The prefactors in the two regimes of 1/2 slope
are different.

C

km Cbulk

1/4

1/2

1/2

1/3
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Fig. 4. Dependence of km on polyelectrolyte concentration C in salt-free aqueous solutions of sodium poly(styrene sulfonate) at
various molecular weights and using different radiation. (1) light, M = 780 kDa, Drifford (780k) [7]; (2) light, M = 1132 kDa,
Johner (1132k) [11]; (3) X-ray, M = 8 kDa, Kaji (8k) [9]; (4) X-ray, M = 18 kDa, Kaji (18k) [9]; (5) X-ray, M = 100 kDa, Kaji
(100k) [9]; (6) X-ray, M = 220 kDa, Kaji (220k) [9]; (7) X-ray, M = 252 kDa, Nishida (252k) [14]; (8) X-ray, M = 1200 kDa, Kaji
(1200k) [9]; (9) neutrons, M = 72 kD, Nierlich (72k) [5]. The slopes of 1/3, 1/2, 1/2, and 1/4, expected respectively for infinitely
dilute ‘gas-like’, dilute ‘liquid-like’, semidilute, and concentrated, are included as guides.
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and his collaborators, it is critical to use the above
expression which goes beyond the one-loop RPA in
calculating the phase diagrams for salt-free solutions
[36–39]. It is also essential to recognize that the
charge of the polyelectrolyte chain is not a fixed num-
ber but it self-regulates as the polymer conformation
changes due to changes in polymer concentration, salt
concentration, dielectric constant, and temperature,
etc. [38, 40]. For example, the daughter phases have
different charges from the mother phase in a phase-
separating polyelectrolyte solution, resulting in a new
universality class of phase behavior [38]. The calcula-
tions of phase diagrams for salt-free polyelectrolyte
solutions, based on one-loop RPA, suffer from the
same difficulty mentioned in the introduction that the
osmotic compressibility becomes negative. Such an
unphysical result from the one-loop RPA has necessi-
tated artificial devices such as arbitrary cutoffs [24, 26,
29, 41]. There are opportunities to implement the the-
ory presented here and go beyond the Debye-Hückel
description for the electrostatic interaction among the
various ions.

CONCLUSIONS
We have derived expressions for the scattering

intensity of radiation from solutions of f lexible poly-
electrolyte molecules as functions of polymer con-
centration. Five regimes have been identified, and
the concentration dependencies of the polyelectro-
lyte peak in these regimes are derived. Also, the
essential experimental data from the literature on
aqueous solutions of sodium poly(styrene sulfonate)
using light, X-ray, and neutron scattering, are col-
lected here. The derived theoretical results are con-
sistent with the experimental data obtained in many
laboratories worldwide. The theoretical work pre-
sented here would not have been possible without the
pioneering field theory technique introduced by Sir
Sam Edwards.
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