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Abstract—Studies concerning the relationship between the value of μ and a number of mechanical and ther-
mal properties of amorphous polymers and glasses are analyzed with the aim to gain information about the
origin of Poisson ratio μ in these systems. It is shown that the Poisson ratio features a more pronounced struc-
ture-sensitive behavior than the elastic modulus, although the Poisson ratio varies in a narrow range. The
relationship between the Poisson ratio and the Grüneisen parameter is substantiated. In this context, the issue
of the correlation between harmonic and anharmonic quantities is highlighted. The Poisson ratio is sensitive
to lattice dynamics and atomic–molecular structures of polymers and glasses. When light atoms, for example,
hydrogen atoms in polyethylene, are replaced with larger and heavier atoms on pendant chains of the macro-
molecular backbone, anharmonicity increases; that is, lattice Grüneisen parameter γD increases. As a result,
the Poisson ratio increases because these quantities are related unambiguously. Conditions of preparing an
isotropic material with a negative Poisson ratio (μ < 0) are discussed. The relative ultimate strain of the inter-
atomic bond in glassy systems is a function of the Poisson ratio solely. The frozen elastic strain of amorphous
polymers and glasses is likewise a single-valued function of the Poisson ratio. The discussed phenomena are
interpreted in terms of the Kuz’menko and Pineda theories and the Berlin–Rothenburg–Bathurst model.
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INTRODUCTION

The Poisson ratio μ, by definition, is equal to the
ratio of the relative transverse strain of a body to its rel-
ative longitudinal elongation under uniaxial tension:

. (1)

For the overwhelming majority of solids, the Pois-
son ratio is positive and varies as a rule within the nar-
row limits μ ~ 0.2–0.3 for both crystals and glasses.
For a comparatively small group of solids, like quartz
glass, with high yield strength, μ assumes low values on
the order of μ = 0.15–0.17. For soft materials with low
yield strengths (metals Cu, Ag, Au, and Pb and glassy
polymers), this parameter has increased values: μ ~
0.35–0.44. For porous bodies, for example, foamed
plastics and natural cork, μ ~ 0 under uniaxial tension.
In contrast, for rubbers, a marked transverse contrac-
tion is observed during tension and the Poisson ratio
approaches the upper limit, μ ~ 0.5.

As was shown in [1] for isotropic solids, the range
of the allowed values of μ is determined through the

known formula of the elasticity theory under the con-
dition of elastic-moduli positiveness (B ≥ 0, G ≥ 0):

. (2)

In accordance with this ratio, if isothermal bulk mod-
ulus B is zero, the Poisson ratio is equal to the lower
limit, μ = –1, and when shear modulus G is zero, we
arrive at the upper limit, μ = 1/2. Hence, the value of
μ may change in the range

. (3)
Theoretically, a solid with a negative coefficient of

transverse strain μ < 0 may exist, but this case is in
conflict with common sense.

However, recent publications show that isotropic
solids with negative Poisson ratios do exist [2–9]. In
1987, a polymeric isotropic cellular body with μ =
‒0.7 was synthesized [3, 4]. Recently, glasses of the
system Cd–As, for which the values of μ were nega-
tive, μ = –(0.101 – 0.113), have been found [6, 7].
These materials were coined auxetic or auxetics [2, 9]
(derived from the Greek word auxetos, which implies
swelling).

Along with this unusual phenomenon, other
“anomalies” were observed, for example, the unam-
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biguous relationships of the Poisson ratio with the
Grüneisen parameter γD, which is a measure of non-
linearity of the interatomic interaction force (anhar-
monicity) [10, 11], and with the inelastic deformation
of solids [12, 13], which is untypical for parameters of
the elasticity theory.

This paper presents a brief review and analysis of
studies addressing the origin of the Poisson ratio for
amorphous polymers and glasses. The main attention is
given to the relationship between the value of μ and the
structure-sensitive properties of these glassy systems.

THE POISSON RATIO AND THE STRUCTURE-
SENSITIVE PROPERTIES OF AMORPHOUS 

POLYMERS AND GLASSES

This section considers the relationship between the
coefficient of transverse strain, μ, and a number of
mechanical and thermal properties of amorphous
organic polymers and inorganic glasses. These data
make it possible to express certain considerations about
its origin (see below the section The Origin of the Pois-
son Ratio). It is remarkable that, in the definition of the
Poisson ratio, the case in point is common “soft” static
elastic strains; however, the value of μ is a single-valued
function of parameters characterizing dynamic and
critical processes: for example, the loss of stability of a
solid under shearing or the ultimate strain of inter-
atomic and intermolecular bonds in glasses.

The Coefficient of Transverse Strain 
and the Nonlinearity of the Interatomic 

Interaction Force

Let us examine the relationship between the coeffi-
cient of transverse strain, μ, and the Grüneisen
parameter, γD, which enters into the equation of state
of solids and serves as a measure of anharmonicity of
lattice vibrations and nonlinearity of the interatomic
interaction force. Grüneisen deduced the formula

(4)

which can be used to calculate the value of  from the
experimental data on the coefficient of volumetric
thermal expansion, β; isothermal bulk modulus В;
molar volume V; and molar heat capacity .

Along with Grüneisen equation (4), other methods
of calculating γD were developed. On the basis of the
elasticity theory, molecular acoustics, and thermody-
namics, K.L. Leont’ev [4] managed to average the fre-
quency of lattice vibrations and to deduce the relation-
ship for the value of γD directly from Grüneisen
parameter definition:

(5)

where BA is the adiabatic bulk modulus, ρ is density,
and vq is the average quadratic velocity, whose quad-
rate is an invariant of the sum of squares of the propa-
gation rates of longitudinal vL and transverse vS elastic
waves:

. (6)

Figure 1 compares the results of calculations of γD
via Grüneisen equation (4) and Leont’ev equation (5)
for a number of solids (Table 1) [15]. As is seen, there
is satisfactory agreement between these relationships.
Deviations from this correlation for several solids are
apparently related to the scatter of the γD values
obtained by different researchers. For example, as fol-
lows from three sources, the values of the Grüneisen
parameter for aluminum are 2.11, 2.34, and 2.43 [16].

With the use of the expression for the shear modu-
lus, , and formula (6) for  let us transform
Leont’ev equation (5):

.

Then, with the help of the known expressions of the
elasticity theory [1],

,
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Fig. 1. Comparison of the values of Grüneisen parameter
γD calculated through Grüneisen equation (4) and
Leont’ev formula (5). The numbering of points corre-
sponds to the numbering of solids in Table 1.
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and under the approximation  we arrive at the
Belomestnykh–Tesleva formula [10]:

(7)

which was obtained by the authors of [10] on the basis
of other premises.

This formula is attractive because it permits calcu-
lations of γD from the data on Poisson ratio μ solely.
The estimates of γD obtained with the help of this for-
mula for many metals and ionic and molecular crystals
are in satisfactory agreement with calculations per-
formed through Grüneisen equation (4) (Table 1) [10,
15]. Figure 2 confirms the agreement between the
Belomestnykh–Tesleva and Grüneisen equations.

Figure 3 presents the dependence of Grüneisen
parameter γD that was calculated through the Leont’ev
formula (5) on the Poisson ratio determined in accor-
dance with Belomestnykh–Tesleva, (3/2)(1 + μ)/(2 –
3μ), for sodium–aluminosilicate glasses containing

≅AB B

⎛ ⎞+= ⎜ ⎟−⎝ ⎠

1 μ3γ ,
2 2 3μD

various amounts of oxides (Table 2 [17]). It is seen that
Leont’ev equation (5) and Belomestnykh–Tesleva
equation (7) are in good agreement with the experi-
mental data. The same results are obtained for other
glasses.

Thus, Poisson ratio μ turns out to be a single-val-
ued function of Grüneisen parameter γD.

Noting the agreement between Belomestnykh–
Tesleva formula (7) and Grüneisen equation (4), we
should be emphasized that this formula unambigu-
ously relates the harmonic (linear) μ and anharmonic
(nonlinear) γD values.

Attempts to qualitatively explain the existence of
the relationship between linear and nonlinear quanti-
ties were made in [18–20]. The harmonic а and anhar-
monic b coefficients in the expansion of the potential
energy of interatomic interaction, U(r), are deter-
mined by the second and third derivatives of function
U(r), respectively, at the equilibrium interatomic dis-
tance r = r0. With the use of the Mu potential (U =

Table 1. Comparison of the results of calculation of Grüneisen parameter γD via Eqs. (4), (5), and (7) [10, 15, 16]

no. Elements and 
compounds μ

γD from the equation according to

Grüneisen (4) Leont’ev (5) Belomestnykh–Tesleva (7)

1 LiF 0.214 1.34 1.35 1.34
2 NaCl 0.243 1.46 1.53 1.47
3 LiCl 0.245 1.52 1.47 1.48
4 KCl 0.259 1.60 1.60 1.54
5 NaF 0.234 1.57 1.44 1.43
6 NaBr 0.270 1.56 1.65 1.60
7 LiBr 0.256 1.70 1.53 1.53
8 KBr 0.283 1.68 1.67 1.67
9 Fe 0.292 1.68 1.68 1.72
10 KI 0.265 1.63 1.60 1.57
11 Co 0.357 2.10 1.85 2.19
12 Al 0.340 2.11 2.16 2.05
13 Ag 0.379 2.40 2.24 2.40
14 Be 0.034 0.83 0.83 0.82
15 Y 0.245 1.25 1.40 1.48
16 NaNO3 0.257 1.31 1.27 1.53

17 NaClO3 0.270 1.37 1.61 1.60

18 Th 0.254 1.40 1.61 1.52
19 Mg 0.270 1.41 1.64 1.60
20 RbBr 0.267 1.50 1.76 1.59
21 Ta 0.337 1.73 2.05 2.03
22 AgBr 0.396 2.33 2.65 2.58
23 Pd 0.374 2.40 2.44 2.35
24 Au 0.420 2.80 2.90 2.88
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Fig. 2. Comparison of the values of Grüneisen parameter
γD calculated through Grüneisen equation (4) and Belo-
mestnykh–Tesleva formula (7). The numbering of points
corresponds to the numbering of solids in Table 1.
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Fig. 3. Comparison of the values of the Grüneisen param-
eter calculated through Leont’ev equation (5) and Belo-
mestnykh–Tesleva formula (7) for sodium–aluminosili-
cate glasses. The numbering of points corresponds to the
numbering of glasses in Table 2.
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‒Ar–m + Br–n) in the mentioned derivatives,
T.A. Kontorova [18] showed that there is a relation-
ship between the specified coefficients:

.

Hence, the considered phenomenon may be
explained by the fact that there is a relationship
between а and b like the above-mentioned relationship
and a related functional dependence of linear and
nonlinear properties of solids on a and b.

Thus, the Kontorova approach and the Pineda the-
ory [21] (see below) indicate that correlations may
exist between seemingly fully different in origin physi-
cal properties of solids, including the difference
between harmonic and anharmonic quantities.

The value of γD is usually calculated via formula (4),
in which the thermal and mechanical characteristics
of solids appear. For crystals of the same structural
type with the same system of interatomic bonds, rela-
tionships obtained by different methods lead to the
same values (Table 1): For example, for ionic cubic
crystals, γD ≅ 1.5–2.0.

In the case of polymer systems, the situation is
somewhat different. Strong covalent bonds –C–C–
exist along polymer chains between atoms, while
weaker intermolecular bonds exist between chains.
They have different levels of anharmonicity; there-
fore, in polymer physics, lattice γL and thermody-
namic γt Grüneisen parameters are distinguished

⎛ ⎞+ += ⎜ ⎟
⎝ ⎠0

3
2

m nb a
r

([22, 23]). The lattice parameter (γL ~ 2–5) ref lects
the anharmonicity of low-frequency interchain
vibrations related to the intermolecular (van der
Waals) interaction, while the thermodynamic
parameter (γt ~ 1) expresses anharmonicity averaged
over intrachain and other vibrational modes. Ther-
modynamic Grüneisen parameter γt is calculated via
Eq. (4), and lattice Grüneisen parameter γL is calcu-
lated through formulas (7), which relate γD to physi-
cal quantities determined by the intermolecular
interaction.

In alkali–silicate glasses there are two main sys-
tems of bonds: ionic–covalent –Si–O–Si– within the
silicon–oxygen network and ionic bonds associated
with the interaction between alkali-metal ions (R+)
located in voids of the network and nonbridging oxy-
gen ions (Si–O–). The anharmonicity of vibrations of
ionic bonds in Si–O–R+ complexes is more pro-
nounced than that of bonds in an organosilicon net-
work (–Si–O–Si–). This situation is typical for ger-
manate, borate, phosphate, and other inorganic
glasses. By analogy with polymers, inorganic glasses
may have lattice γL and thermodynamic γt Grüneisen
parameters. The value of γL ~ 1.5–2.0 for alkali–sili-
cate glasses coincides with the data obtained for ionic
cubic crystals, and the value of γt ~ 1 coincides with
the thermodynamic Grüneisen parameter of amor-
phous polymers [22, 23].
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The Poisson Ratio and the Ultimate Elastic Strain
of the Interatomic Bond

The oscillator theory leads to the following formula
for the interatomic interaction force F = –(dU/dx)
[24–27]:

(8)

where U(x) is the potential energy of interaction
between atoms and x = (r – r0) is the displacement of
an atom from the equilibrium position. As was noted
above, harmonic a and anharmonic b coefficients are
determined by the second and third derivatives of
function U(r), respectively, at the point of equilibrium,
r = r0.

In the region of inflection of curve U(r), the abso-
lute value of force F(x) passes through a maximum
(Fig. 4). Hence, the critical elongation of the inter-
atomic bond, xm = rm – r0, which corresponds to the
maximum of interatomic attraction force Fm, is found
from the condition

Using relationship (8), we arrive at the following
ultimate elongation of the interatomic bond: xm = a/b;
therefore, the relative ultimate strain of the inter-
atomic bonds is largely determined by the ratio

− +∼

2,
2
bF ax x

= =( / ) 0
mx xdF dx

between harmonic а and anharmonic b coefficients
(xm = Δrm):

. (9)

In [27], Ya.I. Frenkel’ advanced the following rela-
tionship for the coefficient of volumetric thermal
expansion of a solid:

.

After multiplication of the right-hand part of this
equality by ratio (3NAr0/3NAr0), it may be represented
in the form

(10)

where CV = 3NAk = 3R is the molar heat capacity,

 is the molar volume, B is the elastic bulk
modulus, NA is Avogadro’s number, and R is the gas
constant.

A comparison of relationship (10) with Grüneisen
equation (4)
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Table 2. Elastic properties and Grüneisen parameters of sodium–aluminosilicate glasses [17]

no.
Composition with respect to reagent load, mol %

ρ, 10–3 kg/m3 vL, m/s vS, m/s B, 10–8 Pа μ γD
Na2O Al2O3 SiO2

1 15 0 85 2.339 5430 3340 342 0.196 1.28

2 15 5 80 2.358 5570 3390 370 0.206 1.31

3 15 10 75 2.410 5697 3510 386 0.194 1.26

4 15 15 70 2.465 5737 3469 416 0.212 1.34

5 15 20 65 2.428 5850 3540 425 0.211 1.34

6 15 25 60 2.472 6000 3568 470 0.226 1.40

7 25 0 75 2.439 5280 3140 359 0.226 1.40

8 25 5 70 2.455 5480 3240 394 0.231 1.41

9 25 10 65 2.461 5610 3330 411 0.228 1.40

10 25 15 60 2.480 5640 3350 418 0.227 1.39

11 25 20 55 2.470 5680 3450 405 0.208 1.32

12 25 25 50 2.499 5790 3490 432 0.215 1.35

13 25 30 45 2.519 6026 3556 490 0.233 1.43

14 35 0 65 2.497 5340 3070 398 0.253 1.52

15 30 5 65 2.486 5500 3200 413 0.244 1.47

16 20 15 65 2.450 5670 3490 390 0.195 1.28

17 17.5 17.5 65 2.447 5746 3458 418 0.216 1.35
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leads to the microscopic interpretation of Grüneisen
parameter γD [24–26]:

. (11)

This formula is deduced rigorously with the help of
quantum mechanics and covers the low-temperature
range (Т < ) [24, 25].

= 0γ
6D
br

a

θD

The substitution of expression (11) into equality (9)
leads to the conclusion that the ultimate strain of the
interatomic bond is determined by the value of γD:

(12)

With the use of Belomestnykh–Tesleva relationship
(7), the relative strain of a bond, Δrm/r0, like γD, turns
out to be a single-valued function of Poisson ratio μ:

(13)

Hence, the Poisson ratios of glassy polymers
(Table 3) [28] and inorganic glasses (Table 4) [29, 30]
are unambiguously related to the ultimate elastic strain
of interatomic and intermolecular bonds.

The value of Δrm/r0 is the strain at which the maxi-
mum force of the interatomic (intermolecular) attrac-
tion is attained and the transition from elastic defor-
mation to inelastic deformation occurs.

The relative ultimate elastic strain for the studied
organic and inorganic glasses varies within small limits
(Tables 3, 4):

.

The Loss of Stability of a Solid during Shearing 
and the Poisson Ratio

As applied to glassy systems, a relationship between
the Poisson ratio and Grüneisen parameter γD that is

Δ =
0

1
6γ

m

D
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r
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Table 3. The Poisson ratios and the calculated characteristics for amorphous and semicrystalline polymers [28]

no. Polymer Notation μ γD (7) Δrm/r0

1 Polystyrene PS 0.34 2.1 0.08
2 Poly(vinyl chloride) PVC 0.35 2.1 0.08
3 Poly(vinyl f luoride) PVF 0.35 2.1 0.08
4 Poly(methyl methacrylate) PMMA 0.33 2.0 0.08
5 Epoxy resin (cured) ER-5 0.35 2.1 0.08
6 Polycarbonate PC 0.37 2.3 0.07
7 Polyphenylisobutylsilsesquioxane PPSSO 0.31 1.8 0.09
8 Polyoxymethylene POM 0.31 1.8 0.09
9 Polypropylene PP 0.34 2.1 0.08
10 Polytetrafluoroethylene PTFE 0.32 1.9 0.09
11 Polytrif luorochloroethylene PTFCE 0.40 2.6 0.06
12 Nylon-6 N-6 0.41 2.7 0.06
13 Nylon-7 N-7 0.38 2.4 0.07
14 Nylon-11 N-11 0.40 2.6 0.06
15 Nylon-12 N-12 0.40 2.6 0.06
16 Poly(4-methyl-1-pentene) P-4-1-MP 0.39 2.5 0.07
17 Polyvinylidenefluoride PVDF 0.31 1.8 0.09

Fig. 4. Scheme of critical atomic displacement Δrm corre-
sponding to the inflection of the potential U(r) curve.
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Table 4. The Poisson ratios and the ultimate strains of the interatomic bonds in inorganic glasses [29, 30]

Glass μ γD Δrm/r0

Potassium–borate glasses

K2O–B2O3

K2O, mol %

1.1 0.292 1.72 0.10
2.5 0.293 1.73 0.10
3.9 0.293 1.73 0.10
8.5 0.293 1.73 0.10

13.0 0.295 1.74 0.10
18.0 0.301 1.78 0.09
22.8 0.295 1.74 0.10
28.2 0.288 1.70 0.10
33.5 0.303 1.79 0.09

Sulfate–phosphate glasses

NaPO3 0.294 1.74 0.10

NaPO3–Na2SO4

Na2SO4, mol %

10 0.299 1.77 0.09
20 0.292 1.72 0.10
30 0.288 1.70 0.10

NaPO3–K2SO4

K2SO4, mol %

10 0.316 1.88 0.09
20 0.316 1.88 0.09
30 0.313 1.86 0.09

0.4NaPO3 ⋅ 0.6Na2SO4 0.320 1.90 0.09

Alkali–silicate glasses

Li2O–SiO2

Li2O, mol %

10 0.187 1.24 0.13
25 0.223 1.38 0.12
33.3 0.232 1.42 0.12

Na2O–SiO2

Na2O, mol %

13 0.205 1.31 0.13
26 0.245 1.48 0.11
33.3 0.255 1.52 0.11

K2O–SiO2

K2O, mol %

13 0.230 1.41 0.12
25 0.270 1.60 0.10
32 0.250 1.50 0.11
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somewhat different from Belomestnykh–Tesleva
equation (7) was advanced [23]:

(14)

where multiplier А is determined by the share of f luc-
tuation free volume fg frozen at the glass-transition
temperature:

. (15)

The value of fg and, more so, its logarithm weakly
depend on the nature of the amorphous compounds
[29, 31, 32]. It was found [23] that, in fact, coefficient А
is a constant close to unity, А ~ 1. Therefore, under the
assumption that  γD may be estimated via formula
(14) from the data on the Poisson ratio [23, 32]:

. (16)

After substitution of expression (16) into equality
(12) for the ultimate strain of the interatomic bond, we
arrive at a relationship analogous to (13):

. (17)

The estimate of Δrm/r0 through this formula practically
coincides with the results of calculations through
Eq. (13).

Relationship (17) is of interest because, as was
shown by S.V. Nemilov [33, 34], the Poisson ratio is a
single-valued function of the product of parameters of
the Mu potential Мu (U = –Ar–m + Br–n), which may
be written as

. (18)

As is seen, the right-hand parts of the last two
equalities, (17) and (18), coincide. Hence, it may be
suggested that the inverse value of the product of the
Mu potential parameters, 1/mn, characterizes a cer-
tain ultimate strain of the interatomic bond:

(Δrm/r0) ~ 1/mn.

Indeed, V.B. Lazarev et al. [35] showed that the
value of 1/mn has the sense of the critical strain at
which the solid loses stability during shearing:

.

This equality was deduced under the assumption of
an elastic–isotropic polycrystalline body with the
modified Mu potential, which is not connected with
ideas about twoness and centricity of the interatomic
interaction [35].
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The Poisson Ratio and the Frozen Viscoelastic Strain 
of Glasses

During the application of a mechanical stress
below glass-transition temperature Tg, inelastic defor-
mation appears in silicate glasses; this deformation
may be preserved over any time after removal of exter-
nal stress. It is remarkable that, during heating below
softening temperature Tg, strain relaxes and practically
disappears. Hence, this is the frozen recoverable
retarded elastic strain (Rabotnov’s definition). Never-
theless, following some authors, in some cases, the
term “plastic” is used (references in [31, 32]).

An analogous frozen recoverable strain is observed
for glassy organic polymers. Being “plastically”
strained at T < Tg, a polymer glass, for example,
PMMA, during heating below Tg returns to the initial
unstrained state [36, 37], as in the case of silicate
glasses.

It is interesting that, for bulky metallic glasses, spe-
cifically the glass Pd40Cu30Ni10P20, the frozen recover-
able strain and its thermally stimulated relaxation at
T < Tg are observed [38]. The main features of these
processes are in fact the same as those for inorganic
glasses and glassy polymers.

Not dwelling on various attempts to explain the ori-
gin of the effect of “plasticity” of glasses [31, 32, 36,
37, 39–44], let us demonstrate that, in fact, the frozen
retarded elastic strain of glassy materials is unambigu-
ously related to the Poisson ratio.

The microhardness method is suitable for the study
of “plasticity” of fragile inorganic glasses. During
microindentation of a Vickers diamond tetrahedral
pyramid and other pointed indentators into silicate
glass, a “plastic” microindentation is formed at T < Tg,
particularly at 20°С. The Vickers microhardness HV
for silicate, germanate, and other inorganic glasses
coincides with ultimate stress σr.el., above which “plas-
tic” (retarded elastic) strain εr.el is observed: 
[31, 45]. Therefore, for these glasses, the ratio of
microhardness to elastic modulus E may be taken as an
approximate measure of frozen recoverable strain εr.el:

. (19)

In turn, ratio HV/E is a function of the Poisson ratio
[32] (Table 5):

(20)

With consideration for this equality and relation-
ship (19), it may be stated that the frozen retarded elas-
tic strain of glasses is a single-valued function of Pois-
son ratio μ:

. (21)

≅V r.elσH
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In accordance with this expression, a linear cor-
relation is observed between the frozen strain εr.el and
the function of the Poisson ratio (1 – 2μ)/(1 + μ) for a

number of glasses (Figs. 5, 6). This fact confirms the
validity of dependence (21) for at least chalcogenide
glasses and a number of inorganic glasses.

Table 5. Elastic moduli μ and E and microhardnesses HV of inorganic glasses

K-8, BK-10, TF-3, and TF-1 are multicomponent optical glasses.

Glass

Experiment Calculation (20)

μ E, kg s/mm2 HV, kg s/mm2 HV, kg s/mm2

SiO2 0.17 7450 692 0.093 0.094 700
Na2O–SiO2

Na2O, mol %
16 0.218 6144 442 0.072 0.077 473
20 0.235 5756 405 0.071 0.071 409
33.3 0.255 5993 364 0.061 0.065 376

GeO2 0.197 4333 360 0.083 0.082 373
Na2O–GeO2

Na2O, mol %
5 0.226 5042 370 0.073 0.074 383

20 0.250 6722 450 0.067 0.067 456
30 0.265 5529 350 0.063 0.065 349
K-8 0.225 7920 578 0.073 0.074 586

BK-10 0.250 7516 553 0.075 0.067 505
TF-3 0.219 5469 424 0.075 0.077 420
TF-1 0.225 5355 392 0.077 0.074 395

VH
E

( )
( )
−

+
1 2μ

6 1 μ

Fig. 5. Dependences of frozen recoverable strain εr.el for
(squares) sodium–silicate and (circles) sodium–germanate
glasses on the function of the Poisson ratio (1 – 2μ)/(1 + μ):
(1) SiO2; (2–4) Na2O–SiO2 glasses containing 16, 20, and
33.5 mol % Na2O, respectively; (5) GeO2; and (6–8)
glasses Na2O–GeO2 containing 5, 20, and 30 mol %
Na2O, respectively.
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Fig. 6. Plot of εr.el vs. function of the Poisson ratio (1–
2μ)/(1+μ) for chalcogenide glasses: (1) As10S90, (2)
As20S80, (3) As28S72, (4) Ge13As24S63, (5) Ge26Sb8S66,
and (6) Ge32As2S66.
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THE ORIGIN OF THE POISSON RATIO
A considerable amount of work on systematization

of the experimental data on the Poisson ratio was per-
formed by W. Koster and H. Franz [46] (mostly for
metals) and a number of other researchers [2, 4, 21,
47–50]. At the same time, it must be admitted that, at
present, the physical meaning of the coefficient of
transverse strain of noncrystalline solids is still vague.

The Poisson Ratio and Change in the Volume 
of a Deformed Body

Ratio μ characterizes primarily a change in body
volume during deformation.

A change in the volume V = V(r, l) of a rectangular
parallelepiped with length l and a quadratic cross sec-
tion with side r may be represented as follows [47]:

. (22)

With consideration for the relationship for volume,
, derivatives  and 

may be found. With due regard for these derivatives,
expression (22) may be written as

.
The transformation of this equality with the use of

Poisson ratio definition (1) in the differential form

makes it possible to relate a change in body volume to
the value of μ:

.
After multiplication of the right-hand part of this rela-
tionship by l/l and with consideration for the fact that

 and , the formula for the relative
change in body volume, dV/V, during uniaxial tension
may be derived [47]:

. (23)

The Kuz’menko Theory
In accordance with the Kuz’menko approach [48],

the Poisson ratio of solids characterizes their ability to
withstand a change in volume.

Indeed, as is clear from equality (23), the higher the
Poisson ratio of a given solid, the lower its relative vol-
ume strain ΔV/V. At μ = 0.5, ΔV/V = 0.

A similar tendency is observed for relative linear
strains (expressions (13), (17), (18), and (21)). As μ
increases, the critical strain of materials 1/mn, at
which they lose stability during shearing (18), is
decreased. The higher the value of μ for this glass, the

∂ ∂= +
∂ ∂
V VdV dr dl
r l

= 2V r l ∂ ∂ =( / ) 2V r rl ∂ ∂ = 2( / )V l r

= + 22dV rldr r dl

( )= −μ l dr
r dl

= − +2 2μ2dV r dl r dl

=2r l V ( ) =/ ε xdl l

= −ε (1 2μ)x
dV
V

lower the value of Δrm/r0, at which the transition from
the elastic to inelastic deformation occurs (13).

According to the Kuz’menko theory [48], the Pois-
son ratio, along with the aforesaid, characterizes the
fraction of shear energy Ws in total strain energy W:

. (24)

The higher the value of μ, the lower the relative
energy of shear strains, the smaller the shear strength
of this material, and the closer it is to a liquid in this
respect. Hence, it follows that the Poisson ratio should
be related to, for example, such a characteristic of
inelasticity of a solid as the yield strength.

If fact, materials with low yield strengths, that is,
with increased softness and plasticity (gold, silver,
copper, and polymer glasses), feature high values of μ
approaching 0.5, while fragile solids with high yield
strengths feature low Poisson ratios μ.

The Poisson Ratio and the Lattice Dynamics
During static elastic loading of solids, along with

changes in their outer sizes and shapes, “invisible”
inner changes of a dynamic character occur: a gain in
the frequency of vibrations of atoms in the loaded body
and an increase or decrease in its temperature ([51]).

S.I. Mikitishin [50] drew attention to the fact that
the value of 1 – 2μ is associated with thermal vibra-
tions of the lattice and (to a certain extent) Debye tem-
perature θD; that is, μ depends on the dynamics of the
lattice. For the isotropic structures of face-centered
and body-centered cubes, the values of 1 – 2μ as a
function of ratio , where Тvap is the vapor-
ization temperature and m is the atomic mass, fall on
straight lines (Fig. 2 [50]):

.

With respect to this empirical dependence, metals
may be grouped in terms of structure type. The value
of Тvap is apparently used to match dimensionality.

Because product  is closely related to the
mean-square displacement of an atom from the equi-
librium position, it may be regarded as a peculiar ana-
log of atomic displacement Δrm and, hence, of atomic-

delocalization volume  in glassy solids
[52]

where R is the gas constant, Δrm is the displacement of
the atom from the equilibrium position, fg is the frac-
tion of f luctuation volume frozen at glass-transition
temperature Tg, and В is the bulk modulus.
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Therefore, by analogy with the above-mentioned
linear dependence, a certain correlation between the
delocalization volume of the atom, ΔVe, and the func-
tion of Poisson ratio (1 – 2μ) should be expected

(1 – 2μ) ~ ΔVe.

Indeed, for a number of inorganic glasses and
glassy polymers, there is a linear correlation between
the function of Poisson ratio (1 – 2μ) and the elemen-
tary volume ΔVe needed to displace atoms from the
equilibrium position (Figs. 7, 8) [53].

Hence, the value of μ depends on the dynamics of
the lattice.

The Pineda Theory
In [21], Е. Pineda performed a theoretical study of

the effect of structural changes on the elastic constants
of metallic glasses. In our opinion, in terms of the
Pineda theory, the relationship between the Poisson
ratio and Grüneisen parameter (7) may be substanti-
ated at the qualitative level (as in the studies by Kon-
torova).

The Pineda theory is based on the following three
main assumptions. First, the potential of interatomic
interaction is composed of harmonic and anharmonic
parts:

U(r) = a(r – r0)2 – b(r – r0)3,

where a is the harmonic coefficient, b is the anhar-
monic coefficient, and r0 is the interatomic distance
corresponding to the potential minimum. Second, the
distribution of distances between the nearest atoms
obeys the Gaussian distribution. Third, elastic proper-
ties are determined by the immediate environment of
atoms: the first coordination sphere.

The final (cumbersome) formulas of bulk modulus
B and shear modulus G contain dimensionless param-
eters:

where δ = (r1 – r0) and r1 and σ1 are the average radius
and the width of the first coordination sphere, respec-
tively. The values of s and σ characterize deviations of
the interatomic distance from its equilibrium value r0
and the average dispersion in the vicinity of r0, respec-
tively. Parameter γ1 implies the degree of anharmonic-
ity of the potential. It is proportional to the Grüneisen
parameter γD = br0/6a (expression (11)).

The theory was used by Pineda to explain experi-
ments on the structural relaxation and uniform com-
pression of metallic glasses. As a result of structural
relaxation, the Poisson ratio decreases (the decrease in
parameter σ is stronger), but increases during com-
pression under pressure (where the effect of a decrease
in s dominates). On the whole, the theory qualitatively
correctly describes change in elastic characteristics in
these experiments.

Let us employ the Pineda theory to verify the
dependence of elastic-modulus ratio B/G and, hence,
Poisson ratio μ on anharmonicity parameter γ1. It may
be inferred that this dependence does exist. In fact, in
accordance with formulas, elastic moduli B and G are
proportional to harmonic coefficient а, that is, to the
parameter of the interatomic potential, and their ratio
B/G (and, hence, the Poisson ratio μ) is practically
independent of а and mostly determined by anharmo-
nicity parameter γ1. Hence, it follows that Poisson

=
0

δ ,s
r

= 1

0

σσ ,
r

= 0
1γ ,br

a

Fig. 7. Plots of the function of the Poisson ratio (1 – 2μ)
vs. the volume of atom delocalization, ΔVe, for phosphate
glasses of the systems NaPO3–Li2SO4 and NaPO3–
Na2SO4. The amounts of Li2SO4 are (1) 0, (2) 10, (3) 20,
and (4) 30 mol %; the amounts of Na2SO4 are (5) 10, (6)
20, and (7) 30 mol %.
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Fig. 8. Dependence of (1 – 2μ) on ΔVe for amorphous
polymers: (1) poly(vinyl chloride), (2) polystyrene, and (3)
poly(methyl methacrylate).
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ratio μ depends on the Grüneisen parameter γD, that
is, on the measure of anharmonicity.

Hence, in terms of the Pineda theory, the calcula-
tion of Grüneisen parameter γD from the data on trans-
verse-strain coefficient μ (expression (7)) gains an
explicit substantiation.

The Model of Randomly Packed Spheres
Among studies devoted to the origin of the Poisson

ratio, special emphasis should be placed on the model
of randomly packed spheres that interact with each
other at the point of contact via two kinds of forces:
forces normal to the contact plane (central forces) and
tangential forces (friction forces) [4, 49]. It is supposed
that normal fn and tangential ft forces are proportional
to the corresponding displacements of spheres
(atoms), xn and xt, from the equilibrium position:

fn = аnxn, ft = аtxt,

where аn and аt are the normal and tangential rigidi-
ties, respectively. Hence, the Poisson ratio is deter-
mined by the ratio of these rigidities, λ = аt/аn [4]:

. (25)

At λ = 0, we have μ = 0.25; this value corresponds
to the ensemble of particles with central forces. As λ
increases, the value of μ declines, and, at λ = 1, we
have μ = 0; in the limit, at λ → ∞, we have μ = –1. It
is clear that the model of randomly packed spheres
(the model by Berlin et al. [4]) predicts that bodies
with negative Poisson ratios μ < 0 may exist and leads
to the lower limit μ = –1.

From the viewpoint of this model, auxetic materi-
als (with μ < 0) should possess high f lexural rigidities
and low axial rigidities in compression–tension: аt >
аn (λ > 1). The negative values of the coefficient of
transverse strain for Cd–As glasses apparently may be
explained by the shape of their main structural unit,
which is composed of two interpenetrating tetrahe-

−=
+

1 λμ
4 λ

drons [6, 7]. For this element, tangential rigidity аt in
the region of contact of particles is higher than normal
rigidity аn.

In our opinion, the ratio of shear modulus to the
uniaxial compression modulus, G/E, and the ratio of
the transverse velocity of sound to the longitudinal
velocity of sound, vS/vL, may serve to a certain extent
as a quantitative measure of the ratio between tangen-
tial and normal rigidities λ = аt/аn. As follows from
Table 6, ratios G/E ∼ 0.56 and vS/vL ∼ 0.74 for auxet-
ics, namely, glasses of the Cd–As system, are much
higher than those for common chalcogenides As–S
(G/E ∼ 0.37 and vS/vL ∼ 0.53) and glasses of system
Ge–As–S (G/E ∼ 0.41 and vS/vL ∼ 0.60).

For materials with negative Poisson ratios, μ < 0,
the main structural units (as supposed by A.A. Berlin
et al. [4]) may be, for example, a construction in the
form of a triangle at whose apexes interacting atoms
linked by elements of the telescopic-antenna type
occur. Elements of the construction with μ < 0, which
is characterized by rigid angles that couple during
deformation [4], are depicted below.

At any strain, the angles of the triangle and the
changes in all of its sides are proportional to each other
(the condition of geometric similarity).

Table 6. Mechanical characteristics of Cd–As and Ge–As–S glasses [6, 7]

Composition, at % vL, m/s vS, m/s ρ ×10–3, kg/m3 μ E, 108 Pa B, 108 Pa G, 108 Pa vL/vS G/E γL

Cd40As60 3417 2536 5.97 –0.113 681.1 185.1 383.9 0.74 0.56 0.57
Cd33.3As66.7 3393 2510 5.76 –0.104 650.0 179.3 362.9 0.74 0.56 0.58

Cd30As70 3370 2490 5.72 –0.101 637.5 176.8 354.6 0.74 0.56 0.58
As10S90 2089 930 2.31 0.376 55.1 74.2 20.0 0.44 0.36 2.37
As20S80 2229 1180 2.54 0.305 96.3 79.0 35.4 0.53 0.36 1.80
As28S72 2255 1228 2.84 0.283 110.0 87.0 42.7 0.54 0.39 1.67

Ge13As24S63 2651 1530 3.10 0.250 181.5 121.1 72.6 0.58 0.40 2.50
Ge20As16S64 2713 1602 3.05 0.232 192.9 120.1 78.3 0.59 0.41 2.30
Ge26As08S66 2745 1720 3.00 0.177 208.9 107.7 88.9 0.60 0.42 1.82
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In fact, all the known potentials of interparticle
interaction are either central or much more rigid in
the normal direction than in the tangential direction
(λ < 1). Therefore, materials with negative Poisson
ratios are few and far between.

In the model of randomly packed spheres, param-
eter λ = at/an, which is equal to the relative tangential
(shear) rigidity of the interatomic bond, should be
related to the relative energy of shear, Ws/W, in a cer-
tain manner in Kuz’menko equation (24). Indeed, the
higher the value of Poisson ratio μ, the lower the value
of relative tangential rigidity λ (25), and the lower the
value of shear strength (24) of the given material.
Hence, a relationship between the value of λ and the
characteristics of inelasticity of a solid should be
expected. Actually, as follows from Belomestnykh–
Tesleva formula (7) and relationship (25), there is an
unambiguous relationship between λ and the
Grüneisen parameter:

. (26)

In glassy organic polymers, Poisson ratio μ is
markedly affected by the side branches of the macro-
molecular backbone. The minimum values of μ and γD
are belong to PE, for which light hydrogen atoms play
the role of “dangling chains.” The replacement of
hydrogen atoms with larger and heavier f luorine atoms
on passage from polyethylene to polytetrafluoroeth-
ylene entails an increase in μ from 0.25 to 0.33 and,
accordingly, to an increase in γD from 3 to 4. Further-
more, when the f luorine atoms in the repeating con-
necting unit of polytetrafluoroethylene are replaced
with chlorine atoms and, accordingly, on passage to
polytrif luorochloroethylene, increases in μ and γD are
even more pronounced (from 0.33 to 0.37 and from 4
to 5.3, respectively) [54]. Here, γD implies the
Grüneisen lattice parameter (see above) [22, 23].

When light atoms are replaced with larger and
heavier atoms of end or side chain fragments, the non-
linearity of the force of intermolecular interaction and
the anharmonicity of lattice vibrations γD become
more distinct. As a result, the Poisson ratio grows
because there is an unambiguous relationship between
γD and μ (expressions (25), (26)).

In inorganic glasses, the Poisson ratio is closely
related to the strain in the structural network of
valence bonds, which is related to the displacement of
a bridging atom (of the type of oxygen atom in the con-
necting unit: the bridge –Si–O–Si–). The displace-
ment of the bridging atom is affected to a certain extent
by the ions of alkali metals and alkaline-earth metals
(“pendant chains”).

As the content of sodium oxide Na2O (sodium
ions) in sodium silicate glasses is increased from 0 to
35 mol %, the Poisson ratio and the Grüneisen
parameter increase from μ = 0.17 and γD = 1.2 for

( )
=

−
3γ

2 1 λD

quartz glass SiO2 and to μ = 0.25 and γD = 1.5 for
Na2O–SiO2 glasses containing 35 mol % Na2O. In
accordance with [30, 52], the characteristics of
sodium–silicate glasses are as follows:

These values of μ and γD are typical for isotropic
bodies with the central forces of interaction of parti-
cles, for which the values of λ are small (an is much
higher than at). It is generally agreed that, as the con-
tent of alkali-metal ions in alkaline–silicate glasses
R2O–SiO2 (R = Li, Na, or K) is increased, the ionic
character of interatomic bonds becomes more distinct
and the transition from the network structure of SiO2
to the predominantly ionic branched structure of
glasses R2O–SiO2 is observed ([55]). An increase in μ
during this transition may be explained by a reduction
in the relative shear rigidity of bonds, λ, in
formula (25).

Hence, it is natural that the Poisson ratio depends
on the specific features of atomic–molecular struc-
tures of glassy systems.

It obvious that, for a number of glasses, a relation-
ship exists between relative tangential rigidity λ and
the density of crosslinks, which are determined as the
amount of valence bonds per cation, nn [56]. For linear
structures (rubber, polystyrene) with a connectivity of
2 (two anions linked with a cation along the chain),
nn = 0 and μ ~ 0.4; for linearly branched structures
with a connectivity of 3 (B2O3, P2O5, As2O3), nn = 1
and μ = 0.3; and for structural networks with a con-
nectivity of 4 (SiO2, GeO2), nn = 2 and μ ~ 0.15 (i.e.,
approximately 0.3 : 2.0 = 0.15). The density of cross-
link valence bridging bonds additionally provides a
clue to the explanation of diametrically opposite melt-
ing temperatures of oxides, for which the strengths of
bonds are nearly equal. For example, for SiO2 and
GeO2, the melting temperatures are much higher
(1610 and 1115°С) than those for P2O5, B2O3, and
As2O3 (580, 450, and 313°С) [56]. The same is true for
the softening temperatures of these systems because
there is a linear correlation between the melting tem-
perature and the softening temperature: the two-thirds
rule Tg ~ (2/3)Tm.

The Poisson Ratio and the Fragility of Glasses

It is of interest to consider the linear correlation
between the ratio of elastic moduli of glasses, B/G, and
so-called “fragility” m, that is, the fundamental char-
acteristic of the temperature dependence of viscosity,

Na2O SiO2 γD Μ

0 100 1.2 0.17
15 85 1.3 0.20
25 75 1.4 0.23
35 65 1.5 0.25
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η(Т), in the vicinity of glass-transition temperature Tg
[57]:

(27)

where fragility is determined through the following
relationship [58]:

This correlation was found for various glasses, includ-
ing glassy systems with covalent, hydrogen, van der
Waals, and ionic bonds [57].

This fact implies that the fragility of a melt (the
temperature dependence of viscosity in the vicinity of
Tg) is determined by the Poisson ratio μ solely, because
B/G is a single-valued function of μ (expression (2))
[1]:

.

In this context, let us mention the paper by
N.S. Andreev and N.A. Bokov [59], in which the
experimental data on the temperature dependence of
the intensity of light scattering Rg in the glass-transi-
tion interval were analyzed in terms of the contribu-
tion of elastic energy to the thermodynamic potential.
This contribution appears in the viscosity of melts at
which the Poisson ratio begins to deviate from μ = 0.5.

The values of μ were calculated through the follow-
ing formula [59]:

(28)

where  is the coefficient of con-
centration expansion, V is volume, с is the molar con-
centration, ϕel is an additional term in the formula for

( )= −29 0.41 ,Bm
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the intensity of light scattering Rg that takes into
account the contribution of elastic energy.

The appearance of ϕel in the formula for Rg is asso-
ciated with the need to take into account the appear-
ance of shear elastic strains in the calculation of the
minimum work of the formation of f luctuations in
solid glasses. With an increase in temperature, the
Poisson ratio grows to μ = 0.5, at which the value of ϕel
turns to zero, ϕel = 0; this situation corresponds to the
glass-to-liquid transition.

Figure 9 shows the temperature dependence of the
Poisson ratio, μ(T), for the sodium–borate glass
Na2O–B2O3 containing 3 mol % Na2O. Here, depen-
dence μ(T) was calculated via formula (28) on the
basis of light-scattering data. Marked deviations from
μ = 0.5 begin to manifest themselves at a temperature
of almost 560°С, which is above the glass-transition
temperature.

Hence, during cooling of vitrifying melts the shear
strain appears at a temperature much higher than
glass-transition temperature Tg.

In the future, it will be of indubitable interest to
compare the data on the temperature dependence of
the coefficient of transverse strain, μ(T), obtained for
the same glasses by two independent methods: diffrac-
tion and acoustic.

The theory of phase transitions regards shear strain
as a factor suppressing f luctuations in solids. As fol-
lows from [59], such suppression of concentration
fluctuations likewise occurs during the gradual transi-
tion of the vitrifying melt into the solid glass. Unfortu-
nately, the literature lacks experimental data about
Poisson ratio μ(T) in the immediate vicinity of the
softening temperature Tg except for calculation of μ(T)
(Fig. 9) [59].

CONCLUSIONS
The Poisson ratio, despite variation of its values

within small limits, is among of the most important
structure-sensitive properties of glassy solids. The
value of μ turns out to be a single-valued function of
Grüneisen parameter (7), ultimate strain of the inter-
atomic bond (13), frozen retarded elastic strain (21),
fragility (27), fraction of shear energy in the total strain
energy (24), and product of Мu potential parameters
mn (18). In addition, transverse-strain coefficient μ is
unambiguously related to the so-called fractal dimen-
sionality of structural disturbances of the three-
dimensional lattice, df [35, 60], i.e.,

df = 2(1+μ),

and to the dimensionality of localization regions of
energy stored by the deformed body, Df [35, 60], i.e.,

.−=
−f

2(1 μ)
(1 2μ)

D

Fig. 9. Temperature dependence of the Poisson ratio,
μ(T), for the sodium–borate glass (mol %) 3Na2O · 97B2O
[59].
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At the same time, the physical meaning of the Pois-
son ratio of glassy solids remains vague [2, 4, 21, 46–
50, 56].

Among theoretical developments, the Berlin–
Rothenburg–Bathurst model [4], the Kuz’menko
theory [48], and the Pineda theory [21] deserve atten-
tion. In terms of these approaches it may be explained
on the qualitative level why the Poisson ratio is unam-
biguously related to the Grüneisen parameter, that is,
the measure of anharmonicity; why for glasses with
high yield strengths, the values of μ are higher, while
for soft materials with low yield strengths, the values of
μ are smaller; which structural features should be
exhibited by isotropic solids with a negative Poisson
ratio; and why μ is a single-valued function of the crit-
ical strain, at which the transition from the elastic
deformation to the inelastic deformation occurs.
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