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INTRODUCTION

One of the conventional methods for the investiga�
tion of rheological properties of materials is the
method of small amplitude oscillatory shear [1]. Dur�
ing its application, the studied sample is deformed
with frequency ω according to a harmonic law with a
given low strain amplitude: γ(t) = γ0sin(ωt). “Low
amplitude” is taken to mean such a value of deforma�
tion at which stresses arising in the material are
directly proportional to it. In this case, the time
dependence of stresses is likewise harmonic: σ(t) =
σ0sin(ωt + δ). Mechanical�loss angle δ characterizes
the part of energy that the material loses in a deforma�
tion cycle and is equal to 0° for an absolutely elastic
body and 90° for an absolutely viscous liquid. The
dynamic complex modulus can be written in the form

(1)

The situation changes fundamentally during a peri�
odic deformation of the material with a large ampli�
tude when the material response (stress) is no longer a
regular harmonic.

A convenient method for visualization of the results
is abandonment of the application of time as an argu�
ment and construction of the Lissajous figures, i.e.,
the dependence of stress on deformation. For linear
viscoelastic behavior, these figures are ellipses, and, in
the case of a nonlinear response of the sample, they
transform into figures of variable shapes [2, 3].

The interest in the analysis of nonlinear viscoelas�
ticity of materials via the method of large amplitude
oscillatory shear appeared in the 1970s [4]. In recent
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years, a number of methods for analysis of the nonhar�
monic response of samples have been suggested (see,
e.g., review [5]). A goal of analysis of the nonlinear
response of samples may be determination of their
objective rheological characteristics in relation to the
structure [6–11], elucidation of the parameters of the
model that fits their behavior [12–15], or observation
over physical processes during their deformation [12,
16–24]. Some studies have been devoted to the choice
of the deformation mode [25, 26], the measurement
geometry [27, 28], and application of the microrheol�
ogy method [29].

To estimate the nonlinearity of materials, their
objective rheological characteristics derived from tests
in the nonlinear region of mechanical behavior are
used. The most popular approach to establishing non�
linear characteristics is the following sequence of
actions. First is the transformation of a nonlinear
response into a Fourier series [30] and the expansion
of stress into components [31]:

(2)

Only odd higher harmonics are considered, while it is
assumed that even ones result from flow non�homoge�
neity [32].

Then, the response is approximated with the use of
Chebyshev polynomials of the first kind so that elastic
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and viscous responses can be presented in the follow�
ing form [33]:

(3)

where en and νn are the elastic and viscous Chebyshev
coefficients and Tn is the Chebyshev polynomial of the
nth order.

As a final result, these manipulations make it pos�
sible to calculate the components of the dynamic
modulus at large (GL) and minimal deformations (GM):

(4)

From the physical point of view, the component at
a large deformation includes the linear and nonlinear
part of the dynamic modulus of the material. For
example, it can be written in the form of a simple
model:

, (5)
where γ* is deformation that causes a nonlinear
response. The component at minimal deformation,
GM, is only a linear part, i.e., G0.

From the mathematical point of view, the elastic
component at a large deformation is the derivative of
stress at the point where deformation is maximal, and
the component at the minimal deformation is the
derivative at the point where deformation takes a zero
value. For the viscous component, the definition is
analogous with exclusion of the fact that the derivative
is taken with respect to the rate of deformation, rather
than the deformation itself:

(6)

Finally, for classification of materials, it was sug�
gested to use the measures of elastic nonlinearity S and
viscous nonlinearity T, defined by the relationships

. (7)

Positive measures indicate the elastic or viscous hard�
ening of a material, whereas negative values indicate
the corresponding softening.

An alternative to the Fourier transformation of the
material response is the integral method of definition
of the components of the dynamic modulus at large
and small deformations, which is based on the appli�
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cation of the Lissajous figures [34, 35]. The main point
is that the loss modulus at a large deformation is pro�
portional to the area of the Lissajous figure built in
stress–deformation coordinates, and the elasticity
modulus at a high deformation is proportional to the
area of the figure in coordinates of the derivative of
stress with respect to the phase angle and deformation:

. (8)

Here, E is the area of the figure in dσ/d(ωt)–γ coordi�
nates, while A is the area of the figure in the conven�
tional σ–γ coordinates.

The elasticity and loss moduli can be calculated for
the moment time where the deformation reaches the
maximal value. A difference of such differential or
instantaneous modulus GR from the modulus at a large
deformation consists in the fact that the former is
some momentary value at the point of maximal defor�
mation, while the latter is the combined averaged
modulus that characterizes the material during its
deformation from zero to the maximal magnitude.

To find the instantaneous modulus, it is possible to
use two Lissajous figures obtained at close values of
deformation, and the instantaneous modulus itself
(for example, elasticity modulus) can be written as

(9)

where ΔE is the difference between the area of the Lis�
sajous figure obtained at an amplitude of deformation
of γ0 and the area of the analogous figure, but at a lesser
amplitude of deformation.

The modulus at a large deformation, the modulus
at the minimal deformation, and the instantaneous
modulus are interconnected [34]:

. (10)

The determination of the nonlinear components of
the dynamic modulus via the integral method makes it
possible to calculate the measures of elastic and vis�
cous nonlinearity through Eq. (7). However, the Lissa�
jous figures themselves can be additionally used to
search for alternative measures of nonlinearity accord�
ing to the distortion of the ellipse shapes [35]. For this
purpose, the Lissajous figure must be divided into four
parts along the ordinate axis and a straight line that
combines the experimental points with the amplitude
deformation. Then, it is necessary to subtract from the
area of sectors that are responsible for the develop�
ment of deformation from zero to the amplitude value
the areas of opposite sectors where deformation
decreases in amplitude to zero value. Referring the
resulting value to the total area of the Lissajous figure
gives the measure of nonlinearity:
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(11)

Subsequently, for convenience, let us add the follow�
ing to the recording of moduli and nonlinearity mea�
sures obtained with the use of the Fourier transforma�
tions: lower index F; in the case of integration of the
Lissajous figures, index I; and for nonlinearity mea�
sures obtained via the division of the Lissajous figure,
index A (as in Eq. (11)).

Hence, two different approaches to the analysis of
the nonlinear material response can be highlighted.
They are utilized to define the components of the
dynamic modulus and the measures of material non�
linearity. The first approach is based on the Fourier
analysis of the material response, while the second
approach is based on the integration of the depen�
dences of stress and its derivative with respect to phase
angle over deformation.

The goal of the present study is to compare the
results derived via two approaches relative to the
model systems. In other words, the case in point is the
comparison of particular values of nonlinear storage
and loss moduli as well as the measures of elastic and
viscous nonlinearity. Moreover, consideration is given
to other possible approaches to the analysis of the non�
linear behavior of samples for establishing the useful�
ness of the method of large amplitude oscillatory shear
as a method that supplements conventional testing
techniques.

EXPERIMENTAL

The investigation was concerned with two model
systems: polyisobutylene (PIB) in the viscous�flow
and high�elasticity relaxation states and cis�1,4�poly�
isoprene (PIP) filled with silicon dioxide nanoparti�
cles. PIB with Mw = 51 × 103 and a polydispersity index
of 4.0 was supplied by BASF (trademark Oppanol B12
SFN). PIP was with Mn = 65 × 103 and a polydispersity
index of 1.4 was supplied by Royal Adhesives and Seal�
ants (trademark Isolene 400). Silicon dioxide (Sigma
Aldrich) had an average size of elementary particles of
7 nm and a specific surface of 395 m2/g.

SiO2 was introduced into a 30% solution of PIB in
n�hexane under stirring on an IKA Ultra�Turrax T 18
disperser at a rotor rotation speed of 24 × 103 rota�
tions/min. After stirring, the solvent was removed
under vacuum at a temperature of 100°С. The com�
posites were studied with filler contents of 3, 5, 7, and
9 vol %.

The rheological properties were studied on a Phys�
ica MCR 301 Anton Paar rotation rheometer with
controlled shear stress and a cone–plane unit (d =
20 mm, α = 2°). The sample testing was performed in
the mode of periodic deformation according to a har�
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monic law with a particular given amplitude of defor�
mation and measurement of stress as the system
response.

The properties of PIB were studied at 20°C with
impact frequencies of 1, 3, 10, and 30 Hz and at 150°C
with a frequency of 3 Hz. The properties of PIP com�
posites were investigated at 20°С and a frequency of
1 Hz.

RESULTS AND DISCUSSION

Polyisobutylene

The effect of the relaxation state of the polymer and
the frequency of its loading on the complex of vis�
coelastic properties at large deformations was studied
for the example of PIB. Its viscoelastic properties in
the linear range of mechanical behavior, as well as the
results of data translation to 20°С with the use of the
principle of temperature–time superposition [36], are
presented in Fig. 1. They are typical for polymers with
broad molecular�mass distributions, a circumstance
that is reflected in the smooth transition from one
physical state to another and in the incline of the high�
elasticity plateau. The experiments utilizing large
deformations were performed for the example of PIB
in the viscous�flow and high�elasticity states (vertical
lines in Fig. 1).

During application of the method based on the
Fourier transformation, the following questions arise:
How much higher should the harmonics that are con�
sidered during analysis be (for example, only to sev�
enth)? Should the even harmonics be considered? Do
they have any physical meaning, or are they noise? Let
us consider the evolution of harmonic magnitudes
(i.e., complex moduli) with an increase in deforma�
tion amplitude (Fig. 2).

In the range of low amplitudes of strain and stress,
the complex modulus manifests the second, third, and
fifth harmonics that differ from zero. The appearance
of higher harmonics is explained by the background
vibrations, a circumstance that becomes evident only
at a low torque on the rheometer drive. Indeed, the
vibration distorts the input signal, so that a part of the
first harmonic of deformation decreases to 97%, and
the nonlinearity of the impact on the object leads to
the nonlinearity of its response.

As the stress applied to the sample increases, the
background noise becomes insignificant and both sig�
nals appear to be harmonic. As the amplitude
increases, a decrease in the portion of the first har�
monic is again substantial at a deformation exceeding
300%. The deviation from the harmonic law is likely to
be observed as a result of the use of rheometers with
controlled shear stress during testing of materials in
the mode of controlled deformations. The maximal
distortion of the input signal is reached at a deforma�
tion amplitude of ~8000%; therefore, a portion of the
first harmonic becomes equal to 95%. A further
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increase in the amplitude of the input signal leads to
weak monotonic suppression of distortion. On the
whole, analogous behavior is demonstrated by the sec�
ond harmonic of the output signal: Its appearance
coincides with the beginning of considerable distor�
tion of the input impact and it reaches the maximal
portion (1.5%) at a deformation of ~1000% and then
gradually decreases. Hence, the appearance of the sec�
ond harmonic of the output signal is very likely to be
caused precisely by the distortion of the input signal.
In any case, only the second harmonic proceeds
through a maximum as the amplitude of impact
increases along with the degree of distortion of the
input impact.

The odd modulus harmonics increase monotoni�
cally as the amplitude of deformation grows and
appear gradually: from the third to the seventh har�
monic during an increase in deformation by approxi�
mately a decimal exponent. The difference in defor�
mation between appearance of the seventh, ninth, and
further harmonics is not as high. However, the higher
harmonics become evident only at a deformation
exceeding 105%, which actually corresponds to the
limit of rheometer possibilities. Moreover, testing of a
material with such a deformation (and rate) can lead
to adhesion or cohesion breaks with loss of contact
with the measuring unit or loss of continuity of the
studied sample. Furthermore, the material may creep
out from the measuring gap owing to the appearance
of the Weissenberg effect. In other words, such high
amplitudes of the impact and harmonics are not of
practical interest.

From the presented data, it follows that, for the
analysis using the Fourier transformation, it is possible
to use only the first, third, and fifth harmonics. The
seventh and ninth harmonics can additionally be taken
into account because their growth during an increase
in the impact amplitude is monotonic. This circum�
stance means that the mentioned higher harmonics
reflect the changes in material properties, and,
although their portion is negligible, it cannot be
excluded that, in more complex systems, it can be
higher. Nevertheless, consideration of the higher har�
monics (or even the whole series) is not acceptable,
owing to their application for some calculations in the
form multiplied by its number (for example, during
the definition of moduli at the minimal deformation
via Eq. (4)). For further calculations, only odd har�
monics up to the ninth will be considered.

Let us compare the results of the application of the
known methods for the calculation of nonlinear vis�
coelastic characteristics to one set of the primary data
(Fig. 3). The storage modulus, regardless of the used
method, can be calculated up to deformations of
~105%. According to the data of Fig. 2, during pre�
cisely such deformations, the harmonics above the
seventh become evident in the output signal. At large
deformations, a broad dispersion of points and nega�
tive values of the calculated storage moduli are
observed. For loss moduli, owing to their lower depen�
dence on the deformation amplitude (high values
compared to the accumulation modulus), it is possible
to define their values in the whole studied range,
which, nevertheless, in isolation from the simulta�
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neous estimation of the material elasticity has no
meaning.

The values of nonlinear moduli established via the
integration of the Lissajous figures, GI, and established
via the Fourier analysis of the output signal, GF, do not
coincide. However, the difference in each modulus at
a fixed value of amplitude is not high, and all nonlinear
moduli are extremely close in value to the modulus
calculated via the most apparent method: for the first
harmonic of the output signal. Nevertheless, in the
case of application of the integral method, during the
definition of moduli at minimal and large deforma�
tions, a substantial difference between these values
arises simultaneously with the output of material from
the region of linear viscoelasticity, whereas, during
application of the method of analysis of harmonics, a
substantial difference between the two moduli is
observed only at considerable deformations (above
1000%, Fig. 3). In addition, a pronounced deviation
of the Lissajous figures from an ellipse occurs at lower
values of deformation amplitudes (insets in Fig. 3). In
other words, moduli GF are not as sensitive to the input
impact as GI is in the range of not very high deforma�
tion amplitudes.

The moduli at minimal and large deformations can
be calculated directly through formula (6) with the use
of the mathematical definition of these values. Let us
do so for the Lissajous figures demonstrated in the
insets of Fig. 3 and compare the resulting values with
the values obtained via the two other methods (table).

The data of the table indicate that, despite a signif�
icant deviation of the output signal from the harmonic
type, all moduli, irrespective of whether they were
obtained at large or minimal deformations, are close.
Against the other moduli, only the modulus at the
minimal deformation, GM,I, defined by the Lissajous
figures differs. In the physical meaning, the value of
modulus GM must be equivalent to the linear compo�
nent of the modulus of a studied body (see Eq. (5));
i.e., it must be close in value to the modulus in the
range of linear viscoelasticity. It is apparent that this is
obeyed best of all precisely by moduli obtained via the
integration.

On the whole, the considered methods give the
same character of amplitude dependences of the com�
ponents of the dynamic modulus and only insignifi�
cantly differ in value at the same amplitude of the sam�
ple deformation. Consequently, much more signifi�
cant are their ratios as measures that characterize the
nonlinearity of the studied object. Let us compare the
measures of nonlinearity obtained via three methods.
Two of them utilize the ratios of moduli at large and
minimal deformations calculated in the analysis of the
Lissajous figures (SI and TI) or in the Fourier analysis
(SF and TF) through Eq. (7), and the third utilizes the
ratio of areas of Lissajous figure sectors (SA and TA)
through Eq. (11).

The signs of the measures of elastic nonlinearity
established via different methods (Fig. 4a) in general
indicate the strain softening of the polymer at large
deformations and strain stiffening at very large defor�
mations, whereas the measures of viscous nonlinearity
(Fig. 4b) testify pseudoplasticity. Only numerical val�
ues of these measures and the deformation amplitude
at which a transition from one model to another
occurs differ.

The nonlinearity measures calculated via the Fou�
rier analysis appear to be more sensitive to the change
in amplitude of the input impact than the components
of dynamic modulus defined by the same method.
However, unlike the measures found via another
method, measures SF and TF indicate weak strain stiff�
ening at relatively small deformations and the transi�
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lar frequency of 6.28 s–1.
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tion from shear thinning to shear thickening at defor�
mations above 2000%, respectively. The latter, how�
ever, cannot be correct, because there is no increase in
viscosity with the shear rate during testing of PIB.

During discussion of the results, a legitimate ques�
tion is the need for the nonlinearity measures. It seems

they are necessary not only for classification of a mate�
rial and its attribution to a rheological type but also for
fixation of qualitative changes in the behavior of a
sample with the growth of the impact force on it, i.e.,
also for classification. If so, then generally the absolute
values of measures are not of high significance, and
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6.28 s–1: (1) GI, (2) GL,F, (3) GM,F, (4) GL,I, (5) GM,I. The insets show the Lissajous figures obtained at a deformation amplitude
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Components of the dynamic modulus for PIB at T = 20°C, ω = 6.28 s–1, and γ = 400%

Calculation method
G ', kPa G '', kPa

 

Mathematical definition (Eq. (6)) 17.08 17.69 21.56 25.44

Fourier analysis (Eq. (4)) 17.25 17.49 28.03 23.13

Integration (Eqs. (8) and (10)) 31.86 17.63 36.77 24.54

Calculation for the first harmonic 17.48 24.27
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any method convenient for the experimenter is
acceptable for classification.

Because all the methods give close values of moduli
at the same value of the deformation amplitude, it is
reasonable to restrict ourselves to sample classification
only for the definition of any single modulus at two
different deformation amplitudes. This seems to be
possible on the basis of the fact that modulus GM, I is
calculated only from the value of modulus GL, I at two
different values of the deformation amplitude (Eqs. (9)
and (10)). In addition, the nonlinearity measure is the
ratio of moduli at high and minimal deformations
(Eq. (7)). Then, for estimation of the measures of
nonlinearity, i.e., for material classification, it is
enough to define two moduli, for example, for the first
harmonic. This is topical because the modulus of the

first harmonic practically coincides with the integral
modulus at a large deformation, GL, I (Fig. 3).

There is a problem consisting in the absence of an
independent basis for a judgment about the correct�
ness of nonlinear measures. If, for T as a measure of
nonlinearity of viscous properties, it is possible to
compare for confirmation its amplitude dependence
with the flow curve of the studied sample, then the
application of elastic measure S for judgment about
correctness is not obvious.

The following question can be posed: Is there any
dependence of the measure of nonlinearity on any
property of a parameter? It seems that this is the deriv�
ative of the property with respect to the mentioned
parameter, i.e., the rate of change in the property at an
increment in some parameter. If the property is linear,
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Fig. 4. Measures of (a) elastic and (b) viscous nonlinearity of PIB at 20°C and an angular frequency of 6.28 s–1.
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the derivative accepts the zero value. At the same time,
the more sensitive the property to the changed param�
eter, the higher the absolute value of the property
derivative. It is apparent that the variable parameter in
our case is the deformation amplitude, and the prop�
erties are the loss and storage moduli.

The derivatives of the components of the dynamic
modulus with respect to the deformation amplitude
are presented in Fig. 5a and testify the pseudoplasticity
and softening of the sample during shear, an outcome
that is generally in good agreement with measures S
and T (Fig. 4). Nevertheless, the qualitative resem�
blance between any curves of two figures is not
observed. Moreover, the derivatives of moduli indicate
considerable softening of the polymer already at small
deformations and imply a seemingly absurd transition
to linearity of the object with an increase in impact

intensity. The explanation consists in the fact that, in
the range of small deformations, the moduli are not
high and increments of impact amplitudes are small, a
situation that leads to the high derivatives. In the
region of very large deformation amplitudes, the situ�
ation is opposite, and the derivatives are small in abso�
lute value.

For scaling of the analyzed effects, it is necessary to
pass to logarithmic values and to consider the deriva�
tives of modulus logarithms with respect to deforma�
tion logarithms (Fig. 5b). After calculation, the
observed dynamics of variation of the calculated values
with an increase in the impact amplitude becomes
more realistic. In addition, the comparison of the
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mation amplitude for PIB at 20°C and an angular fre�
quency of 6.28 s–1.
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derivatives with the measures of nonlinearity found
earlier (Fig. 4) indicates the qualitative correlation of
the behavior of the derivatives precisely with nonlin�
earity measures SI and TI. This correspondence con�
sists both in the same character of changes in the mea�
sures (in their smooth decrease in the region of rela�
tively large deformations and in instability at very large
impacts) and in negative values of both parameters as
well as in the predominance of the absolute value of an
elastic parameter over the viscous parameter.

Discussing the classification of materials from the
viewpoint of their softening during deformation, it is
appropriate to turn to the classical concept of
mechanical�loss angle δ. For its calculation, it is pos�
sible to take a pair of the components of the dynamic
modulus. Let us use moduli  and  as the most
convenient ones. Moreover, to define the ratio of lost
and stored energy, it is possible to turn to the concept
of power of the output signal, which can find sepa�
rately for stored and lost parts:

L I,'G L I,''G

(12)

The calculations of both parameters testify an
increase in the portion of lost energy during sample
deformation (Fig. 6a), i.e., its deformation softening.
This circumstance is in agreement with the data of
Fig. 4, where both nonlinearity measures S and T,
regardless of the method of calculation, are mostly
negative in the nonlinear region. In addition, S
decreases more rapidly with an increase in deforma�
tion.

Note that S and T characterize the relative soften�
ing of the material during an increase in the impact
amplitude from the position of energy storage and loss.
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In contrast, tanδ and ratio P ''/P ' characterize the
absolute softening of the material at the given impact
amplitude. Consequently, more precise comparison of
these two classes of characteristics can be performed in
the following manner. First, it is necessary to take the
derivative of absolute value (tanδ or P ''/P ') with
respect to deformation in order to transform it into a
relative value. Then, the positive value of this deriva�
tive will testify the material liquefaction or, in other
words, a more intense drop in the value of stored
energy with an increase in impact amplitude than that
in the lost energy in the same deformation cycle.
Because the negative values of relative nonlinearity
measures S and T indicate the elastic or viscous soft�
ening of the material, the above�mentioned material
liquefaction must be observed when the measure of
viscous nonlinearity, T, exceeds the magnitude the
measure of elastic nonlinearity, S. This means that
there must be a qualitative coincidence: If the deriva�
tive of tanδ or P ''/P ' is positive, then the difference
between T and S must likewise be positive.

The precise quantitative relationship must proceed
from the expression

(13)

However, for simplicity and clarity, let us restrict
ourselves only to a qualitative correlation of the deriv�
atives of absolute values with the difference between
the nonlinearity measures calculated previously
through three methods (Fig. 4). The data presented in
Fig. 6b clearly demonstrate the common character in
behavior of the derivatives with the difference of mea�
sures SI and TI. The differences in two other pairs of
measures change their signs with an increase in defor�
mation, whereas the derivatives are positive through�
out the considered region of deformation amplitudes.

Hence, the performed analysis revealed that the
best result on agreement in behavior with classical
characteristics of viscoelasticity are provided by non�
linearity measures SI and TI calculated from the mod�
uli found during integration of the Lissajous figures. In
this respect, we will use them for further analysis as
nonlinearity measures.

Let us establish the character of the effect of the
deformation frequency of the material on its nonlin�
ear viscoelasticity. The tests with PIB in the high�
elasticity state were performed at a number of angular
frequencies (vertical lines in Fig. 1). Figure 7a shows
the values of moduli  and  normalized to the
modulus value in the linear region during sample
testing at various frequencies. It is obvious that the
normalized moduli of storage and loss take on their
characteristic values that are determined by the
deformation amplitude, rather than the frequency.
The calculation of three different pairs of nonlinear�

dd

d d

d d d d

δ
=

γ γ

× γ − × γ δ δ
= = −

'' / ' )tan

' '' / '' ' / tan tan
2

(

'' '( ' )

G G

G G G G
T S

G GG

L I,'G L I,''G

ity measures gives precisely the same pattern when
the difference between measures S or T at the same
deformation, but different frequencies, is dictated
only by the test accuracy.

The situation changes qualitatively if we compare
the samples in two different relaxation states (Fig. 7b).
An increase in temperature and the transition of the
polymer from the high�elasticity state to the viscous�
flow state cause a broadening of the region of linear
viscoelasticity and more drastic decreases in the mod�
uli during output from it with an increase in the impact
amplitude. The corresponding behavior is observed for
measures of nonlinearity (Fig. 8a), which decrease at
150°С more intensely. It appears that the length of lin�
earity of mechanical properties for the sample in the
two relaxation states is, nevertheless, the same, a cir�
cumstance that is obvious from the behavior of elastic
measure S. Interestingly, the character of the ampli�
tude dependence of the mechanical�loss tangent (as
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Fig. 9. (a) Frequency dependences of (closed circles) the
linear storage and (open circles) loss moduli and (b) flow
curves for SiO2–PIP composites. The volume contents of
the filler are (1) 0, (2) 3, (3) 5, (4) 7, and (5) 9 vol %.
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well as the ratio of the powers of lost and stored energy,
P ''/P ') is almost identical for two tests (Fig. 8b), and
this occurs during a temperature change of 130°С with
a relaxation transition of the sample! Hence, the appli�
cation of more complex nonlinearity measures for
comparison of the objects and analysis of their behav�
ior, instead of that of the conventional mechanical�
loss tangent, seems justified.

Polyisoprene Nanocomposite

Let us consider now which new information about
the material can be derived from the method of large
deformations. Let us take for analysis synthetic rubber
filled with nanoparticles, and to start, let us follow the
evolution of linear viscoelastic properties and viscosity
during an increase in the filler content. The practical
interest is due to the application of similar filled elas�
tomers as adhesives [37].

The addition of particles to the polymer leads to
increases in both components. In addition, more
intense increases are observed in the low�frequency
region (Fig. 9a). As a result, at silicon dioxide con�

tents of 7–9 vol %, the storage and loss moduli can
be considered values that almost do not depend on
frequency. Presumably, the addition of silicon diox�
ide nanoparticles to PIP favors an increase in the
rigidity of the composite due to the formation of
fractal spatial chains by the particles with a low
affinity for the matrix that are combined into a single
network. This situation causes the transition of the
material from a viscous�flow relaxation state to a
pseudo�rubbery gel state.

The evolution of the flow curves reflects an increase
in the degree of sample filling with an increase in vis�
cosity (Fig. 9b). The formation of the spatial network
in the sample is not so evident, because, even if the
material reaches the yield stress, its value practically
coincides with the stress for the polymer transition to
a forced high�elasticity state. However, the flow curve
of the composite with 9 vol % SiO2 has an S shape with
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Fig. 10. Amplitude dependences of (a) the storage modu�
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the differential viscosity becoming negative. Such
behavior is characteristic for concentrated suspen�
sions and is connected with decomposition of the spa�
tial network from the particles during passage through
the yield stress [38, 39].

Let us consider the evolution of the integral com�
ponents of the dynamic modulus (Fig. 10). It is appar�
ent that, for the absolute magnitudes of moduli, a
series of curves decomposes into two sets. This out�
come indicates the transition in the structural state of
the material in the range of silicon dioxide contents of
3–5 vol %. Presumably, the matter is the transition via
the percolation barrier of nanoparticles that results in
the formation of a spatial network in the whole mate�
rial bulk [40]. Precisely the presence of such a solid
network causes the high moduli for more concentrated

compositions. The introduction of the particles
reduces the length of the region of linear viscoelastic�
ity, a result that is noticeable also for the composition
with 3 vol % filler. The latter is likely to imply the pres�
ence in the sample of separate aggregates decompos�
ing during the action of shear, even at a particle con�
tent below the percolation barrier.

The network formed by the particles in the sample
is rigid and starts to decompose at deformation ampli�
tudes of ~1%. Then, as the impact force increases, the
viscoelastic properties of the samples approach the
values characteristic for the matrix polymer. Interest�
ingly, at a particle content in the composite of 5 vol %
or more (especially evident for the sample with 9 vol %
SiO2), the amplitude dependence of the loss modulus
starts to pass through the maximum. Hence, as the
portion of the filler increases, the transition of the
rheological behavior of the material from the arche�
type with strain thinning to the archetype with a weak
strain overshoot occurs [41]. The last archetype is
exactly characteristic for suspensions of silicon diox�
ide particles with the structure that decomposes during
shear [42, 43].

Let us consider the evolution of nonlinear mea�
sures (Fig. 11). Both measures testify the viscous and
elastic softening of the composites during their defor�
mation and the strengthening of nonlinearity with an
increase in the filler content. The exception is the sys�
tem with 9 vol % filler, for which the viscous measure
indicates the dilatant behavior at not very large defor�
mations. This effect is likely caused by rheopexy at low
deformation rates, as is typical for concentrated sus�
pensions [44].

The absolute measures of material softening in
this case are informative (Fig. 12), unlike those
applied for consideration of the difference between
the polymer in two different relaxation states
(Fig. 8b). In this case, the concentration boundary
between the character of behavior of the samples
shifts to the higher contents of particles, and for sys�
tems with contents of silicon dioxide of 7–9 vol %,
some deformation transitions are clearly observed, a
circumstance that is not characteristic for less filled
composites; i.e., the absolute characteristics of soft�
ening, although they include both elastic and viscous
components, appear to be useful for analysis of the
sample properties. In addition, the two sets of curves
differ not only in character but also in length of the
starting region of linearity in which the softening
measures of the sample do not change during an
increase in the impact force. Thus, for composites
with 7 and 9 vol % filler, the portion of stored energy
in the cycle of deformation begins to extremely
decrease as early as at low shear amplitudes.

Finally, note the difference between the two abso�
lute characteristics of softening: tanδ and P ''/P '. Dur�
ing the application for comparison of the samples of
tanδ, the difference between the samples is not as high
as during the comparison of the energy characteristics
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Fig. 12. Amplitude dependences of the (a) the mechani�
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stored energy for SiO2–PIP composites. The volume con�
tent of the filler are (1) 0, (2) 3, (3) 5, (4) 7, and (5) 9 vol %.
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during their deformation. In other words, the ratio of
lost power and stored power as the nonlinearity char�
acteristics during deformation may be preferable for
application owing to the higher resolution during dif�
ferentiation between the compared systems.

Hence, the method of large amplitude oscillatory
shear is useful for observations of qualitative structure
transitions in samples during variation in their compo�
sition and observations of the peculiarities of decom�
position of the structures under shear.

CONCLUSIONS

The numerical values of the components of the
dynamic modulus at large amplitude oscillatory
shear slightly depend on the choice of a particular
method for their calculation. In contrast, the sign of
the nonlinearity measures of the material, which
indicates its type of rheological behavior as well as
the character of variation of the numerical parame�
ter of these measures with an increase in the defor�
mation amplitude, is individual for each of the com�
pared methods. The nonlinearity measures may
characterize both the absolute change in the ratio of
lost energy and stored energy in the sample during its
cyclic deformation and the relative changes in the
viscous and elastic components as the material
moves away from the region of linearity of mechani�
cal properties. The application of different nonlin�
earity measures can serve for classification and com�
parison of the behavior of samples at large deforma�
tions without application for such analysis of
particular rheological models.
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