Hexylthiylation of Allyl Ethers of Phenols

I. M. Gabbasova^{*a*}, L. A. Baeva^{*b*}, Z. F. Rakhimova^{*a*}, E. A. Kantor^{*c*}, and N. K. Lyapina^{*b*}

^a Bashkir State Medical University, Ufa, Bashkortostan, Russia

^b Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Bashkortostan, Russia ^c Ufa State Petroleum Technological University, Ufa, Bashkortostan, Russia

e-mail: innik_r@mail.ru

Received April 15, 2014

Abstract—The reaction of allyl ethers of phenols with hexanethiol in the presence of azobis(isobutyronitrile) regioselectively affords 3-(hexylthio)propyl ethers of phenols, which hold promise as flotation agents.

Keywords: allyl ethers, phenols, azobis(isobutyronitrile), flotation agents **DOI:** 10.1134/S0965544115010041

Derivatives of ethers and esters containing sulfur and the phenol moiety exhibit properties of plant growth regulators, fungicides, and nematocides [1]; hybrid antioxidants [2]; and heat stabilizers for polymers [3]. One of the known methods for preparation of alkylthioethyl ethers of phenol is the reaction of alkanethiols with haloalkyl ethers of phenol [1].

In this study, we explore possibility of synthesis of previously unknown alkylthiopropyl ethers of phenols via addition of hexanethiol to allyl phenyl ethers according the procedure developed for allylphenols [4, 5]. Available allyl phenyl ethers are increasingly used in syntheses of various practically useful compounds [6–9].

EXPERIMENTAL

Infrared spectra were recorded on a Specord M-80 spectrometer. ¹³C and ¹H NMR spectra were recorded on a Bruker AM-300 spectrometer at operational frequencies of 75 and 300 MHz, respectively, using TMS as the internal standard and CDCl₃ as the solvent. GLC analysis was carried out on a Chrom-5 chromatograph with a 1 m \times 5 mm column, using Inerton-supported Carbowax 20M (20%) as a stationary phase, a flameionization detector, and nitrogen as a carrier gas. Gas chromatography-mass spectrometry (GC-MS) investigation was accomplished on an Agilent instrument operation in the total ion current mode in the range of m/z 28-600 using electron ionization (70 eV), an HP-5MS 30 m \times 5 mm chromatographic column with a stationary-phase film thickness of 0.25 µm, helium as a carrier gas, an injector temperature of 250°C, and an ion source temperature of 230°C.

Allyl ethers of phenol (1), 2-*tert*-butyl- (2), 4-*tert*butyl- (3), and 2,4-di-*tert*-butylphenols (4) were synthesized from the corresponding phenols using 3-chloropropene-1 according to the published procedure [10].

3-(Hexylthio)propyl ethers of phenols (5–8) were prepared via thiylation of allyl phenyl ethers using hexanethiol in the presence of azobis(isobutyronitrile) (AIBN) in an argon atmosphere at 75–80°C for 30 h according to the procedure described in [5].

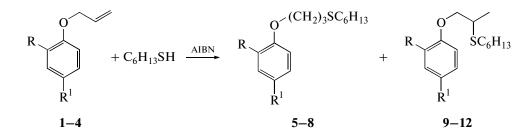
3-(Hexylthio)propyl ether of phenol (5). Yield 95%, n_D^{20} 1.5255, d_4^{20} 0.989. IR, v, cm⁻¹: 1244 (Ar–O–C), 1496 (Ar). ¹H NMR, δ , ppm: 0.89 (t, 3H, C¹¹H₃, ³*J* = 6.5 Hz), 1.30 (m, 6H, C^{8–10}H₂), 1.59 (m, 2H, C⁷H₂), 2.20 (m, 2H, C³H₂), 2.62 (m, 4H, C^{4, 6}H₂), 4.07 (t, 2H, C²H₂, ³*J* = 6.1 Hz), 6.8–7.3 (m, 5H, Ar). ¹³C NMR, δ , ppm: 14.12 (C¹¹); 22.63 (C¹⁰); 28.64, 29.43, 29.67, 31.50, 32.29 (C^{3,4,6–8}); 66.20 (C²); 114.53, 120.85, 129.48 (CHAr); 158.92 (CAr). Mass spectrum, *m*/*z* (*I*_{rel}, %): 252 (31) [*M*]⁺, 159 (100), 94 (15), 75 (14), 43 (9). Found (%): C 71.04, H 9.15, S 12.35. Calculated for C₁₅H₂₄SO (%): C 71.43, H 9.52, S 12.70.

3-(Hexylthio)propyl ether of 2-*tert***-butylphenol (6).** Yield 85%, n_D^{20} 1.4998, d_4^{20} 0.939. IR, v, cm⁻¹: 1230 (Ar–O–C), 1489 (Ar). ¹H NMR, δ , ppm: 0.90 (t, 3H, CH₃, ³*J* = 6.6 Hz), 1.30 (m, 6H, C^{8–10}H₂), 1.41 (s, 9H, C¹(CH₃)₃), 1.59 (m, 2H, C⁷H₂), 2.10 (m, 2H, C³H₂), 2.62 (m, 4H, C^{4,6}H₂), 4.09 (t, 2H, C²H₂, ³*J* = 6.0 Hz), 6.8–7.3 (m, 4H, Ar). ¹³C NMR, δ , ppm: 14.08 (C¹¹); 22.59 (C¹⁰); 28.60, 29.07, 29.67, 29.73, 31.49, 32.24 (C^{3,4,6–9}); 29.91 (C(CH₃)₃); 34.82 (C(CH₃)₃); 66.16 (C²); 111.81, 120.26, 126.59, 127.01 (CHAr); 137.83, 157.60 (CAr). Mass spectrum, *m/z* (*I*_{rel}, %): 308 (20) [*M*]⁺, 159 (100), 135 (11), 75 (15), 43 (10). Found (%): C 73.65, H 10.02, S 10.05. Calculated for $C_{19}H_{32}SO$ (%): C 74.03, H 10.39, S 10.39.

3-(Hexylthio)propyl ether of 4-*tert***-butylphenol (7).** Yield 85%, n_D^{20} 1.5201, d_4^{20} 0.975. IR, v, cm⁻¹: 1246 (Ar–O–C), 1512 (Ar). ¹H NMR, δ , ppm: 0.91 (t, 3H, CH₃, ³J = 6.7 Hz), 1.35 (m, 6H, C⁸⁻¹⁰H₂), 1.41 (c, 9H, C¹(CH₃)₃), 1.62 (m, 2H, C⁷H₂), 2.10 (m, 2H, C³H₂), 2.62 (m, 4H, C^{4.6}H₂), 4.07 (t, 2H, C²H₂, ³J = 6.1 Hz), 6.8–7.3 (m, 4H, Ar). ¹³C NMR, δ , ppm: 13.96 (C¹¹); 22.47 (C¹⁰); 28.52, 28.52, 29.37, 29.54, 31.43, 32.15 (C^{3,4,6–9}H₂); 31.36 (C(CH₃)₃); 33.92 (<u>C</u>(CH₃)₃); 66.13 (C²); 113.86, 126.08 (CHAr); 143.19, 156.55 (CAr). Mass spectrum, *m/z* (*I*_{rel}, %): 308 (16) [*M*]⁺, 159 (100), 135 (5), 75 (17), 43 (11). Found (%): C 73.70, H 9.98, S 10.01. Calculated for C₁₉H₃₂SO (%): C 74.03, H 10.39, S 10.39.

3-(Hexylthio)propyl ether of 2,4-di-*tert*-butylphenol (8). Yield 65%, n_D^{20} 1.4790, d_4^{20} 0.902. IR, v, cm⁻¹: 1234 (Ar–O–C), 1498 (Ar). ¹H NMR, δ , ppm: 0.91 (t, 3H, CH₃, ³*J* =6.7 Hz), 1.3 and 1.4 (s and s, 18H, 2C^{1′}(CH₃)₃), 1.35 (m, 6H, C^{8–10}H₂), 1.60 (m, 2H, C⁷H₂), 2.10 (m, 2H, C³H₂), 2.64 (m, 4H, C^{4,6}H₂), 4.09 (t, 2H, C²H₂, ³*J* = 6.0 Hz), 6.8–7.4 (m, 3H, Ar). ¹³C NMR, δ , ppm: 14.01 (C¹¹); 22.52 (C¹⁰); 28.55, 29.07, 29.62, 29.76, 31.41, 32.19 (C^{3, 4, 6–9}H₂); 29.92, 31.56 (2C(<u>C</u>H₃)₃); 34.20, 35.00 (2<u>C</u>(CH₃)₃); 66.10 (C²); 111.06, 111.78, 123.82 (CHAr); 136.95, 142.36, 155.27 (CAr). Mass spectrum, m/z (I_{rel} , %): 364 (20) [M]⁺, 159 (100), 75 (10), 57 (14), 43 (8). Found (%): C 75.41, H 10.55, S 8.30. Calculated for C₂₃H₄₀SO (%): C 75.82, H 10.99, S 8.79.

2-(Hexylthio)propyl ether of phenol (9). Mass spectrum, m/z (I_{rel} , %): 252 (0.5) [M]⁺, 159 (100), 89 (25), 75 (15), 43 (16).

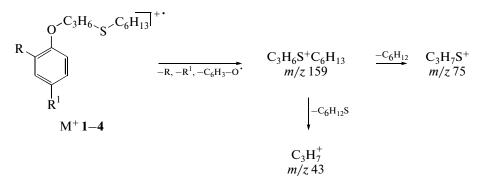

2-(Hexylthio)propyl ether of 2-*tert***-butylphenol (10).** Mass spectrum, m/z (I_{rel} , %): 308 (0.1) [M]⁺, 159 (100), 89 (18), 75 (8), 43 (9).

2-(Hexylthio)propyl ether of 4-*tert***-butylphenol (11).** Mass spectrum, m/z (I_{rel} , %): 308 (0.6) [M]⁺, 159 (100), 89 (19), 75 (7), 43 (9).

2-(Hexylthio)propyl ether of 2,4-di-*tert*-butylphenol (12). Mass spectrum, m/z (I_{rel} , %): 364 (0.4) [M]⁺, 159 (100), 89 (13), 75 (5), 43 (8).

RESULTS AND DISCUSSION

The reaction of allyl ethers of phenol (1), 2-*tert*butyl- (2), 4-*tert*-butyl- (3), and 2,4-di-*tert*-butylphenols (4) with equimolar amount of hexanethiol in the presence of AIBN in argon atmosphere at $75-80^{\circ}$ C for 30 h results in the formation of the corresponding 3-(hexylthio)propyl ethers of phenols **5–8**:


 $R = R_1 = H(1, 5, 9); R = t-Bu, R_1 = H(2, 6, 10); R = H, R_1 = t-Bu(3, 7, 11); R = R_1 = t-Bu(4, 8, 12).$

The addition of hexanethiol to the double bond of allyl ethers of phenols proceeds regioselectively, since the yields of phenols **5–8** make 65–95% and the yields of 2-(hexylthio)propyl ethers of phenols **9–12** do not exceed 4–6% in all cases. The relative reactivity of allyl phenyl ethers in the hexylthiylation reaction decreases in the order of compounds 1 > 2 = 3 > 4. Compared to 2-allyl-4-*tert*-butyl- and 2-allyl-6-*tert*-butylphenols, for which the yield of thiylation products is 90 or 50%, respectively [5], the reactivities of *ortho*- and *para*-substituted allyl ethers of phenols **2** and **3** do not differ.

The composition and structure of compounds **5–8** were confirmed by elemental analysis, IR, ¹H and ¹³C NMR, and GC–MS data. Compared to allyl ethers of phenols **1–4**, there are no absorption bands of double

bond at 1640 and 912–920 cm⁻¹ in the IR spectra of thiylation products **5–8**. The ¹H and ¹³C NMR spectra of **1–4** do not contain the signals of olefin protons and carbon atoms, but they show the chemical shifts of methyl [δ 0.89 (**5**), 0.90 ppm (**6–8**)], methylene (1.30–4.10 ppm) protons and nine carbon atoms (δ 13.19–66.20 ppm) of (hexylthio)propoxy groups.

The mass spectra of 3-(hexylthio)propyl ethers of phenols **5–8** show the peaks of molecular ions M⁺ at m/z 252, 30% (**5**); m/z 308, 24 and 29% (**6**, **7**); and m/z 364, 27% (**8**) and the peaks of the diagnostic fragments C₃H₆SC₆H₁₃, (C₃H₇S)⁺, and (C₃H₇)⁺ at m/z 159, 75, and 43, respectively, which result, as it was expected [11], from the rupture of the C–O and C–S bonds:

 $R = R^{1} = H$ (5); R = t-Bu, $R^{1} = H$ (6); R = H, $R^{1} = t$ -Bu (7); $R = R_{1} = t$ -Bu (8).

Compounds **9**–**12** were not isolated in the individual form. The fact of their formation was confirmed by GC–MS data. In contrast to 3-(hexylthio)propyl, the molecular ions of 2-(hexylthio)propyl ethers of phenols **9**–**12** exhibit low stability toward electron impact (abundance of the M⁺ + peak is 0.1–0.6%). As in the case of 3-(hexylthio)propyl ethers, the primary route of degradation of the molecular ion of 2-(hexylthio)propyl ethers of phenols is associated with the detachment of the phenoxy, *tert*-butyl, or di-*tert*butylphenoxy group and the formation of the [C₃H₆SC₆H₁₃]⁺ ion having the maximal abundance.

Resulting 3-(hexylthio)propyl ether of phenol **9** was tested in froth flotation of Kuzbas coal [12]. It was shown that the use of **9** (without separation from reaction mixture) as a frothing—collecting agent compared to tractor fuel kerosene in a mixture with still residue of butyl alcohol production can increase coal extraction by 3.1% and reduce the reagent consumption by a factor of 1.5.

Thus, the addition of hexanethiol to allyl ethers of phenol in the presence of AIBN proceeds regioselectively with the predominant formation of anti-Markovnikov products. The resulting 3-(2-hexylthio)propyl ethers of phenols can find practical application as flotation agents, plant growth regulators, fungicides, nematocides, and intermediate products in organic synthesis.

REFERENCES

- V. P. Lysenko, Yu. V. Karabanov, V. S. Petrenko, et al., USSR Inventor's Certificate No. 959 391; Byull. Izobret., No. 17 (1984).
- 2. A. E. Prosenko, Doctoral Dissertation in Chemistry (Novosibirsk, 2010).
- E. I. Kirillova, L. I. Lugova, V. A. Koptyug, et al., USSR Inventor's Certificate No. 1 118 654, Byull. Izobret., No. 38 (1984).
- N. N. Yusubov, and M. R. Bairamov, Russ. J. Org. Chem. 32, 1390 (1996).
- I. M. Rakhimova, L. A. Baeva, V. R. Khairullina, et al., Zh. Prikl. Khim. (S.-Peterburg) 85, 1192 (2012).
- V. M. Savos'kin, N. P. Gontarevskaya, A. I. Borbulevich, et al., USSR Inventor's Certificate No. 690000, Byull. Izobret., No. 37 (1979).
- E. A. Petrushkina and V. N. Kalinkin, Russ. J. Gen. Chem. 78 (10), 1897 (2008).
- K. Okazaki, S. Oshima, and N. Kitamura, J. Pharm. Soc. Jpn. 72, 1039 (1962).
- 9. F. E. Ziegler, Acc. Chem. Res. 10, 227 (1977).
- 10. E. R. Ganiullina, Candidate's Dissertation in Chemistry (Ufa, 2008).
- 11. E. Pretsch, P. Bümann, and C. Affolter, *Structure Determination of Organic Compounds: Tables of Spectral Data* (Springer, Berlin, 2000), 3rd Ed.
- V. N. Petukhov, E. A. Kantor, I. M. Rakhimova, et al., RU Patent No. 2 457 905 (2012).

Translated by K. Aleksanyan