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Abstract—We examine the numerical solution of a second-order linear Fredholm integro-differential
equation (FIDE) by a finite difference method. The discretization of the problem is obtained by a
finite difference method on a uniform mesh. We construct the method using the integral identity
method with basis functions and dealing with the integral terms by interpolating quadrature rules with
remainder terms. We further employ the factorization method to establish the algorithm. We demon-
strate the error estimates and the convergence of the method. The numerical results are enclosed to
verify the order of accuracy.
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1. INTRODUCTION
Integro-differential equations (IDEs) are one of the essential tools having applications in many science

fields, such as physics, engineering, biology, chemistry [9, 11]. IDEs are classified with respect to the
range of their integral terms. Namely, Fredholm integro-differential equations (FIDEs) have a finite
range in the integral term while Volterra integro-differential equations (VIDEs) have an integral term with
a bound in terms of a variable.

In this paper, our main focus is to construct a new accurate numerical scheme to obtain the numerical
solution of the following boundary value problem with a type of second order Fredholm integro-differen-
tial equation

(1.1)

(1.2)

where , ,  are sufficiently smooth functions in  and in .
Various analytical and numerical methods have been developed to obtain exact and approximate solu-

tions of FIDEs. In addition the classical analytical methods such as the direct computation method and
the series solution method for FIDEs, one can find many other novel well-developed numerical methods
for FIDEs in the literature. For instance, the variational iteration method [11], the Adomian decomposi-
tion method [12] and B-spline collocation method [13], Galerkin method [5], Taylor polynomial method
[1], the generalized minimal residual method [3], the method of moments based on B-spline wavelet
method [8] are some of the recently studied methods for the approximate solutions of FIDEs. It is also
known that fitted difference schemes are efficient to maintain accurate numerical results for IDEs. In [7],
the author constructed a uniform convergent difference scheme on a graded mesh to achieve the numer-
ical solution of a non-linear VIDE with a boundary layer. A non-linear first order singularly perturbed
VIDE with a delay is handled by a finite difference scheme in [12]. In [4], it is also shown that finite dif-
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ference schemes are reliable tools to treat non-linear VIDEs. Recently, a finite difference scheme is con-
structed to solve a boundary value problem of a second order singularly perturbed FIDE in [6].

To the best of our knowledge, a difference scheme we presented in this paper has not been performed
on FIDEs in the literature yet. In this paper, we essentially establish a convergent finite difference method
for the given problem in (1.1)–(1.2) on a uniform mesh. The remaining sections of this work is presented
in the following organization. In Section 2, a priori estimations of the continuous problem (1.1)–(1.2) are
provided. In Section 3, a finite difference scheme is derived using the integral identity method with basis
functions and dealing with the integral terms by interpolating quadrature formulas including residues. In
Section 4, after we calculate the error estimates we conclude that the proposed scheme is convergent. The
scheme is implemented and tested on a couple of numerical examples in Section 5.

Throughout this paper, for any continuous function  defined on  we will consider the norms

,  and we take .

2. A PRIORI ESTIMATES
In this section, we present the estimates on the exact solution to the problem (1.1)–(1.2) which

describe the asymptotic behavior of the solution and will be considered in the background calculations of
the derivation of the numerical scheme.

Lemma 2.1. Let ,  and . Then, the solution  to the problem (1.1)–
(1.2) holds the estimates

(2.1)

and where  and

(2.2)

where .
Proof. We begin the proof by establishing the estimate (2.1). We first rewrite (1.1)–(1.2) as the following

(2.3)

(2.4)

where . Solving (2.3)–(2.4) we obtain

(2.5)

Integrating (2.5) over  provides

(2.6)
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Inserting (2.7) into (2.6) we obtain

(2.8)

Here, using the Green’s function

(2.9)

we rewrite (2.8) as the following

(2.10)

As an alternative to this formulation of Green’s function, a Green’s function formula for the operator

is given by

(2.11)

where ,  and  and  and  are respectively the solutions to

Formula (2.11) implies that  and in accordance with (2.9) we have
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From (2.12), we conclude that  and utilizing this in (2.10) we find

(2.13)

Here, we obtain the following bound for 

and inserting this bound into (2.13) we have

(2.14)

which provides the desired result in (2.1). To prove (2.2), it suffices to establish a bound for  given in
(2.7) and insert that bound in the formula of  provided in (2.5). Since

(2.15)

(2.16)

and

(2.17)

and from (2.7) it follows that

(2.18)

Hence, we have

(2.19)

which yields the result in (2.2).

3. DERIVATION OF THE DIFFERENCE SCHEME
In this section, we develop a finite difference scheme for the problem (1.1)–(1.2). Before we proceed

to the derivation process of the finite difference scheme we provide the necessary notation we use
throughout the paper. Let  be a uniform mesh on  defined as
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and . For any mesh function  defined on , let

and

In order to discretize the problem (1.1)–(1.2), we use the following integral identity

(3.1)

with the basis functions

(3.2)

We note that the functions  and  are respectively the solutions to the problems

and it is obvious that

(3.3)

To achieve the finite difference scheme from the integral identity given in (3.1), we proceed by dealing
with the first two terms on the left hand side of the equality. Rearranging these two terms and applying the
appropriate interpolating quadrature rules provided in [2] we obtain
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Since

we have the relation

(3.6)

where

(3.7)

Hence, inserting (3.6) in (3.8) provides
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provided in [2] and then apply the right side triangle rule which yield
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4. CONVERGENCE ANALYSIS OF THE METHOD

We provide the necessary error estimates and convergence results of the proposed scheme given in
(3.16)–(3.17). The error function of the scheme, , , is the solution of
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(4.2)
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For the last remainder term  defined in (3.13), we apply the Mean Value Theorem to function  and get

which follows

(4.8)

As a result, considering (4.5)–(4.8) in (3.15) we get the desired result given in (4.3).

Lemma 4.2. Suppose that the error function  solves the problem in (4.1)–(4.2). Then, the error function
 holds the following estimate

(4.9)

Proof. In [10], it is provided that the discrete Green’s function  for the difference operator

is the solution to the problem

for fixed  where  is the Kronecker delta. Rewriting the problem (4.1)–(4.2) and by the
Green’s function, the solution to the problem (4.1)–(4.2) is obtained as

(4.10)

It is also known that the Green’s function  is bounded, namely, . Taking this
into account with (4.10) we have

where  and this leads to the desired result given in (4.9).

Theorem 4.3. Suppose that , ,  is the solution of (1.1)–(1.2) and  is the solu-
tion of (3.16)–(3.17). Then, y satisfies the following estimate

Proof. This statement follows from Lemma 4.1 and Lemma 4.2.

5. ALGORITHM AND NUMERICAL RESULTS

The numerical results on a couple of problems are demonstrated to support the analysis we made in the
previous sections. Since the scheme given in (3.16)–(3.17) is a boundary value problem with a difference
equation consisting of three points, we employ the factorization method as introduced in (3.16) and iter-
ation simultaneously. For this purpose, we rearrange the difference scheme in (3.16) in the following form
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Table 1. Error terms ,  and convergence order  for Example 1

Mesh eN e2N r

N = 32 5.9998 × 10–2 3.0624 × 10–2 0.9702
N = 64 3.0624 × 10–2 1.5473 × 10–2 0.9850
N = 128 1.5473 × 10–2 7.7769 × 10–3 0.9924
N = 256 7.7769 × 10–3 3.8987 × 10–3 0.9962
N = 512 3.8987 × 10–3 1.9519 × 10–3 0.9981

Ne 2Ne r
where

and

Then, the solution to (5.1)–(5.2) is determined by the algorithm

where

Example 1. We study the following boundary value problem

with an exact solution

We calculate the error by the formula

where  is the numerical solution for various  values. The order of convergence is calculated by

(5.3)

For various values of N, the maximum errors and the convergence rates of the approximate solution
are enclosed in Table 1.

Example 2. The second test problem is
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Table 2. Error terms ,  and convergence order  for Example 2

Mesh eN e2N r

N = 32 9.6742 × 10–3 4.6403 ×10–3 1.0599

N = 64 4.6403 × 10–3 2.2694 ×10–3 1.0319

N = 128 2.2694 ×10–3 1.1216 ×10–3 1.0167

N = 256 1.1216 ×10–3 5.5751 ×10–4 1.0085

N = 512 5.5751 ×10–4 2.7792 ×10–4 1.0043

Ne 2Ne r
and the exact solution to this problem is unknown. Hence, the approximate solution  is computed and
then, the double mesh principle is involved in the computation to estimate the errors and to calculate the
convergence. The double mesh principle is taking the error as the difference between the approximate
solution on mesh size  and the approximate solution calculated on double mesh 2N, namely

where  is the numerical solution on mesh  and  is the numerical solution on mesh 2N. Further,
the formula of convergence rate given in (5.3) is used for the order of convergence.

The error estimations and the convergence study of the approximate solution for various values of 
are provided in Table 2.

6. CONCLUSIONS

In this study, we mainly derived a finite difference scheme to examine a boundary value problem for a
linear second-order Fredholm integro-differential equation. After we studied the asymptotic behavior of
the exact solution of the problem, we constructed the difference scheme and established the error esti-
mates and the rate of convergence of the scheme. Further, we provided the numerical results in Tables 1,
2 and Fig. 1 which also match the analytical results on the error estimates and convergence order. Hence,
it is analytically and practically shown that the difference scheme is a first order convergent numerical
method.

Ny

N

∞
− 2= ,N N Ne y y

Ny N 2Ny

N
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Fig. 1. The graphs of the exact solution and the computed solution for . 
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