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Abstract—Quasiconformal mappings of axisymmetric domains are considered as a special case of
three-dimensional transformations. For a three-dimensional steady irrotational f low of an inviscid
incompressible f luid, two stream functions are introduced along with the velocity potential. Any sole-
noidal vector can be represented as the cross product of the gradients of two stream functions. As a
result, a relationship between the velocity components and the stream functions is obtained for deter-
mining the velocity potential. On the one hand, these transformations underlie Lavrentiev-harmonic
mappings. On the other hand, these conditions can be treated as a generalization of the Cauchy–Rie-
mann conditions to the three-dimensional case. In this work, the generalized three-dimensional Cau-
chy–Riemann conditions for harmonic mappings are reduced to the usual Cauchy–Riemann condi-
tions in polar coordinates of complex variable functions. Lavrentiev-harmonic conditions are used to
construct an analogue of quasiconformal mapping of axisymmetric domains and to generalize map-
pings of axisymmetric domains to arbitrary domains. Examples of visualization of quasiconformal
mappings of axisymmetric domains and their generalizations are given.
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1. INTRODUCTION
Two-dimensional conformal mappings are used to calculate and visualize harmonic vector fields in

fluid dynamics, elasticity, filtration theory, electromagnetism, etc. The application of two-dimensional
conformal mappings is associated with solving boundary value problems for the Laplace equation, to
which numerous stationary problems of mathematical physics reduce. These problems describe steady
flows of an incompressible ideal f luid, wave propagation, diffusion processes, heat propagation, the the-
ory of gravitation, electrostatics, etc.

Attempts to extend the methods of two-dimensional conformal mappings to the three-dimensional
case have been made for many years. In general form, the properties of plane conformal mappings are not
generalized to three-dimensional problems. In Euclidean space for , the class of conformal map-
pings is covered with a finite number of compositions of mappings of four types: translations, similarities,
orthogonal transformations, and inversions (see [1]).

The theory of functions of several complex variables has been covered in numerous monographs (see,
e.g., [2–5]). A good theory is strong in its applications, as is evident from the two-dimensional theory of
functions of a complex variable. For functions of several complex variables, the application of a powerful
mathematical apparatus has led to significant complications. In the three-dimensional case, the solvabil-
ity of problems is associated with the topological and analytical properties of complex manifolds. The
main issues of the theory of three-dimensional conformal mappings have been studied insufficiently, and
the theory of multidimensional conformal mappings has not found practical applications.

If some general restrictions are dropped, the properties of two-dimensional conformal mappings can
be generalized to the three-dimensional case (see [6]). An analogue of three-dimensional quasiconformal
mappings was obtained by sequentially using two usual functions of a complex variable. Examples of mesh
generation by applying the theory of quasiconformal mappings were given. Attempts to use conformal
mappings for mesh generation were made earlier in [7, 8]. A class of quasiconformal mappings for com-
positions of plane mappings was constructed in [9].
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Below, an axisymmetric problem is considered from the point of view of the theory of three-dimen-
sional quasiconformal mappings. Three-dimensional (axisymmetric) problems have symmetry that
makes it possible to study them as, in fact, two-dimensional problems. In contrast to the plane case, for
which the theory was developed with applications in various fields, a similar theory for axisymmetric f lows
requires further development. At the same time, spatial axisymmetric problems are essentially three-
dimensional.

This paper is organized as follows. The mathematical background of Lavrentiev-harmonic mappings
is introduced in Section 2. In Section 3, we consider the equations of motion for the axisymmetric case.
Three-dimensional quasiconformal mappings with polar coordinates of two usual functions of a complex
variable are considered in Section 4. Examples of visualization are given in Section 5.

2. LAVRENTIEV-HARMONIC MAPPINGS

1. The most interesting quasiconformal mappings of three-dimensional domains are obtained using a
hydrodynamic analogy (see [10]). Consider a steady incompressible inviscid f low. Assume that the f low is
irrotational. The equations of motion in a Cartesian coordinate system have the form

(1)

The vector field  is potential and solenoidal.

Since , which means no vorticity, in the entire f low region, there exists a function  in
the case of steady f low or a function  of coordinates and time in the case of unsteady f low such

that  . Here, the operator  is defined as . The

function  is called the velocity potential. Assume that  is continuous, together with its first two deriva-
tives with respect to time and coordinates. In contrast to the two-dimensional case, system (1) is overde-
termined: it consists of four equations for three variables. The theory of overdetermined systems of differ-
ential equations with constant coefficients relies heavily on the theory of functions of several complex vari-
ables.

The problem of determining the function  satisfying the Laplace equation in a domain D from the val-
ues of its normal derivative given on the surface S is called the Neumann problem. A harmonic function
is sought given the value of its normal derivative on the domain boundary. To such a problem, it is possible
to reduce the problem of determining the velocity potential of an incompressible f luid f lowing over a given
geometry. If the f low region contains a point at infinity, then we require the existence of the limit of

—the free-stream velocity —as  and assume that this vector is given. For
domains D with a sufficiently smooth boundary, a harmonic function  in D that satisfies the boundary

condition  and condition at infinity if D contains an infinite point always exists and is defined up
to a real constant.

Flow problems reduce to a mapping of the f low domain to a domain in the space of the potential.
Steady inviscid f lows without vortices or sources can be regarded as mappings of the f low domain to the
range of the velocity vector. Mappings satisfying the conditions   and  or the condi-
tions   are called harmonic. Vector functions defining harmonic mappings have a num-
ber of properties similar to those of analytic functions.

2. Along with the velocity potential , we introduce two stream functions,  and
, such that the surfaces  and  intersect along a streamline. For

irrotational f low, . Each solenoidal vector can be represented as the cross product of the gradi-
ents of two functions:

The velocity is tangent to two families of surfaces  , which are stream surfaces. The velocity vector
is represented in the form

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = − = − = − =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

v v v0, 0, 0, 0.u w w u w u
x y z y z z x x y

v, ,u w

=curl 0u ξ( , , )x y z
ξ( , , , )x y z t

= ∇ξ,u ∂ξ ∂ξ ∂ξ = = = ∂ ∂ ∂ 
v, ,u w

x y z
∇ ∂ ∂ ∂∇ = + +

∂ ∂ ∂x y z
i j k

ξ ξ

ξ

ξgrad ∞u + + → ∞2 2 2x y z
ξ

∂ξ =∂ 0
n n

= ξ ,xu = ξv ,y = ξxw
=div 0,u =curl 0u

ξ( , , )x y z ζ( , , )x y z
η( , , )x y z ζ =( , , ) constx y z η =( , , ) constx y z

∇ × = 0u

= ∇ζ × ∇η.u

∇ζ, ∇η

= + + = ∇ζ × ∇ηv .u wu i j k
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Recall that

(2)

The relationships between the new variables can be written as

(3)

Relationships (3) connect geometric and hydrodynamic relations. For determining the velocity potential,
we have two stream functions . System (3) is a Cauchy–Kovalevskaya type system. Transformations
(3) underlie Lavrentiev-harmonic mappings (see [10]). Conditions (3) can be treated as a generalization
of the Cauchy–Riemann conditions to the three-dimensional case (see [10]), from which three-dimen-
sional quasiconformal mappings follow.

Consider the inverse transform. In system (3), the variables  are made dependent, while the vari-
ables  are made independent. For this purpose, the formulas for transforming the derivatives in the
transition from the coordinates  to  are substituted into system (3).

As a result, we obtain

(4)

Mapping (4) can be treated as a transformation of some flow in D to translational motion in another
domain.

3. GOVERNING EQUATIONS OF MOTION OF AN INVISCID INCOMPRESSIBLE FLUID
IN THE AXISYMMETRIC CASE

The axisymmetric case will be considered as a special case of three-dimensional transformations. The
axis of symmetry is used as the  axis, and the distance to the axis is denoted by . Consider three-dimen-
sional f lows such that all velocity vectors lie in half-planes passing through a straight line, which is called
the axis of symmetry. In any of these half-planes, f low is described by a plane field. The velocity compo-
nents are denoted by , respectively. The equations of motion have the form (see [11])

(5)

The first relation is the continuity one ( ), and the second is the no-vorticity condition
( ). The latter condition is necessary and sufficient for the velocity field to be potential. The
velocity components of an axially symmetric f low are expressed as

(6)

The velocity potential  satisfies the relation

which is the Laplace equation in cylindrical coordinates. Note that  is a harmonic function of Cartesian
coordinates.

According to the first equation, the expression  is the exact differential of the function
. We obtain

(7)

The function  is called the stream function. It remains constant on each streamline and remains
constant on the surface obtained by rotation of this streamline around the axis of symmetry. Note that the
stream function depends on the choice of the coordinate system and the character of the motion. The
notation accepted in this paper may differ, up to the sign, from those used in other works.

( ) ( ) ( )
 
 ∇ζ × ∇η = ζ ζ ζ = ζ η − ζ η + ζ η − ζ η + ζ η − ζ η
 
η η η  

.x y z y z z y z x x z x y y x

x y z

i j k
i j k

ξ = ζ η − ζ η ξ = η ζ − η ζ ξ = ζ η − ζ η, , .x y z z y y x z z x z x y y x

ζ η,

, ,x y z
ξ η ζ, ,

ξ ζ η, , , ,x y z

ξ ζ η ζ η ξ ζ η ζ η ξ ζ η ζ η= − = − = −, , .x y z z y y z x x z z x y y x

z ρ

v,u

∂ρ ∂ρ ∂ ∂+ = − =
∂ ∂ρ ∂ρ ∂

v v0, 0.u u
z z

=div 0u
=curl 0u

∂ξ ∂ξ= =
∂ ∂ρ

v, .u
z

ξ

∂ ξ ∂ ξ ∂ξ+ + =
ρ∂ρ∂ ∂ρ

2 2

2 2
1 0,

z

ξ 

−ρ + ρ ρvdz ud
ζ

∂ζ ∂ζ= = −
ρ∂ρ ρ ∂

v
1 1u , .

z

ζ ρ( , )z
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The stream function  satisfies the equation

This equation is not the Laplace one, and the function  is not harmonic in Cartesian coordinates.
It follows from (6) and (7) that the stream function and the potential are related by the equalities

(8)

The equations for axisymmetric f lows are similar in many respects to the equations for plane motions. The
vector lines of the velocity field coincide with the lines  and, as in the two-dimensional
case, are streamlines. It follows from the equations that the lines  and  are
orthogonal. Indeed,

If the velocity potential is given, then the stream function in the axisymmetric case can be found using
well-known formulas.

System (5) is a system of elliptic equations with a singularity on the axis of rotation. Although the sys-
tem has a singularity, the Riemann theorem on the existence and uniqueness of mappings holds for it. The
mappings have the basic properties of quasiconformal mappings (see [11]).

4. QUASICONFORMAL MAPPINGS OF THREE-DIMENSIONAL 
AXISYMMETRIC DOMAINS

1. Let us return to the generalized Cauchy–Riemann conditions (3). If the stream function 
depends on two variables, , i.e., , then system (3) reduces to

(9)

In the three-dimensional case, each problem is determined by the topological and analytical properties of
the considered domains. Let  be the space of two independent complex variables . In what
follows, by the space  of complex variables , we mean the usual Euclidean space  of real variables

. In passing from the 4-dimensional Euclidean space  to the complex space, there appears a
certain asymmetry.

Let us show that the solution of system (9) can be represented using two independent complex variable
functions  and  defined in their domains. Assume that a univalent analytic function

 is given in the domain . Every complex number  from some domain  ( )

is put in correspondence with a complex number . Similarly,  is a
univalent analytic function of the complex variable . Every complex number  from
some domain  ( ) is put in correspondence with a complex number .

For the functions  to be analytic in a domain of , it is necessary that the Cauchy–Rie-
mann conditions hold in this domain. If the function  of complex variable  can be
represented in exponential form , then the Cauchy–Riemann conditions for the differentiability
of the function with respect to  have the form (see [12])

(10)

For the function , the Cauchy–Riemann conditions are given by

(11)

A solution of system (9) is sought in the form  , . Here, as
t, we choose the function . For the first two equations in (9), we obtain

(12)

ζ

∂ ζ ∂ ζ ∂ζ+ − =
ρ∂ρ∂ ∂ρ

2 2

2 2
1 0.

z

ζ

ρ ρξ = ζ ρ ξ = −ζ ρ/ , / .z z

ζ ρ =( , ) constz
ξ ρ =( , ) constz z ζ ρ =( , ) constx

ρ ρξ ζ + ξ ζ = 0.z z

( )η , ,x y z
( )η ,x y η = 0z

ξ = −ζ η ξ = η ζ ξ = ζ η − ζ η, , .x z y y x z z x y y x

2C = 1 2)( ,z z z
2C 1 2,z z 4R

( , , , )x y z t 4R

( )ζ =1 1 1f z ( )ζ =2 2 2f z

( )ζ =1 1 1f z D = +1z x iy 1D ⊂ 2
1D C

ηζ τ1 = ei ζ = = ξ + ζ2 2 2( ) ( , ) ( , )f z z t i z t
= +2z z it = +2z z it

2D ⊂ 2
2D C ζ = ξ + ζ2 i

1 1 2 2( ), ( )f z f z 2C
ζ =1 1 1( )f z = +1z x iy

ηζ τ1 = ei

,x y

τ τ = η τ τ = −η/ , / .x y y x

ζ = = ξ + ζ2 2 2( ) ( , ) ( , )f z z t i z t

ξ = ζ ξ = −ζ/ , / .z t t zt t

( )ξ = ξ τ, ( , ),z x y ( )ζ = ζ τ, ( , )z x y ( )η = η ,x y
( )= τ ,t x y

τ τξ τ = −ζ η ξ τ = η ζ, .x z y y x z
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System (12) decouples and, taking into account (10), the first and second equations of system (12) take
the same form:

(13)

The third equation of system (9), i.e., , reduces to the form

(14)

By using the changes of variables   and , system (13), (14) reduces to

(15)

Obviously, the solution of (15) can be represented in the form

In the special case when  and , Eqs. (13) and (14) become

(16)
Thus, the three-dimensional quasiconformal mapping (9) can be represented in the form of a sequence of
two two-dimensional conformal mappings: , . Here,  , and

 . Using relations (10) and (15) in the domain D of three-dimensional real space

, it is possible to find the velocity potential  and the stream function, as well as the second stream func-
tion  and the quantity . If the function  is used as  in system (11), then we obtain

Recall that   and .
2. Note that, in the axisymmetric case, conditions (16) and (8) for the stream function and the velocity

potential coincide if the function  is used as . Indeed,

It follows that

(17)
and

Straightforward calculations, taking into account (17), yield  and .
Thus,

or

3. Consider the inverse transformation (4). Since  in the case under consideration, system (4)
becomes

(18)
Let us show that the solution of system (18) can be represented using complex variable functions

 and . Here,  and . Assume that a univalent analytic function

 is given in a domain . Each complex number  from  ( ) is assigned a com-
plex number . Similarly,  is an univalent analytic function of the complex variable

. Each complex number  in a domain  ( ) is assigned a complex number
.

τ τξ = −ζ τ ξ = −ζ τ/ , / .z z

ξ = ζ η − ζ ηz x y y x

τ τξ = ζ τ η − τ η = ζ τ = τ = τ η − τ η >1 1 1 1* * *( ) / , / , 0.z x y y x x y y xJ J J J

= 1** ,z J z ζ = ζ1** ,J = τ1 1*J J

τ τξ = ζ τ ξ = −ζ τ* ** */ , / .z z

ζ = = ξ + ζ2 2 2* *( ) ( *, ) * ( *, ).f z z t i z t

=1* 1J = τ( , )t x y

τ τξ = ζ τ ξ = −ζ τ/ , / .z z

( )ζ =1 1 1f z ζ =2 2 2* *( )f z ηζ = τ1 ,ie = +1z x iy
ζ = ξ + ζ2* *,i = +2 *z z it

3R ξ
η τ τ = τ( , )x y t

( ) ( ) ( )ξ = ξ τ ζ = ζ τ η = η = τ*, ( , ) , * * *, ( , ) , , , ( , ).z x y z x y x y t x y

= 1** ,z J z ζ = ζ1** ,J = τ = τ η − τ η1 1*/ x y y xJ J

ρ = +2 2 1/2( )x y τ

η = − ρ η = ρ ρ = ρ ρ = ρ2 2/ , / , / , / .x y x yy x x y

ρ + ρ = η + η = ρ2 2 2 2 21, 1/x y x y

ρ ρ = η ρ ρ = −η/ , / .x y y x

=1* 1J = ρ1 1/J

ζ = ζ =2 2 2 1 1 1( ), ( )f z f z

ξ = ξ ρ ζ = ζ ρ η = ρ = +2 2 1/2( , ), ( , ), arctan( / ), ( ) .z z y x x y

η = 0z

ξ ζ η ξ ζ η ξ ζ η ζ η= − = = −, , .x z y y z x z x y y x

( )= ζ1 1 1z F ( )= ζ2 2 2z F = +1z x iy ηζ = τ1 ei

= ζ1 1 1( )z F 1G ηζ = τ1 ei
1G ⊂ 2

1G C
= +1z x iy = ζ2 2 2( )z F

ζ = ξ + ζ2 i ζ = ξ + ζ2 i 2G ⊂ 2
2G С

= +2z z it
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If the independent variable  can be represented in exponential form , then sufficient condi-
tions for the differentiability of the function  have the form (see [12])

(19)

Similarly, the Cauchy–Riemann conditions for the function  are given by

(20)

Consider the first and second equations of system (18). A solution is sought in the form 
, , . In view of , the first and second equations in (18) can

be represented as

(21)

Thus, relation (21) coincides with (19).
The third equation of system (18) becomes

Under the conditions  and , the generalized Cauchy–Riemann conditions (18) reduce to
the equations

(22)

With the changes of variables   and , the last two equations in (22) can
be reduced to a form satisfying the usual Cauchy–Riemann conditions. As a result,

(23)

Conditions (23) are ones for the differentiability of the function

Therefore, system (18) can be solved using arbitrary univalent analytic functions  and

. Here,  ,  and .
The solution of system (18) has the form

For the axisymmetric case, direct verification yields ( )

Thus, in the axisymmetric case, we obtain

The equations imply that the lines   are orthogonal. Indeed,

4. The covariant components of the metric coefficients are given by the formulas

Straightforward calculations show that

whence

ζ1
ηζ = τ1 ei

= ρ η + ρ η1 ( , ) ( , )z x iy

τ η η ττ = = −τ, .x y x y

= ξ ζ + ξ ζ2 ( , ) ( , )z z it

ξ ζ ζ ξ= = −, / .z tt z t t

( )( )= τ ξ ζ η,  , ,x x
( )( )= τ ξ ζ η,  ,y y = ξ ζ( , )z z τ = ξ ζ( , )t ζ ξ= − /z t t

τ η η ττ τ= = −, .x y x y

ξ τ ζ η τ ζ η ζ τ η τ η= τ τ = ττ = = τ >− −2 2 2 2 2* * *, , , 0.z x y y x J J x y y x J J J

= τ2 2*J J η = 0z

τ η η τ ξ ζ ζ ξ= τ = −τ = τ τ = −τ τ2*/ , and , / .x y x y z J z

= 2** / ,z z J ζ = ζ 2** / ,J = τ2 2* /J J

ξ ζ ζ ξ= τ τ = −τ τ* ** *, / .z z

= ζ = ξ ζ + ξ ζ = ζ = ζ2 2 2 2 2* * * *( ) * ( , *) ( , *), * / , * / .z F z it z z J J

( )= ζ1 1 1z F

= ζ2 2 2* *( )z F = +1 ,z x iy ηζ = τ1 ei = +2* * ,z z it ζ = ξ + ζ2 *i

( ) ( ) ( )= ξ ζ η = ξ ζ η = ξ ζ τ = ξ ζ( ( , *), ), ( , *),  , , * , , * .x x t y y t z z t

( )τ = ρ ξ ζ,

ρ η ρ η ξ ζ ζ ξ= ρ = − ρ = ρ ρ = −ρ ρ =2*/ , / and , / , 1.x y y x z z J

= ρ η = ρ η = ξ ζ ρ = ρ ξ ζcos , sin , ( , ), ( , ).x y z z

ξ ζ =( , ) const,z ρ ξ ζ =( . ) const

ξ ζ ξ ζ+ ρ ρ = 0.z z

∂ ∂∂ ∂∂ ∂= + + = ξ = ζ = η =
∂ ∂ ∂ ∂ ∂ ∂

1 2 3* ** , , 1,2,3 ( , * , ).ij i j i j i j

z zy yx xg i j x x x
x x x x x x

τ τ ξ ξ ζ ζ ξ ξ η η τ τ= + + τ = + τ = + τ τ = + = + τ2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 22 * * 33* * * * * *( )( ), ( )/ , ( )/ ,g x y z g z z g x y x y

=11 22 33* * * ,g g g
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and

Thus, we have obtained a triple orthogonal system of coordinates. However, by the Cotton–Darboux the-
orem, the metric in three-dimensional space can always be brought to a diagonal form by a local transfor-
mation.

5. A necessary condition for the mapping defined by analytic functions  and  to
be quasiconformal is that it is one-to-one, i.e., the functions ,  have to be univalent in G.
Recall that, in the two-dimensional case, a necessary condition for an analytic function to be univalent in
G is that , i.e., the derivative has to be nonzero everywhere in this domain, except for nonisolated
essential singularities. The transformation is quasiconformal and continuous everywhere, except for
domains where the derivatives ,  or ,  do not exist. The inverse of a quasicon-
formal mapping is also quasiconformal. In other words, if the functions  and  quasi-
conformally map G onto D, then the inverse function is a quasiconformal mapping of D onto G.

For a mapping to be one-to-one, the Jacobian of the transformation has to be finite and nonzero. The
local homeomorphicity of the mapping can be violated only at points where the Jacobian of the mapping
vanishes. Finding zeros of the Jacobian of the mapping reduces to studying the properties of critical
points. To find the Jacobian of the transformation, , in the case , we use
Cauchy–Riemann-type conditions of the form (9). As a result,

The Jacobian of the transformation is positive. This guarantees that the mapping of the parametric
domain to the given domain is one-to-one.

Along with the case , we might similarly consider the cases  and . Note that the the-
ory of two-dimensional conformal mappings is completely described by the theory of univalent analytic
functions of one complex variable, ,  and  . Therefore, quasi-
conformal mappings are implemented by holomorphic functions of complex variable or by anti-holomor-
phic functions. Thus, in addition to the case considered above, the solution of (17) can be represented in
the form of anti-holomorphic functions or a combination of functions.

By using conditions (3) and (4) for the construction of Lavrentiev-harmonic mappings, it is possible
to generalize three-dimensional quasiconformal mappings to the axisymmetric case. In the general three-
dimensional case, the construction of quasiconformal mapping depends on the space topology. The num-
ber of possible classes of quasiconformal mappings increases and requires further research.

5. VISUALIZATION RESULTS FOR THREE-DIMENSIONAL
QUASICONFORMAL MAPPINGS

Consider some results of visualizing three-dimensional vector fields, examples of which for the two-
dimensional case are given, for instance, in [12].

With the help of quasiconformal mappings, we can introduce three-dimensional systems of curvilinear
coordinates (see [13]). As was shown above, the solution of system (4) can be represented using two ana-
lytic functions of a complex variable:  and . Here,  and . Simi-
larly,  and . Thus, in the axisymmetric case, we obtain , , and

, where . These relations yield the following examples of curvilinear coordinates:
—cylindrical circular coordinates

—spherical coordinates

(usually, different notation is used for spherical coordinates, namely, , 
 ).

= = = = = =12 13 23 21 31 32* * * * * * 0.g g g g g g

= ζ1 1( )z F = ζ2 2( )z F
ζ1 1( )F ζ2 2( )F

ζ ≠'( ) 0F

ζ1 1'( )F ζ2 2'( )F ζ1 1'1/ ( )F ζ2 2'1/ ( )F
= ζ1 1( )z F = ζ2 2( )z F

( ) ( )= ∂ ξ η ζ ∂, , / , ,J x y z η = 0z

τ τ τ= τ η − τ η ξ ζ − ξ ζ = ξ + ξ τ + τ >2 2 2 2
*( )( ) ( )( ) 0.x y y x z z z x yJ

η = 0z η = 0x η = 0y

= +1z x iy = −1z x iy = +2 ,z z it = −2z z it

= ζ1 1 1( )z F = ζ2 2 2( )z F = +1z x iy ηζ = ρ1
ie

= + ρ2z z i ζ = ξ + ζ2 i = ρ ηcosx = ρ ηsiny
= ξ ζ( , )z z ρ = ρ ξ ζ( , )

η= ρ = ζ = ρ η = ρ η = ξ ρ = ζ1 2 2, , cos , sin , , ;iz e z x y z

η ξ+ ζ ξ ξ= ρ = = ρ η = ρ η = ζ ρ = ζ1 2, , cos , sin cos , sin,i iz e z e x y z e e

ξ=r e = η ζcos sin ,x r
= η ζsin sin ,y r = ζcosz r
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Fig. 1. 

(а) (b)

(c) (d)

(e) (f)
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Z

X
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Z

—parabolic coordinates of rotation

—coordinates of a prolate ellipsoid of rotation

—toroidal coordinates

Software programs in FORTRAN and  were developed to visualize three-dimensional mappings. Fig-
ure 1 presents visual representations of systems of curvilinear coordinates: (a) cylindrical, (b) spherical,
(c) parabolic, (d) ellipsoidal, and (e) and (f) toroidal.

η= ρ = ζ = ρ η = ρ η = ξ − ζ ρ = ξζ2 2 2
1 2 2, /2, cos , sin ( )/2, ;,iz e z x y z

= ζ = α ζ = ρ η = ρ η = α ξ ζ ρ = α ξ ζ1 1 2 2, sin , cos , sin , sin cosh , cos sinh ;z z x y z

η= ρ = ζ = ρ η = ρ η
= α ζ ξ + ζ ρ = α ξ ξ + ζ
1 2 2, tanh( /2), cos , sin ,

sin /(cosh cos ), sinh /(cosh cos ).

iz e z x y
z

++C
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Fig. 2. 

(b) (c)

(а)

n = 1 n = 2 n = 3

X
Y

Z

XY
Z X Y

Z

X

Y
Z

X

Y
Z

For finite two-dimensional simply connected domains, a canonical domain is the unit disk. Figure 2
shows the results of visualization of quasiconformal mappings for a finite domain. An analytic continua-
tion is obtained from the corresponding plane coordinates  by rotation through the angle  around the

axis of symmetry . The coordinates  vary in a half-plane. The functions  and 

define a mapping of the interior of the domain ( ) to the considered domain. For the complex num-

ber in exponential form, the argument  is a multivalued function. We choose  in the interval

. For domains symmetric about the origin, the function  satisfies the conditions

 and , which uniquely define . The cases presented in Fig. 2 correspond to
the following mappings:

(a) , , , , , ;

(b) , , , ;

(c) ,   .

Note that Fig. 2a shows a domain with n symmetric radial cuts, where n = 1, 2, 3. At the points of inter-
section of a cut with the ball, there appears a singularity, which is shown by saddle points. Note that the
mapping is not isogonal at these points.

For the exterior of finite plane contours, a canonical domain is the exterior of the unit disk with a point

at infinity included. For the exterior of finite domains, Fig. 3 presents the functions  and

 mapping the exterior of a domain to the considered domain. For each infinite simply con-

nected domain with a finite boundary, the mapping of the disk’s exterior  to the considered domain

 is uniquely defined under the conditions  and . The solution in the coor-

dinates z, ρ is continued to the domain   by rotation through the angle  around the
axis of symmetry ρ = 0. The given visualization correspond to the following cases:

(a) ,  (exterior of an ellipsoid with semiaxes a, b > 0);

(b) ,      (exterior of a ball
with cuts);

(c) , , , ,  (exterior of a
symmetric cross-shaped cut);

ρ,z η
ρ = 0 ρ,z η= ρ1

iz e = ζ2 2 2( )z F
ζ <2 1

η = 1arg z η
≤ η < π0 2 = ζ2 2 2( )z F

=2(0) 0F >2'(0) 0F = ζ2 2 2( )z F

η= ρ1

iz e −= ζ 2/

2 2

nz t = + − ζ
2

2 nt r r = + ζ20.5 (1 )
nr p > 1p > 1n

η= ρ1

iz e = +2

2 2z t t = ζ2/t p > 1p
η= ρ1

iz e = + −2 1 1,z t = ζ2/ ,t p > 1p

η= ρ1

iz e
= ζ2 2 2( )z F

ζ >2 1

= ζ2 2 2( )z F ∞ = ∞2( )F ∞ >2'( ) 0F
= ρ ηcos ,x = ρ ηsiny η

η= ρ1

iz e = + ζ + − ζ2 2 20.5( ) 0.5( )/z a b a b
η= ρ1

iz e π +=2 / (1 ),z i s p = ln ,s r = ζ − ζ −2 0 2 01/ )( ),(r r r π += /(1 )

0 ,
i p pr e > 0p

η= ρ1

iz e = − 2

2 1 1/z t t = + + −1 2 1 20.5[ ( ) ]t s p p p p = ζ + ζ2 20.5( 1/ )s ≥1 2, 1p p
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Fig. 3. 
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(d) ,     (exterior of a ball with n-sym-
metric cuts, n = 2, 3, 4);

(e) ,    (a symmetric Joukowski airfoil);

(f) ,    (exterior of a single-contour cassian);

(g) ,  ; a truncated hypotrochoid for p > 1 and a hypocycloid for

p = 1, .

Note the singularity presented in Fig. 3c, which appears at the origin under rotation of the symmetric
cross-shaped cut. The solution is not isogonal near the origin and locally loses conformal properties.

For curvilinear plane half-planes, a canonical domain is the half-plane  (see [12]). The map-

ping  of the angular domain taking the half-plane  to the considered domain and sat-

isfying the condition  is defined up to a linear transformation of . An analytic continuation is
obtained from the corresponding plane coordinates z, ρ by rotation through the angle η around the axis
of symmetry. Figure 4 shows the results corresponding to the following cases, respectively:

(a) ,   , a hump for  and a trough for

, p = 1.6;

η= ρ1

iz e = /2

2 ,
nz zt = + − ζ2

21/ ,
nt s s = + ζ2(1 1/ ),

ns p = 1.2451p

η= ρ1

iz e = +2 0.5( 1/ ),z t t = ζ + −2( 1) ,t p p = 0.3p

η= ρ1

iz e = + 2

2 1 1/ ,z t t = ζ2,t p = 1.05p
η= ρ1

iz e ζ + ζ=2 2 21/( ),
nz pn = 1.1p

≥ 2n

ζ >2Im 0

= ζ2 2 2( )z F ζ >2Im 0

∞ = ∞2( )F ζ2

η= ρ1

iz e = + −2 (1 )/(1 ),z s s = ,
ps r = ζ − ζ +2 2( 1)/( 1)r < <0 1p

< <1 2p
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Fig. 4. 
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(b) ,   , an ellipsoid of revolution;

(c) , , a paraboloid of rotation;

(d) ,    , a hyperboloid of rotation;

(e) ,  , rotation of the pole of a cissoid;

(f) ,  , rotation of a half-plane with a rounded edge;

(g) ,      ,
rotation of a half-plane with a finned edge, p = 0.85;

η= ρ1

iz e ζ + − ζ= 2

2 2 21 ,z iba = 1,a = 0.5b
η= ρ1

iz e ζ += 2

2 2 )(z i
η= ρ1

iz e =2 сos ,z t = 2 arccos ,t p s = − ζ2,s i < <0 1p
η= ρ1

iz e + −=2 ( 1/ 2),z t ti = − ζ21t i
η= ρ1

iz e = + − +2 1 1,z t t t = − ζ2

21t
η= ρ1

iz e −= +2 )/(1 ),(1z t t = 2
,

pt s = − +( 1)/( 1),s r r = + − +1 1,r u u u = − ζ2

21 ,u < <0 1p
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Fig. 5. 

(а) (b)

(c) (d)
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(h) ,   , rotation of an angle with a rounded vertex.

For two-dimensional curvilinear strips, a canonical domain is specified as the straight horizontal strip

. Figure 5 plots the functions  and  mapping the strip  to

the considered curvilinear domain in such a way that the points   are reflected to the arms

of the strip. The function  is defined up to a shift of the argument . Figures 5a–5d present
the results corresponding to the following cases:

(a) ,  ;

(b) ,  ;

(c) ,   ;

(d) ,    .

These cases can be treated as corresponding to various channels formed by rotating a nonrectangular
hyperbola, a chain line, etc.

The presented results correspond to the two-dimensional results given in catalogs 1–4 in [12].
Although the results correspond to the axisymmetric case, they are much wider. For example, the axisym-

metric case can be generalized if we consider generalized coordinates of rotation:  and 

( ).

6. CONCLUSIONS

The application of transformations underlying Lavrentiev-harmonic mappings makes it possible to
construct quasiconformal mappings of axisymmetric domains. A three-dimensional quasiconformal
mapping of axisymmetric domains is obtained as a composition of arbitrary conformal mappings in polar
coordinates. Quasiconformal mappings of axisymmetric domains have the basic properties of conformal
mappings. Examples of constructing three-dimensional coordinate systems and their visualization are
given.

In the three-dimensional case, depending on the topological and analytical properties of the consid-
ered domains, the number of possible classes of quasiconformal mappings increases, which requires fur-

η= ρ1

iz e = 2

2 ,
pz t = − − ζζ2

2 21 ,t i < <0 1p

< ζ < π20 Im
η= ρ1

iz e = ζ2 2 2( )z F < ζ < π20 Im

ζ = −∞2 , ζ = ∞2

= ζ2 2 2( )z F ζ2

η= ρ1

iz e = +2 ,
tz t e = ζ + π2 /2t i

η= ρ1

iz e +=2 sinh ,z t t = ζ − π2 /2t i
η= ρ1

iz e = −2 arctanh(1/ ),z t t = + 1,
st e = ζ − π22s i

η= ρ1

iz e = −2 parth arctan ,z t pt = − + 2
( 1)/( ),t s s p = ζ2exp( ),s = 1.5p

α= ζ1 1z = ζ2 2 2( )z F
α > 0
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ther research. The study of mappings of three-dimensional domains that might replace plane conformal
mappings in applications should be continued. As a result, quasiconformal mappings would be classified,
catalogs of three-dimensional quasiconformal mappings would be compiled, etc.

The best proof of the obtained results is their visualization.
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