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Abstract—The linking number is usually defined as an isotopy invariant of two non-intersecting closed
curves in 3-dimensional space. However, the original definition in 1833 by Gauss in the form of a dou-
ble integral makes sense for any open disjoint curves considered up to rigid motion. Hence the linking
number can be studied as an isometry invariant of rigid structures consisting of straight line segments.
For the first time this paper gives a complete proof for an explicit analytic formula for the linking num-
ber of two line segments in terms of six isometry invariants, namely the distance and angle between the
segments and four coordinates of their endpoints in a natural coordinate system associated with the
segments. Motivated by interpenetration of crystalline networks, we discuss potential extensions to
infinite periodic structures and review recent advances in isometry classifications of periodic
point sets.
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1. THE GAUSS INTEGRAL FOR THE LINKING NUMBER OF DISJOINT CURVES
This extended version of the conference paper [8] includes all previously skipped proofs. For any vec-

tors , the triple product is .

Definition 1 (Gauss integral for the linking number). For piecewise-smooth curves ,
the linking number can be defined as the Gauss integral [13]

(1)

where ,  are the vector derivatives of the 1-variable functions , .
The formula in Definition 1 gives an integer number for any closed disjoint curves ,  due to its

interpretation as the degree of the Gauss map , i.e.

, where the area of the unit sphere is . This integer degree is the

linking number of the 2-component link  formed by the two closed curves. Invariance modulo
continuous deformation of  follows easily for closed curves; indeed, the function under the Gauss inte-
gral in (1), and hence the integral itself, varies continuously under perturbations of the curves , . This
should keep any integer value constant.

For open curves , , the Gauss integral gives a real but not necessarily integral value, which remains
invariant under rigid motions or orientation-preserving isometries (see Theorem 1). In  with the
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Euclidean metric isometries consist of rotations, translations and reflections. Isometry invariance of the
real-valued linking number for open curves has found applications in the study of molecules [1].

Any smooth curve can be well-approximated by a polygonal line, so the computation of the linking
number reduces to a sum over pairs of straight line segments , . In 1976 Banchoff [5] has expressed
the linking number  in terms of the endpoints of each segment, see details of this and other past
work in Section 3.

In 2000 Klenin and Langowski [14] proposed a formula for the linking number  of two straight
line segments in terms of six isometry invariants of , , referring to a previous paper [25], which used
the formula without any detailed proof. The paper [14] also skipped all details of the invariant-based for-
mula’s derivation.

The usefulness of the invariant-based formula can be seen by considering the analogy with the simpler
concept of the scalar (dot) product of vectors. The algebraic or coordinate-based formula expresses the
scalar product of two vectors  and  as , which in turn
depend on the co-ordinates of their endpoints. However, the scalar product for high-dimensional vectors

 can also expressed in terms of only 3 parameters . The two lengths ,
 and the angle  are isometry invariants of the vectors , . This second geometric or invariant-

based formula makes it clear that  is an isometry invariant, while it is harder to show that
 is invariant under rotations. It also provides other geometric insights that are

hard to extract from the coordinate-based formula; for example,  oscillates as a cosine wave when the
lengths ,  are fixed, but the angle  is varying.

In this paper, we provide a detailed proof of the invariant-based formula for the linking number in
Theorem 2 and new corollaries in Section 6 formally investigating the asymptotic behaviour of the linking
number, which wasn’t previously studied.

Our own interest in the asymptotic behaviour is motivated by the periodic linking number by Panagiotou
[20] as an invariant of crystalline networks [11] that are infinitely periodic in three directions, by calculat-
ing the infinite sum of the linking number between one line segment and all translated copies of another
such segment.

2. OUTLINE OF THE INVARIANT-BASED FORMULA AND CONSEQUENCES

Folklore Theorem 1 lists key properties of , which will be used later.
Theorem 1 (properties of the linking number). The linking number defined by the Gauss integral in Defi-

nition 1 for smooth curves ,  has the following properties:

(2a) the linking number is symmetric: ;

(2b)  for any curves ,  that belong to the same plane;

(2c)  is independent of orientation-preserving parameterizations of the open curves ,  with fixed
endpoints;

(2d) , where  has the reversed orientation of ;

(2e) the linking number  is invariant under any scaling  for ;

(2f)  is multiplied by  under any orthogonal map .
Proof. (2a) We note that the Euclidean distance is symmetric, and that since the triple product is anti-

symmetric and , the symmetry follows from

(2b) is obvious from the coplanarity of the normal vectors.
(2c) is simply a consequence of the path-independence of the integrals over .

(2d) follows from  since the reverse orientation of  is .
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Fig. 1. Each line segment  is in the plane , . Left: signed distance , the endpoint coordinates
,  and , , the lengths . Right: signed distance , the endpoint coordinates ,
 and , , so . In both middle pictures  is the angle from  to  with

-axis as the bisector.
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(2e) Any scaling  will result in a change of parameterization . Since
, the result follows below

(2f) For an orthogonal transformation , we have , while
. Therefore ,  and 

 as expected.

Our main Theorem 2 will prove an analytic formula for the linking number of any line segments , 
in terms of 6 isometry invariants of , , which are introduced in Lemma 1. Simpler Corollary 1
expresses  for any simple orthogonal oriented segments ,  defined by their lengths 
and initial endpoints , , respectively, with the Euclidean distance , so that , ,

 form a positively oriented orthogonal basis whose signed volume  is the product
of the lengths, see the first picture in Fig. 1.

Corollary 1 (linking number for simple orthogonal segments). For any simple orthogonal oriented line

segments  with lengths  and a distance  as defined above, the linking number is

.
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Corollary 1 implies that the linking number is in the range  for any simple orthogonal seg-
ments with , which wasn’t obvious from Definition 1. If ,  move away from each other, then

.

Alternatively, if segments with  become infinitely short, the limit is again zero:

 for any fixed . The limit  implies that if segments with 

become infinitely long for a fixed distance , . If we push

the segments , , which have fixed (possibly different) lengths ,  towards each other, the same limit

similarly emerges: . See more general corollaries in Section 6.

3. PAST RESULTS ABOUT THE GAUSS INTEGRAL FOR THE LINKING NUMBER

The survey [22] reviews the history of the Gauss integral, its use in Maxwell’s description of electro-
magnetic fields [18], and its interpretation as the degree of a map from the torus to the sphere. In classical
knot theory  is a topological invariant of a link consisting of closed curves , whose equiv-
alence relation is ambient isotopy. This relation is too f lexible for open curves which can be isotopically
unwound, and hence doesn’t preserve the Gauss integral for open curves , .

Computing the value of the Gauss integral directly from the parametric equation of two generic curves
is only possible by approximation, but this problem is simplified when we consider straight lines. The first
form of the linking number between two straight line segments in terms of their geometry is described by
Banchoff [5]. Banchoff considers the projection of segments on to a plane orthogonal to some vector

. The Gauss integral is interpreted as the fraction of the unit sphere covered by those directions of
 for which the projection will have a crossing.

This interpretation was the foundation of a closed form developed by Arai [4], using van Oosterom and
Strackee’s closed formula for the solid angle subtended by a tetrahedron given by the origin of a sphere and
three points on its surface. An efficient implementation of the solid angle approach to the linking number
is discussed in [6].

An alternative calculation for this solid angle is given in [21] as a starting point for calculating further
invariants of open entangled curves. This form does not employ geometric invariants, but was used in [14]
to claim a formula (without a proof) similar to Theorem 2, which is proved in this paper with more corol-
laries in Section 6.

4. SIX ISOMETRY INVARIANTS OF SKEW LINE SEGMENTS IN 3-SPACE

This section introduces six isometry invariants, which uniquely determine positions of any line seg-
ments  modulo isometries of , see Lemma 1.

It suffices to consider only skew line segments that do not belong to the same 2-dimensional plane. If
,  are in the same plane , for example if they are parallel, then  is orthogonal to any vec-

tor  in the plane , hence . We denote by  the infinite oriented lines
through the given line segments , , respectively. In a plane with fixed coordinates , , all angles are
measured anticlockwise from the positive -axis.

Definition 2 (invariants of line segments). Let  be the angle between oriented line segments
. Assuming that ,  are not parallel, there is a unique pair of parallel planes , ,

each containing the infinite line  through the line segment . We choose orthogonal coordinates , ,
 in  so that

(4a) the horizontal plane  is in the middle between , see Fig. 1;

(4b)  is the intersection of the projections  to ;
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(4c) the -axis bisects the angle  from  to , the -axis is chosen so that  is anticlock-
wisely measured from the -axis to the -axis in ;

(4d) the -axis is chosen so that , ,  are oriented in the right hand way, then  is the signed distance
from  to ; the distance  is negative if the vector  is opposite to the positively oriented -axis in
Fig. 1.

Let ,  be the coordinates of the initial and final endpoints of the segments  in the infinite line 
whose origin is , .

The case of segments  lying in the same plane  can be formally covered by Definition 2 if
we allow the signed distance  from  to  to be 0.

Lemma 1 (parameterization). Any oriented line segments  are uniquely determined modulo a

rigid motion by their isometry invariants  and , , , ,  from Definition 2. For ,
, each line segment  is

(2)

Proof. Any line segments  that are not in the same plane are contained in distinct parallel
planes. For , the plane  is spanned by  and the line parallel to  and passing through an end-

point of . Let  be the orthogonal projection of the line segment  to the plane . The non-parallel

lines through the segments  and  in the plane  intersect at a point, say . Then the line segment
 is orthogonal to both planes , hence to both  for .

By Theorem 1, to compute , one can apply a rigid motion to move the mid-point of the line
segment  to the origin  and make  vertical, i.e. lying within the -axis. The
signed distance  can be defined as the difference between the coordinates of  and

 along the -axis. Then  lies in the horizontal plane , .
An extra rotation around the -axis guarantees that the -axis in the horizontal plane  is

the bisector of the angle  from  to , where  is the orthogonal
projection. Then the infinite lines  through  have the parametric form (x, y, z) =

 with .
The point  can be considered as the origin of the oriented infinite line . Let the line segment  have

a length  and its initial point have the coordinate  in the oriented line . Then the final end-
point of  has the coordinate . To cover only the segment , the parameter  should be replaced
by , .

If  in Lemma 1, the corresponding point  moves along the line .

Lemma 2 (formulas for invariants). Let  be any skewed oriented line segments given by their
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are not proportional to each other, the normalized vector product  is well-defined and

orthogonal to both , . Then ,  and  have lengths 1 and form a linear basis of ,

where the last vector is orthogonal to the first two.

Let  be any fixed point of , which can be assumed to be the origin  in the coordinates of
Lemma 1, though its position relative to the vectors  is not yet determined. First we express the points

 from Fig. 3 in terms of given vectors . If the initial endpoint  has a coor-
dinate  in the line  through the line segment , then  and

By Definition 2,  is orthogonal to the line  going through the vector  for . Then the

product  equals , where  is in the -axis, the signed distance 
is the -coordinate of  minus the -coordinate of . The triple product

 doesn’t depend on the parameters , ,

because  is orthogonal to both , . Hence the signed distance is ,

which can be positive or negative, see Fig. 3.

It remains to find the coordinate  of the initial endpoint of  relative to the origin , .
The vector  is orthogonal to both  if and only if the scalar products vanish:
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We get the formulas
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Proof. Under the central symmetry , in the notation of Lemma 2 the vectors , ,  change
their signs. Then the formulas for  gives the same expression, but the triple product

 and  change their signs.

Since the central symmetry  is an orthogonal map  with , the new linking number
changes its sign as follows: , where we also make use
of the invariance of the linking number under exchange of the segments from Theorem 1(f).

5. INVARIANT-BASED FORMULA FOR THE LINKING NUMBER OF SEGMENTS
This section proves main Theorem 2, which expresses the linking number of two line segments in terms

of their six isometry invariants from Definition 2. In 2000 Klenin and Langowski claimed a similar but a
bit less symmetric formula [14], but gave no proof, which requires substantial lemmas below. For example,
one of their six invariants differs from the signed distance  between oriented line segments.

Theorem 2 (invariant-based formula). For any line segments  with invariants ,

 from Definition 2, we have

(3)

where

For  or , we set . We also set  when .

The expression  is the squared third side of the triangle with the first two sides 
and the angle  between them, hence is always non-negative. Also  only when the
triangle degenerates for  and . For  or  when  are parallel, 
is guaranteed by  when  holds in addition to  or .

The symmetry of the  function in , i.e.  implies
that  by Theorem 2. Since the  function is odd in , i.e.,

, Lemma 3 is also respected.
Proof (of Corollary 1). By definition any simple orthogonal line segments  have the angle 

and initial endpoints , hence , . Then (3) gives ,

, . Then 

.

Figure 2 shows how the function  from Theorem 2 depends on two of four parameters
when the others are fixed. For example, if the angle  is fixed, then

. If also , the surface 

 in the first picture of Fig. 2 has the horizontal ridge 

and  for . If  are free, but , then

 =  Similarly,

, see the lines  on the boundaries of the AT surfaces
in the middle pictures of Fig. 2.
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 
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d

d d
α π − αsign( )arctan(cot ) = sign( )( /2 ).d d

→∞
α π − αlim AT(0, 0; , ) = sign( )( /2 )

d
d d π − αAT = /2
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Fig. 2. The graph of , where 2 of 4 parameters are fixed. Top left:

, . Top right: . Middle left: , . Middle right: , . Bottom left: ,
. Bottom right: , . 
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Lemma 4 (lk(L1,L2) is an integral in p, q). In the notations of Definition 2 we have

for .

Proof. Below we assume that , , , ,  are given and .

α−
π + + − α 

1 2

1 2

/ /

1 2 2 2 3/2
/ /

sin1lk( , ) =
4 (1 2 cos )

b d b d
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Fig. 3. The linking number  from formula (3), where 2 of 4 parameters are fixed. Top left: ,
. Top right: , . Middle left: , . Middle right: , . Bottom left: , .

Bottom right: , . 
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To simplify the last integral, introduce the variables  and . In the new
variables ,  the expression under the power  in the denominator becomes

The old variables are expressed as ,  and have the differentials ,

. Since , the new variables  have the ranges  and , respec-

tively. Then we get the required expression:

Due to Lemma 3, the above computations assume that the signed distance .
Lemma 5 (the linking number as a single integral). In the notations of Definition 2 we have

where the function  is defined as the single integral

for .

Proof. Complete the square in the expression under power  in Lemma 4:

The substitution  for the new variable  simplifies the sum of
squares to . Since  varies within , for any fixed , the

−
π − 

� �

1 1
1 2 1 2

1 2 3
1 20 0
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1
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range  of  satisfies  and . Since we treat ,  as

independent variables, the Jacobian of the substitution  equals

In the variables  the expression under the double integral of Lemma 4 becomes

We can express the sin functions for the bounds  in terms of tan as .

Using  obtained above, we get

Then  has the same expression with  replaced by . After substituting these expressions in the pre-
vious formula for the linking number, we get

for

Lemma 6 (I(r) via arctan). The integral  in Lemma 5 can be found as

Proof. The easy way is to differentiate  for ω = 

 with respect to the variable  remembering that
 are fixed parameters. For notational clarity, we use an auxiliary symbol for the expression under the

square root: . Then  and
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2
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Since we got the required expression under the integral , Lemma 6 is proved.
Proof (Theorem 2). Consider the right hand side of the equation in Lemma 6 as the 3-variable function

. The function in Lemma 5 is 

. By Lemma 5

Rewrite a typical function from the numerator above as follows:

If we denote the last expression as , required formula (3) follows.
In Lemmas 4, 5 and above we have used that the signed distance  is positive. By Lemma 3 the signed

distance  and  simultaneously change their signs under a central symmetry, while all other
invariants remain the same. Since  due to the arctan function being odd,
formula (3) holds for . The formula remains valid even for , when ,  are in the same plane.
The expected value  needs an explicit setting, see the discussion of the linking number dis-
continuity around  in Corollary 4.

6. THE ASYMPTOTIC BEHAVIOUR OF THE LINKING NUMBER OF SEGMENTS

This section discusses how the linking number  in Theorem 2 behaves with respect to the six
parameters of line segments , . Figure 3 shows how the linking number between two equal line seg-
ments varies with different pairs of parameters.

Corollary 2 (bounds of the linking number). For any line segments , the linking number
 is between .

Proof. By Theorem 2  is a sum of four arctan functions divided by . Since each arctan is
strictly between , the linking number is between .

Corollary 3 (sign of the linking number). In the notation of Definition 2, we have
. Any non-parallel  have . So

 if and only if  or  or .
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Proof. If  or , then  is undefined, so Theorem 2 sets . Then
.

Theorem 2 also specifies that  for . If  and  within  while all other
parameters remain fixed, then . Hence each of the four arctan functions in Theorem 2
approaches , so . The same conclusion similarly follows in the case  when

.
If ,  are not parallel, the angle  between them belongs to . If , Lemma 4 says that

Since the function under the integral is strictly positive, . By Lemma 3 both  simul-
taneously change their signs under a central symmetry. Hence the formula 
holds for all  including  above.

Corollary 4 (lk for d → 0). If the distance  and the curves ,  remain disjoint, the expression
in formula (3) behaves continuously, so . If  and the interiors of ,  intersect

each other in the limit case , then , where  keeps its sign.

Proof. Recall that . By Corollary 3 assume that , so . Then

,  and

so Theorem 2 gives

In the limit case , the line segments  remain disjoint in the same plane if and only if
both endpoint coordinates ,  have the same sign for at least one of , which is equivalent to

, i.e.  from the product above. Hence formula (3) is continuous
under  for any non-crossing segments. Any segments that intersect in the plane  when 
have endpoint coordinates  for both  and have the limit

 as required.

Corollary 5 (lk for ). If the distance , then .
Proof. If , while other parameters of  remain fixed, then the function

from Theorem 2 has the limit . Since the four AT functions in
Theorem 2 include the same values of , their limits cancel, so .

Corollary 6 (lk for ). If the invariants ,  of line segments  remain fixed, but
 or  for each , then .

Proof. If , then , . If , then , . Consider
the former case , the latter is similar. Since  are fixed,
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Fig. 4. (1) The Hopf link as two square cycles has  and vertices with coordinates  
 ,     (2) The Hopf link of triangular cycles has ,

   and   . (3) Solomon’s link has , 
     and      

 . (4) Whitehead’s link has ,     
  ,   and    .

(a) (b)

(d)

(c)
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as . Since the four AT functions in Theorem 2 have the same limit when their first two argu-
ments tend to , these 4 limits cancel, so .

Corollary 7 (lk for ). If one of segments  becomes infinitely short so that its final
endpoint tends to the fixed initial endpoint (or vice versa), while all other invariants of ,  from Defi-
nition 2 remain fixed, then .

Proof. We show that  for . It’s enough to consider the case . Then

is continuous. Let (say for ) , the case  is similar. The continuity of  implies that
 and . In the limit all terms in Theorem 2

cancel, hence .

7. COMPUTATIONS OF THE LINKING NUMBER FOR POLYGONAL LINKS

If curves  consist of straight line segments, then  can be computed as the sum of
 over all line segments  and . In [20] there is a complex proof that this sum is con-

vergent for a cubical lattice. The convergence of the periodic linking numbers remains open for arbitrary
lattices.

Figure 4 shows polygonal links whose linking numbers were computed by our Python code implement-
ing formula (3) at https://github.com/MattB-242/Closed_Lk_Form. For all links in Fig. 4 formula (3)
calculates the linking number between the two components correctly (as equal to  and  respectively
in the orientations given in Fig. 4), with a computation error of less than .

The asymptotic linking number introduced by Arnold converges for infinitely long curves [24], while
our motivation was a computation of geometric and topology invariants to classify periodic structures such
as textiles [7] and crystals [11].

Theorem 2 allows us to compute the periodic linking number between a segment  and a growing finite
lattice  whose unit cell consists of  copies of two oppositely oriented segments orthogonal to . This
periodic linking number is computed for increasing  in a lattice extending periodically in one, two and

≥ → +∞b a

+∞ →1 2lk( , ) 0L L

→i ia b ⊂ 3
1 2,L L R

1L 2L

→1 2lk( , ) 0L L

1 2lk( , ) = 0L L = 0d ≠ 0d

 α + αα  
 + − α +

2

2 2 2

sin cotAT( , ; , ) = arctan
2 cos

ab d
a b d

d a b ab d

= 1i →1 1a b →1 1b a AT
α → α1 2 1 2AT( , ; , ) AT( , ; , )a b d b b d α → α1 2 1 2AT( , ; , ) AT( , ; , )a a d b a d

→1 2lk( , ) 0L L

γ γ ⊂ 3
1 2, R γ γ1 2lk( , )

1 2lk( , )L L ⊂ γ1 1L ⊂ γ2 2L

−1 +1
−1210

J

nL n J
n

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 62  No. 8  2022



A FORMULA FOR THE LINKING NUMBER IN TERMS 1231

Fig. 5. Left: the line segment  in red and the periodic lattice  derived from  copies of the
“unit cell” , , translated in  linearly independent directions

for increasing . Right: the periodic linking number  is converging fast for . (Top) . Middle:
. Bottom: .
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three directions, see Fig. 5. As  increases, the  function asymptotically approaches an approximate
value of  for 1- and 3-periodic lattice and  for the 2-periodic lattice.

The invariant-based formula has allowed us to prove new asymptotic results of the linking number in
Corollaries 2–7 of Section 6. Since the periodic linking number is a real-valued invariant modulo isom-
etries, it can be used to continuously quantify similarities between periodic crystalline networks [11]. One
next possible step is to use formula (3) to prove asymptotic convergence of the periodic linking number for
arbitrary lattices, so that we can show that the limit of the infinite sum is a general invariant that can be
used to develop descriptors of crystal structures.

The Milnor invariants generalise the linking number to invariants of links with more than two compo-
nents. An integral for the three component Milnor invariant [12] may be possible to compute in a closed

n lk
0.30 0.29
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form similarly to Theorem 2. The interesting open problem is to extend the isometry-based approach to
finer invariants of knots.

The Gauss integral in (1) was extended to the infinite Kontsevich integral containing all finite-type or
Vassiliev’s invariants of knots [15]. The coefficients of this infinite series were explicitly described [16] as
solutions of exponential equations with non-commutative variables ,  in a compressed form modulo
commutators of commutators in , . The underlying metabelian formula for  has found an easier
proof [17] in the form of a generating series in the variables , .

8. CONCLUSIONS AND POTENTIAL EXTENSIONS TO PERIODIC STRUCTURES
This paper has provided a detailed proof of the analytic formula for the linking number based on six

isometry invariants that uniquely determine a relative position of two line segments in . Though a sim-
ilar formula was claimed in [14], no proof was given. Hence this paper fills an important gap in the liter-
ature by completing the previously missing proof via highly technical Lemmas 4–6 in Section 5.

We were motivated by detecting inter-penetrations of crystalline networks [11]. Solid crystalline mate-
rials (crystals) are periodic structures, which are determined in a rigid form and can be naturally classified
up to isometry preserving all inter-atomic distances. The first complete isometry invariant of crystals was
found in [3]. The harder problem is to design a continuous metric between crystals. Well-approximated
metrics between lattices in any dimension were defined in the first paper [19] in the new area of Periodic
Geometry [2]. Both classification and metric problems can be combined into the more practically import-
ant mapping problem asking for a continuous parameterization of all crystals. Such parameterizations
were described for lattices in dimensions two [10] and three [9]. For general crystals, the easiest complete
invariants are Pointwise Distance Distributions [26] whose simpler averages [27] are enough to predict the
lattice energy of crystals within 5 kJ/mol [23]. 
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