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1. INTRODUCTION

The object of study is the linear integral equation of the third kind with fixed singularities in the kernel
(ETKFS):

(1.1)

where

 are known continuous functions having certain pointwise smoothness,  is the sought function, and
the integral is understood as an Hadamard finite part integral [1, p. 144–150]. Equations of the form (1.1)
is increasingly widely used both in theory and applications. Equations of this kind arise in a number of
important problems in the theories of elasticity, neutron transport, and particle scattering (see, e.g., [2, 3]
and the references in [2, 4]), as well as theories of singular integral equations with a degenerate symbol [5]
and partial differential equations of mixed type [6]. In this case, as a rule, the natural classes of solutions
of integral equations of the third kind (ETK) are the special spaces of generalized functions (SGFs) of type

 or . By  ( ) we mean the SGF constructed on the basis of the Dirac delta function functional
(respectively, the Hadamard finite part integral). The ETKFSs under study are solved exactly only in very
rare special cases; therefore, the development of theoretically substantiated efficient methods for their
approximate solution in the SGFs is a relevant and actively developing area of mathematical analysis and
computational mathematics. A number of results in this field were obtained in [7–12], where special direct
polynomial methods for solving ETKFSs of the form (1.1) in SGFs of type  and  were proposed and
substantiated.

In this paper, for an approximate solution of ETKFS (1.1) in an SGF of type , we propose a new ver-
sion of the generalized collocation method based on the use of cubic splines with minimal defect. Its the-
oretical substantiation in the sense of [13, Ch. 1] is conducted, and it is found that this method is optimal
in order of accuracy on a certain class  of smooth functions among all direct projection methods for solv-
ing the equations under study in the SGFs.
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2. ON THE SPACES OF TEST AND GENERALIZED FUNCTIONS
Let  be the space of functions continuous on  with the usual max-norm and . Follow-

ing [14], we say that a function  belongs to the class  if, at the point , there is

a th-order Taylor derivative  (naturally, we assume that ). The set  is called
the class of pointwise smooth functions with the characteristic operator  defined by
the rule

With the norm

the space  is complete and normally embedded in  (see, e.g., [15, Ch. 1, Section 2]).

Next, let  and . Following [14], we will write  if there exist left Taylor

derivatives  at the point  and, for  (  is the entire part of a number), there
is a finite limit

We supply the vector space  with the norm

(2.1)

where

(2.2)

Note that elements of the space  are functions of the form

(2.3)

where    Hence, the space  with norm (2.1) is complete and
embedded in .

Now we form the test space for our studies:

We define the norm in it as

(2.4)

Lemma 2.1 (see [7]). 1) The test functions have the following structure:

(2.5)

where      and    
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318 GABBASOV, GALIMOVA
2) the space  is complete in norm (2.4) and embedded in 

Let  and, for each fixed , the function  belong to the space . We will say that

 if , where  denotes operator (2.2) applied with respect to the variable . In the same way,
we define the class . Then,

Now, over the space of test functions Y, we construct a family  of generalized functions 
of the form

(2.6)

where    are arbitrary constants, and  and  are, respectively, the Dirac delta
function and its Taylor derivatives acting on the space  of test functions according to the rule

It is clear that the vector space  with the norm

(2.7)

is a Banach space.

3. ON THE SPLINE APPROXIMATION OF POINTWISE SMOOTH FUNCTIONS

Let us consider the approximation of the elements of the test space  using cubic splines.

We define on  a uniform grid

(3.1)

where   and consider on it a cubic spline

satisfying the boundary conditions

(3.2)

Here, the test functions  are -splines with a support  (see, e.g., [16, Ch. 3, Section 8]).
To determine all functions , we supplement grid (3.1) with uniformly spaced nodes:

. We denote by  the space of all cubic splines  on
the grid  that possess property (3.2) with the norm . Next, we denote by  an operator

that puts into correspondence to any function  its interpolation cubic spline  under condi-
tion (3.2), such that  . In book [16, Ch. 3, Section 1, Theorem 3.1], the existence
and uniqueness of an interpolating cubic spline are proved under various boundary conditions and an
algorithm for constructing such splines is presented. It is also specially noted there [16, Ch. 3, Section 5]
that, in the approximation by cubic splines, the choice of boundary conditions (3.2) is the most
appropriate.

Theorems 9, 10, and 13 in [17, Ch. 2, Section 4] and the corresponding result in [18] (see Lemma 2
in [18]) imply the following result.
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Lemma 3.1. Let  and . Then,

(3.3)

Let  be the class of all algebraic polynomials of degree not higher than . Denote by

 the -dimensional subspace of  and introduce into consider-
ation the operator  that puts into correspondence to any function  a general-
ized spline  defined by the conditions

Following the reasoning in [15, Ch. 1, Section 5, 5.3], it easy to obtain the representation

(3.4)

Lemma 3.2.  is a projector in the space Y.

By virtue of (3.4) and , this lemma can also be proved similarly to Lemma 1.5.1 in [15, Ch. 1,
Section 5]. The role of the operators  and  in Lemma 1.5.1 is played by  and ST, respectively.

Henceforward, we will use the following notation:

where  
The following theorem characterizes the rate of convergence of the generalized interpolation splines to

the interpolated function.

Theorem 1. If  then

(3.5)

Proof. By virtue of (2.5), (3.4), (2.4), (2.1), and Lemma 3.1, we successively find

Remark 1. Obviously, estimate (3.5) and the well-known Banach–Steinhaus theorem imply uniform
boundedness of the norms of the operators .

4. GENERALIZED COLLOCATION METHOD WITH CUBIC SPLINES (GCMCS)
Let there be given ETKFS (1.1). To reduce cumbersome calculations and simplify formulations, with-

out limiting the generality of the methods and results, henceforward, we will assume that   and
, i.e., consider an equation of the form
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where    is a known continuous function satisfying the conditions
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320 GABBASOV, GALIMOVA
and  is the sought generalized function. The Fredholmity and sufficient conditions for the contin-
uous invertibility of the operator  were proved in [7], where a method for finding the exact
solution of ETKFS (4.1) in the class X was also described.

We construct an approximate solution of Eq. (4.1) in the form

(4.3)

where  is the cubic spline considered above in Section 3. We find the set  of
unknown parameters according to our GCMCS from a quadratic system of linear algebraic equations
(SLAE) of the -th order:

(4.4)

where  is the residual of the approximate solution and  is the previously
used system of collocation nodes generating grid (3.1).

In the substantiation of the proposed method, a useful role is played by the functions

For the computational algorithm (4.1)–(4.4), we have the following theorem.
Theorem 2. Suppose that a homogeneous ETKFS  has only a zero solution in  (e.g., under the con-

ditions of Theorem 3 in [7]) and the initial data are such that  (with respect to ), 

   Then, for all  , SLAE (4.4) has a unique solution  and the

sequence of approximate solutions  converges to the exact solution  in the norm of the
space  with a rate
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Proof. ETKFS (4.1) is represented as a linear operator equation
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Then, following the reasoning in the proof of Theorem 4.3.1 (see [15, Ch. 4, Section 3]), it is easy to show
that computational scheme (4.3) and (4.4) for the GCMCS is equivalent to the linear operator equation
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where  is the spline operator introduced and studied in detail in Section 3. Therefore, to prove
Theorem 2, it suffices to prove the existence, uniqueness, and convergence of solutions of Eqs. (4.7).
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Let us refine the structure of the approximating equation (4.7). Since, by Lemma 3.2,  we have
 for any element  Thus, system (4.3) and (4.4) is equivalent to a linear equation

of the form

(4.8)

Let us now analyze the proximity of the operators  and  in the subspace . Using Eqs. (4.6) and (4.8),
representations (2.5) and (3.4), and norms (2.4) and (2.1), for an arbitrary element , we find that
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for given  and the corresponding approximating operator  in the GCMCS is continuously invertible.

Then, the error of the approximate solution  for the right-hand side  can be represented as

(4.14)

Proof. By virtue of Theorem 6 (see [13, Ch. 1, Section 3]) and the structure of the approximate equa-
tion (4.8), we have
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Let us now consider the optimization in order of accuracy on the class of uniquely solvable (uniformly
in ) ETKFSs (4.1) in the case when the initial data belong to the family  i.e., for  (with
respect to ),     Then, by Theorem 3 from [7], we have

where 
Next, let

and  be the family of all linear operators 

Theorem 4. Let   Then,

(5.5)
and this order, optimal in accuracy, realizes the GCMCS.

Proof. Note that the definition of the Kolmogorov th width  of a set  in a normed space
 (see, e.g., [19, Ch. 1, Section 1]) and Theorem 1.3.6 (see [4, Ch. 1, Section 1.3]) implies

the equality

which, in turn, since  (see, e.g., [19, Ch. 3, Sec. 3]), implies the weak equiva-
lence

(5.6)

It is known (see [13, Ch. 4, Section 2]) that  Therefore, (5.6) implies

(5.7)

On the other hand, according to (5.3) and Theorems 2 and 3, we find the estimate

Hence and from relations (5.7) and (5.4), we obtain the assertion of Theorem 4 with estimate (5.5).

6. CONCLUDING REMARKS

Remark 2. By virtue of the definition of the norm in , it is easy to see that the conver-

gence of a sequence  of approximate solutions to the exact solution  in the metric of 
implies the ordinary convergence in the space of generalized functions, i.e., weak convergence.

Remark 3. When approximating solutions of operator equations , a natural question arises

about the convergence rate of the residual of the method, . One of the results in this
direction can be easily obtained from Theorem 2, namely, its simple corollary: if the initial data of
Eq. (4.1) belong to the class  then, under the conditions of Theorem 2, we have the estimate

Remark 4. Since , for , ETKFS (4.1) turns into an integral equation
of the second kind in  with a fixed singularity in the kernel and the proposed method (4.3) and (4.4)
turns into the corresponding version of the collocation method with cubic splines, so that 

  and  Therefore, Theorem 2 contains the corresponding results on the sub-
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324 GABBASOV, GALIMOVA
stantiation of this version of the collocation method for the approximate solution of equations of the sec-

ond kind with a singularity in the kernel; in this case, the error is estimated as 

Remark 5. If , then  and ETKFS (4.1) also turns into an integral
equation of the second kind in the space  In this case, method (4.3) and (4.4) turns into the correspond-
ing cubic spline collocation method for an equation of the second kind, so that   There-
fore, Theorem 2 also substantiates this method for approximate solution of equations of the second kind

in  The corresponding error is estimated as  

Remark 6. Since, under the conditions of Theorem 2, the corresponding approximating operators 
have the property

it is obvious (see [13, Ch. 1, Section 5]) that the direct method proposed here for ETKFS (4.1) is stable
with respect to small perturbations of the initial data. This allows one to find a numerical solution of the
equations under study on a computer with any predetermined order of accuracy. Moreover, if ETKFS
(4.1) is well conditioned, then SLAE (4.4) is also well conditioned.
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