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Abstract—For the nonstationary radiative transfer equation, the inverse problem of determining the
attenuation coefficient from a known solution at the domain boundary is considered. The structure
and the continuous properties of the solution to an initial-boundary value problem for the radiative
transfer equation are studied. Under special assumptions about the radiation source, it is shown that
the inverse problem has a unique solution and a formula for the Radon transform of the attenuation
coefficient is derived. The quality of the reconstructed tomographic images of the sought function is
analyzed numerically in the case of various angular and time flux density distributions of the external
source.
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INTRODUCTION
There is a wide variety of inverse problem formulations for radiative transfer equations and, despite the

rather long history of research in this field, much attention is still given to inverse problems in radiative
transfer theory (see [1–20]). In most problems, the task is to find the attenuation coefficient from incident
and transmitted radiation. This formulation is natural and traditional for tomography and corresponds to
a model in which scattering and internal sources in the medium can be neglected. In this case, the atten-
uation coefficient in the equation remains the only unknown quantity determining the properties of the
medium. Especially valuable in practice are inverse problem formulations in which at least one of the coef-
ficients of the equation is determined and knowledge of the others is not required. For example, problems
of determining the attenuation coefficient with special-type external sources suppressing the influence of
scattering and internal sources in the irradiated medium, and problems of finding discontinuity surfaces
of equation coefficients from information on only transmitted radiation were studied in [5–14]. Specifi-
cally, in [7, 8] the attenuation coefficient in a stationary transfer equation was determined using special
radiation source having a jump discontinuity in the angular variable on a subset of the unit sphere, for
example, in a horizontal cross section. It was proved that the solution can be represented as a sum of bal-
listic and scattered components, where the former has a jump discontinuity and the latter is a continuous
function. In recent works [19, 20], similar statements were proved in the case when the incident f lux den-
sity has discontinuities in space variables on some curve belonging to the boundary of the exposed domain.

By using the indicated representation, the Radon transform of the attenuation coefficient can be
expressed in terms of the jump sizes in the incident and transmitted radiation f lux densities. Thus, the
inverse problem for an integro-differential equation is reduced to a traditional integral geometry problem,
namely, to Radon transform inversion in a cross section of the three-dimensional object under study.

In this paper, the results of [7, 8] obtained for the stationary radiative transfer equation are generalized
to the nonstationary case. We examine the structure of the nonstationary solution to the direct problem
and derive a formula for the Radon transform of the attenuation coefficient. To be fair, we note that, in
the nonstationary radiative transfer model, the discrimination of the scattered component in a measured
signal can be achieved by reducing the duration of the sounding pulse. Indeed, pulsed radiation sources
have been successfully used in tomography for a long time. Such sources are more widespread in optical
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tomography, since the generation of ultrashort pulses in the X-ray range imposes more severe physical and
technological restrictions. Another important advantage of pulsed sources over conventional continuously
radiating X-ray generators is associated with reduced radiation exposure in tomography of biological
objects.

In this work, an algorithm for solving an inverse problem is numerically tested as applied to a well-
known phantom (see [21]). It is shown that the quality of reconstructed images is improved with reducing
pulse duration. Note that the filtration of the scattered field relies on the fact that the ballistic and scat-
tered radiation components have different smoothness, so there is no urgent need to use ultrashort
momenta in the proposed tomography method (see [22, 23]). To obtain synthetic data on transmitted
radiation, we numerically implement a Monte Carlo solution of the nonstationary transfer equation with
radiation sources of special type.

1. FORMULATION OF THE INVERSE PROBLEM
Consider an integro-differential equation of the following form (see [17, 22, 24]):

(1)

Equation (1) describes the unsteady interaction of radiation with substance, and the function  is
interpreted as the particle f lux density at the time  at the point ; here, the particles move
with the velocity  in the direction of the unit vector . The functions  and  are
interpreted as the attenuation and scattering coefficients,  denotes the scattering phase function, and 
is the density of internal sources.

Radiation transfer occurs in a multicomponent system  representing the union of a finite number of
bounded and pairwise disjoint subdomains , and the closure  is a convex set in . The surface

 is called the outer boundary of the set G, and , the inner boundary of .
Additionally, the following assumption is made about : any straight line having a common point with

 intersects  in a finite number of points. This condition, called the generalized convexity condition,
is typical of radiation transfer theory and is not restrictive from an application point of view. The apparent
inconsistency associated with the presence of line sections on  can generally be overcome by continu-
ing these sections with a possible increase in the number of domains .

In what follows, the symbol  denotes the Lebesgue measure of a set  in . The generalized
convexity condition implies that  (see [11]).

Let  denote the ray starting at the point  in the direction , , and
 denote the distance from the point  to the boundary  in the direction , i.e.,

. Suppose that the set  consists of points  representable in the form

Using , we construct the sets ,  and, for brevity, introduce some notation:

Equation (1) is subject to the initial and boundary conditions

(2)

(3)
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Problem 1 (direct). Given , , , , , and , determine the function  from Eq. (1) and condition (4).
Direct problems for stationary and nonstationary radiative transfer equations of this type have been

extensively studied. We note some well-known monographs on this subject, namely, [24–29].
Problem 2 (inverse). Given , H, and , determine the function  from relations (1), (4) and the addi-

tional condition

(5)

For the stationary radiative transfer equation, Problem 2 with special conditions imposed on the external
radiation source was considered in [5, 7, 8, 11, 14, 19, 20]. Below, the results of [7, 8, 11] are generalized
to the nonstationary case and the quality of attenuation coefficient tomograms in the case of a decreasing
source pulse duration is numerically analyzed.

2. FUNCTION SPACES AND BASIC CONSTRAINTS

Let  denote the space of continuous and bounded functions on . The functions , ,
, and  are assumed to be nonnegative and such that , ,

, , and, for all ,  satisfies the normalization condition

By the differential expression on the left-hand side of Eq. (1), we mean the derivative at the point  in
the direction of the vector :

and  is used to denote

The function  is said to belong to  if the following conditions are satisfied:
(i) for all  the function  is absolutely continuous with respect to ,

;

(ii) ;

(iii) .

The operator  is defined as

(6)

Let  denote a measure zero subset of . Consider the operator 
defined by the relation

(7)

Since , , we conclude that, for , the
function  belongs to the space  (see [11]). Therefore, the operator  is well defined.

In the next section, we consider the problem of finding a function  satisfying the equation

(8)

on the set X. The definition of the function space  implies that the function  is the solution of the
direct problem (1), (4) with homogeneous boundary and initial conditions ( ), and the solution
remains continuous in the direction  in passing through the material interface ( ).
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3. SOLVABILITY OF THE DIRECT PROBLEM WITH HOMOGENEOUS INITIAL
AND BOUNDARY CONDITIONS

Preliminarily, we prove several auxiliary lemmas. Let  be a set consisting of points 
such that the straight line  has a nonempty intersection with . By the generalized
convexity condition, the set  is a subset of .

Lemma 1. Suppose that  and . Then the function

(9)

belongs to the space  and the function

(10)

belongs to the space , where .
Proof. Let us prove the first assertion of the lemma. First, we note that, since , where 

is the diameter of , the boundedness of  on the set  implies that the function  is bounded as well.
Now we prove that  is continuous on .

Fix an arbitrary point  and, for any sequence of points
 converging to the point  as , consider the expressions

where  and .

Note that  for any . Let us prove that the sequence  tends to  almost
everywhere on  as . By the generalized convexity condition, for any , the ray

 crosses the boundary  in a finite number of points. Let 
( , ) be the points of intersection of the interval  with the
boundary . Then the set

is a countable subset of , since it represents a countable union of finite sets.
Thus, since , all functions  in the sequence , , are continuous with

respect to , . Therefore,  almost everywhere on . Then, by the Lebesgue
dominated convergence theorem, we obtain

As a result, we have proved the continuity of the function  on the set .

Let us prove the second assertion of the lemma. We show that the function  is in . Since
the set  is convex, the function  on this set can be defined as

where  is the characteristic function of the set , whose diameter is equal to . Since , by
the proved assertion of the first part of the lemma, we have .
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By definition,  and ; therefore, the
functions  belong to .

Let us show the continuity of the function ; the continuity of  can be proved similarly. The
boundedness of  follows from the boundedness of , , and . To prove the con-
tinuity of  on the set , fix an arbitrary point  and, for any sequence of points

 such that  as , consider the expressions

where

and

Since , in a similar manner to what was proved in the first part of the assertion, it can
be shown that  as  almost everywhere on . By the Lebesgue theorem, we con-

clude that the function  is continuous on the set . The assertions of the lemma are proved.
Lemma 2. For any function , there exists a unique solution  of the equation

(11)
and, for all  this solution is given by the formula

(12)

and satisfies the condition

(13)

where .

Proof. It can be directly verified that the function  given by (12) satisfies Eq. (11) and conditions (i)
and (ii) from the definition of the space . By Lemma 1, the function  defined by (9) belongs to

; therefore,  belongs to . The function 
belongs to  by assumption; therefore, by Lemma 1, the function  in (12) belongs to . The

function  belongs to , since  satisfies Eq. (11) with a right-hand side

.
To prove estimate (13), we use representation (12):
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By Lemma 2, the operator  defined by the formula

(15)

exists and is bounded in .

The space  is equipped with the norm
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4. STUDY OF THE INVERSE PROBLEM FOR THE RADIATIVE TRANSFER EQUATION

In Section 3, we considered an initial-boundary value problem for the radiative transfer equation with
homogeneous initial and boundary conditions. The solution of the inhomogeneous initial-boundary
value problem (1), (4) can be represented in the form , where

(20)

and the function  belongs to  and satisfies the equation

(21)

Since the operator  has smoothing properties and , the
function  belongs to  even if  has discontinuities with respect to . Therefore, according to
the results of Section 3, Eq. (21) is uniquely solvable in . Thus, the function  can be represented in
the form of a sum of two functions,  and . The function , which is interpreted as the scattered field,
is continuous on the set , while the unscattered radiation  may contain discontinu-
ities with respect to  on . This structural feature of the solution to the radiative transfer equation
underlies the method used to solve the inverse problem.

Let the size of the jump in  with respect to  as  be denoted by
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the stationary case (see [8, 11]).
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where  and  are solutions of the initial-boundary value problems –  with two sets of coefficients
 and  and with the same function 

satisfying condition . Then relation  holds and  almost everywhere in G.
A feature of the theorem is that it states that, within two sets of coefficients of Eq. (1), namely,

only  and  coincide with each other, while nothing is said about the other coefficients. It follows
from (25) that the unknown functions , , and  do not influence the procedure for determining the
function . In terms of physics, we can say that the effects exerted by scattering and the presence of radio-
active sources in the medium are suppressed by choosing a suitable external source. Since the function 
has a discontinuity at the point , the function  is recovered layerwise in horizontal
planes , which is conventional for X-ray tomography (see [30]).

Time  in relations (25) and (26) can be arbitrary as long as condition (22) holds at this point, which
guarantees that the function  has a nonzero discontinuity. However, when the inverse problem is solved
numerically (and the method is implemented in practice), it is desirable that the jumps in  and  be
maximal at the times  and , respectively. For example, if the medium is probed by a pulse
with a ballistic component of maximum intensity at the time , then it is preferable to measure the
signal going out of the medium at the point  at the time . At this time, the
ratio of the unscattered radiation component to the scattered field is maximum at the point .

5. CONSTRUCTION OF A MONTE CARLO ALGORITHM FOR SOLVING
THE INITIAL-BOUNDARY VALUE PROBLEM

To test the algorithm for solving the inverse problem 2, we need to know the function  which can be
measured in physical experiments. In mathematical modeling, to find  it is necessary to solve the direct
problem 1 for all given coefficients of Eq. (1) and for the function . Among the wide variety of numerical
methods intended to solve radiative transfer equations in the multidimensional case, there is hardly an
alternative to Monte Carlo methods. We use a Monte Carlo technique known as the conjugate walk
method, which is appropriate for finding the radiant f lux density at a fixed point of the phase space 
(see [31, 32]).

Let  denote the operator  defined by the formula

(27)

Then an approximate solution of problem (1)–(3) with an inhomogeneous boundary condition can be
written in the form of a truncated Neumann series:

(28)

The function  approximates the solution  of the problem, and representation (28) underlies the con-
struction of the Monte Carlo algorithm. Each element of the sequence ,  specifies the
contribution made by the radiation after  to  scattering events, while the term  takes into account the
contribution of the unscattered radiation.

The truncated Neumann series (28), which is a sum of multidimensional integrals, is computed using
the Monte Carlo method. We construct a particle trajectory

(29)
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where the points of Markov chain (29) are determined according to the following rule:

(30)

In (30) the random variable  is distributed on the interval  with probability density

(31)

and the random vector  is distributed over the unit sphere  with transition probability density
.

Let  denote the expectation of the random variable . Then, according to the Monte Carlo
method, the value of the function  at the point  can be expressed as

(32)

where  and the random variables  for  are determined recurrently as

(33)

Repeating this procedure  times yields a sample of size  for the random variable . The sample
mean gives an estimate for the expectation of  and, hence, an approximate value of  at the point

. A simple analysis of recurrence relations (33) shows that the described weighted Monte Carlo
method takes into account the absorption and escape of particles from the domain. Allowance for these
effects causes a relatively small increase in the complexity of the method, while leading to a considerable
reduction in the variance of the estimated expectation of  and to a significant improvement in the accu-
racy of the solution to the radiative transfer equation (see [32]).

6. NUMERICAL EXPERIMENTS
In this section, we describe the numerical results concerning the recovery of an internal medium struc-

ture. The algorithm was tested in two steps. At the first step, for given medium parameters, the transmitted
radiation  was computed by applying the Monte Carlo method described in Section 5. In solving the
direct problem, the nonstationary radiation source  of the pulse type (of various duration) was assumed
to have a jump discontinuity with respect to the angular variable in the plane . At the second step,
the inverse problem was solved using formula (25), which filtered out the scattered radiation, or using the
classical tomography formula

(34)

Formula (34) differs from (25) in that the logarithm involves the values of the functions  and  at
domain boundary points, rather than the sizes of the jumps in these functions. To find the function  from
Eqs. (25) and (34), we can use various algorithms for Radon transform inversion. An example is the con-
volution back projection algorithm, which is popular in the modern literature (see [30]).

The solution algorithm proposed for the inverse problem was tested using the phantom designed in [21]
for performance evaluation of computed tomography algorithms. The phantom is a cylinder  cm in
height and diameter. The internal volume of the cylinder is divided into five cylindrical layers (compart-
ments), each playing its own role in testing certain qualities of the reconstruction algorithm.

+ + + += − τ ω , = − τ , = , − , = , ω = ω, = .v1 1 1 1 0 0 0/ 0 1i i i i i i ir r t t i n r r t t

+τ 1i
−, , ω ,[0 ( )]i i id r t

−
+

−
τ ,ω ,

+

      μ − τ ω − μ − τω τ − − μ − τω τ ,   
        

 
1

1
( )

1
0 0

( )exp ( ) 1 exp ( )
i i i id r t

i i i i i i ir r d r d

+ω 1i Ω
+ +,ω ⋅ ω1 1( )i i ip r

ΘE[ ] Θ
NI ,ω,( )r t

=
, ω, = Θ , Θ = θ ,E

0
( ) [ ]

N

N N N n
n

I r t

θ = ,ω ,0 0 0 0 0( )I r t θn > 0n

− ,ω ,
+

+
+

 σ  θ = − − μ − ω τ τ θ , = , , , − .
μ  

 
 …

( )
1

1
1 0

( )1 exp ( ) 1 2 1
( )

n n nd r t
n

n n n n
n

r r d n N
r

M M ΘN

ΘN NI
,ω,( )r t

ΘN

H
h

ω =3 0

,ω

,−ω

− , −ω ω , ω , − , −ωμ + τω τ = .
+ ,ω ω , ω , + , ω

v

v

0

0

( ) 0 0 0 0
0

0 0 0 0
( )

( ( ) ( )/ )( ) ln
( ( ) ( )/ )

d r

d r

h r d r t d rr d
H r d r t d r

h H
μ

10
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 61  No. 12  2021



DETERMINATION OF THE ATTENUATION COEFFICIENT 2097

Fig. 1. Schematic view of the phantom for the tested algorithm. 
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In the experiments, we used only the first compartment, which is intended to test the linearity of
reconstructed attenuation coefficients (see [33]). This is a major characteristic used in diagnosis and treat-
ment planning (see [34]), and it is defined as follows. In computed tomography, attenuation coefficients
for various materials are traditionally given in Hounsfield units (HU). The HU value is related to the
attenuation coefficient  of substance by the linear law

(35)

where  is the attenuation coefficient of the substance and ,  are the attenuation coefficients for
water and air, respectively. The Hounsfield scale has been successfully used in classical computed tomog-
raphy as applied to soft tissue diagnosis. In the case of denser tissues, such as bones, due to the relatively
low energy of incident radiation and the increased fraction of the scattered field, inclusions of identical
density yield different attenuation coefficients on the Hounsfield scale depending on their locations. As a
result, the linear relation (35) between Hounsfield units and the attenuation coefficient of the medium is
violated. This problem is particularly acute in cone-beam computed tomography (see [35]).

The used phantom is schematically shown in Fig. 1. The given section is a cylinder  mm in diameter
and  mm in height made of plastic with an attenuation coefficient equivalent to that of water
( ). The section contains four cylindrical inclusions  mm in diameter and  mm in height with
different attenuation coefficients ( ). Following the technique proposed in [21],
linearity was testes by computing the average attenuation coefficient for each of the materials included in
the phantom, after which the results were compared with reference values in Hounsfield units. The radi-
ation source was specified as a Gaussian distribution with respect to time having the form

(36)

where  is the pulse amplitude,  is the time corresponding to the maximum power of the signal,  is the
pulse duration at half maximum, and

(37)

In the experiments, we used ,  ns, and  = , , ,  ps.
Figure 2 presents the results of phantom reconstruction for a sounding pulse of various durations. Spe-

cifically, the source reconstruction results obtained by inverting the Radon transform with the help of for-
mula (34) are shown on the left, while the results obtained after filtering out the scattered field based on
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Fig. 2. Results of phantom reconstruction for an increasing duration of the sounding pulse: , , ,  ps in the case
of no signal processing (left) and after filtering out the scattered field using formula (25) (right).
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Table 1. Average values of the reconstructed attenuation coefficients  in Hounsfield units for various durations 
of the sounding pulse

For each inclusion, the table presents the exact value of  obtained by inverting the Radon transform without preprocessing the
transmitted radiation (left) and obtained after filtering out the scattered field using formula (25) (right).

Inclusion number 0 1 2 3 4

Exact value, 0 –1000 –30 30 100

 ps –101 3 –980 –991 –60 –31 –6 25 60 97

 ps –396 –5 –868 –998 –211 –32 –172 24 –128 96

 ps –673 –7 –785 –996 –640 –34 –633 21 –624 93

 ps –812 –8 –866 –996 –787 –35 –784 21 –779 92

μ pt

HU

= 3pt

= 30pt

= 300pt

= 3000pt

μ

a special-type source with the help of formula (25) are shown on the right. The average values of the
reconstructed attenuation coefficients in Hounsfield units are given in Table 1. More specifically, the
average value computed using formula (34) without preliminarily filtering out the scattered field is pre-
sented on the left, while the value based on formula (25) is given on the right.

Inspection of Table 1 and the presented tomograms show that short-pulsed radiation makes it possible
to filter out the scattered component in the transmitted radiation. Accordingly, when the phantom is
exposed to short pulses, the reconstruction results are fairly good even without applying additional scat-
tered field filtration based on formula (25). Overall, the error of the reconstructed attenuation coefficient
was found to be at the level obtained in [21]. Note that, even in this “good” case, the additional processing
of the signal with the help of formula (25) yields better correspondence between the reference and recon-
structed values of the attenuation coefficient. As the pulse duration increases, the quality of the recon-
struction without signal preprocessing degrades sharply. For a pulse duration of  ps, the numerical
values of the reconstructed coefficients differ significantly and three out of four inclusions are hardly visu-
ally distinguishable. On the contrary, the use of a special-type source with the subsequent signal process-
ing yields good results. The right pictures in Fig. 2 show that the internal structure of the phantom is recov-
ered with acceptable quality for any pulse duration. However, as the pulse duration grows, the quality of
the reconstruction degrades, though insignificantly. Thus, a combination of a pulse and a special-type
source is recommended for achieving the best quality of the reconstruction.

CONCLUSIONS

The structure of a nonstationary solution to the radiative transfer equation with a special-type external
source having a jump discontinuity in the angular variable was studied. It was shown that the solution of
the direct problem can be represented in the form of a sum of two components. The first component
describes the unscattered radiation and transfers the discontinuity from the boundary into the domain,
while the second component is a continuous function describing the scattered field. This representation
was used to solve the inverse problem of determining the attenuation coefficient in the case when the solu-
tion of the equation is known at the boundary of the domain. A formula for the Radon transform of the
sought function was derived, and the uniqueness of the solution to the inverse problem was proved. An
unknown medium exposed to X-ray radiation with various time and angular distribution structures was
numerically simulated. The numerical results showed that the best quality of the tomographic images is
achieved in the case of irradiation by a combined pulsed source of special type.
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