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Abstract—A analytic review of major problems and new mathematical and technological discoveries
in methods for solving SLAEs is given. This stage of mathematical modeling is a bottleneck because
the amount of the required computational resources grows nonlinearly with the increasing number of
degrees of freedom of the problem. It is important that the efficiency and performance of computa-
tional methods and technologies significantly depend on how well the specific features of the class of
application problems—electromagnetism, f luid dynamics, elasticity and plasticity, multiphase filter-
ing, heat and mass transfer, etc. are taken into account. The development of Krylov iterative processes
is mainly intended for the construction of two-level algorithms with various orthogonal, projective,
variational, and spectral properties, including not only polynomial but also rational and harmonic
approximation techniques. Additional acceleration of such algorithms is achieved on the basis of
deflation and augmenting approaches using various systems of basis vectors. The goal of intensive
studies is to construct efficient preconditioning operators on the basis of various principles: new mul-
tigrid schemes and parallel domain decomposition methods, multipreconditioning, nested and alter-
nate triangular factorizations, low-rank and other algorithms for approximating inverse matrices, etc.
High-performance and scalable parallelization are based on hybrid programming using internode
message passing, multithreaded computations, vectorization, and graphics processing units (GPUs).
Modern trends in mathematical methods and software are aimed at the creation of an integrated envi-
ronment designed for a long lifecycle and massive innovations in important applications.

Keywords: sparse SLAE, preconditioning, iterative methods, Krylov subspaces, symmetric and asym-
metric matrices, decomposition algorithms, multigrid approaches, approximate factorization
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1. INTRODUCTION
Preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations

(SLAEs) is an important achievement of computational mathematics in the 20th century. Their signifi-
cance becomes especially high with the development of supercomputer simulation and solution of inter-
disciplinary direct and inverse, nonlinear, and nonstationary multidimensional problems with compli-
cated geometric and material properties. Modern requirements for the accuracy of solving problems with
real life data lead to superlarge systems (1010–1011 and greater) and huge conditioning numbers (  and
higher) when the standard double precision computations are already on the verge of being available. In
this case, the computational cost of solving SLAEs exceeds 80% of the total computational cost for large-
scale computer simulations.

Of the most interest for researchers are algebraic systems with sparse matrices that arise as a result of
approximation of boundary value problems using finite element and finite volume methods and discon-
tinuous Galerkin algorithms of various orders on unstructured grid (see the review in [1]). In these cases,
the portraits or graphs of matrices have an irregular structure, i.e., the distribution of nonzero elements is
specified only by their enumeration, and their values are stored in compressed formats, which is an
important feature in the implementation of algorithms on modern supercomputers with heterogeneous
structure and hierarchical shared memory. The spectral and structure properties of SLAEs are signifi-
cantly different in different applications—electromagnetism, f luid dynamics, elasticity and plasticity, heat
and mass transfer equations, etc., which gives rise to a large variety of algorithms, the development of
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ITERATIVE PRECONDITIONED METHODS IN KRYLOV SPACES 1751
which goes in the direction of both the study of new iterative processes with various orthogonal, varia-
tional and projection properties and the construction of effective preconditioned matrices. A combination
of these methodologies determines success in this area. The results of studies are described in the books
by Axelsson [2], Elman, Silvester, and Wathen [3], Marchuk and Kuznetsov [4], Saad, [5], Van der Vorst
[6], Olshanskii and Tyrtyshnikov [7], Liesen and Strakos [8], the author of his paper [9, 10], and in a huge
number of journal publications and conference proceedings.

Speaking about the generalization of Krylov iterative methods, we note that there are various
approaches to enriching the corresponding subspaces in which residual or direction vectors for finding
new iterative approximations are determined on the basis of various orthogonal of projective principles,
including deflation and augmenting algorithms in combination with spectral optimization or least squares
principle. It is of interest that there were attempts at constructing “alternatives” to methods in Krylov sub-
spaces, such as Anderson acceleration (which was initially proposed for solving nonlinear systems [11–13]) and
Sonneveld subspaces [14]); however, in actual fact they turned out to be variations on the general theme.

The ever increasing stream of literature on methods for solving SLAEs contains a rich palette of ideas
for constructing preconditioning matrices that should be easily invertible, increase the convergence rate
of iterative algorithms, and ultimately ensure their overall performance. Here multigrid methods, which
are asymptotically optimal with respect to order (the amount of computations is proportional to the num-
ber of degrees of freedom of the discrete problem), gained a second youth. The methodologies of matrix
decomposition have also been significantly developed, including low-rank matrix approximations and
nested and alternate triangular factorizations. Various approaches formed a uniform technology for con-
structing multipreconditioned processes in Krylov subspaces, which are generally multilevel, and additive
domain decomposition methods (DDMs), which are the main tool for parallelizing multidimensional
problems on multiprocessors. Methods of scalable parallelization and improving the performance of
DDMs on supercomputers of heterogeneous architecture with distributed and hierarchical shared mem-
ory form the key problem in modern computational algebra [5, 16–19]. Note that the methods for solving
SLAEs arising in implicit approximations of initial boundary value problems have some specific features
(see the review in [20]). In particular, it was shown in [21] that the choice of initial iterative approxima-
tions at each time step using a generalization of the predictor-corrector algorithm can significantly
improve the efficiency of computations.

The practical demand for algebraic calculations has led over a half-century history to a huge amount
of software, both free and commercial; a fairly complete list of such software can be found in [22], and a
classification of algorithms is given in [23]. Here we pay attention to the tools of general importance like
SPARSE BLAS and widespread libraries PETSc, HYPRE, MКL INTEL, etc. The international commu-
nity of experts in computational algebra developed standardized formats for representing matrices and
corresponding converters, as well as large collections of matrices from real-life simulation problems that
are indispensable for testing and comparative analysis of algorithms. An important trend in recent decades
is the transition from concrete libraries and packages of application programs to integrated computational
environments, examples of which are DUNE, INMOST, OPEN FOAM, and MATLAB, and the basic
simulation system, the concept of which is described in [24] and includes principles of f lexible extension
of the composition of models and algorithms, as well as the adaption to the evolution of computer archi-
tectures, reuse of external software, and coordinated participation of various development groups, which
should facilitate the creation of an effective new generation ecosystem with a long lifecycle that joins the
communities of mathematicians, software developers, and users from various application domains. On
the whole, the high-performance solution of SLAEs for a wide class of practical problems is a promising
field of activity for the intellectualization of both research and technological areas.

This paper is organized as follows. In Section 2, we describe the general modern principles of con-
structing iterative methods in Krylov subspaces, including two-level methods. Section 3 contains a brief
review of approaches to constructing preconditioned matrices. Section 4 describes parallelization and
performance improving technologies for solving SLAEs, including issues of their software implementa-
tion and effective use for simulating real-live processes and phenomena. In the final section, we discuss
the prospects of developing the issues under consideration.

2. ORTHOGONAL AND VARIATIONAL PRINCIPLES 
OF DESIGNING KRYLOV ITERATIVE METHODS

We consider real algebraic systems

(1),
,= , = ∈ , = , = ∈ ,5 5{ } { } { }N N N
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with positive semi-definite matrices

among which an important class consists of symmetric positive definite (s.p.d.) matrices with . The
SLAEs under examination can be represented in block form

(2)

where  is the set of indices of matrix rows forming the th block row of the matrix  and  is its block
order.

One of important block structures gives saddle algebraic systems

(3)

which arise from the approximation of mixed statements of boundary value problems and in optimization
methods. The matrix  in (3) is invertible if the following conditions are fulfilled:

Along with the original matrix, we will consider preconditioning matrices, which we will denote by the
symbol  with super or subscripts. The choice of preconditioners is based on efficient invertibility and
improvement of conditioning of preconditioned matrices of form  or , which together should
improve the performance of the algorithm software implementation.

A general representation of the stationary iterative process for solving SLAE (1) is the so-called first
canonical form

where  is the residual vector. It is associated with the second canonical form

where  is called the transition matrix. A criterion for stopping the iterative process is the fulfillment of
the following conditions (for details see [25, 26])

however, it is often assumed that  for simplicity. The issue of estimating the iterative approximation
error  is nontrivial, especially if machine arithmetic precision is taken into account. This issue is
considered in a large number of studies (see [8] and references therein).

2.1. Algorithms for Symmetric SLAEs

The inception and the first period of development of iterative methods in Krylov subspaces, which may
be dated to 1950–1965, should be attributed to the authors of pioneering works by Lanczos (1950, 1952),
Arnoldi (1951), Hestsenes and Stiefel (1951, 1952), Kreig (1954, 1955), Vorob’ev (1958), Faddeev and
Faddeeva (1958, 1960), Fridman (1962), Golub (1965), and Varga (1962). The list of subsequent studies
is in the hundreds.

We begin the consideration with algorithms for solving symmetric SLAEs with the purpose of giving a
uniform view at this intensively developing area of research and discuss important issues of computational
performance of methods.
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Let the iterative approximation  and the corresponding residual vector  be calculated
by the formulas

(4)

where  and  are iteration parameters and direction vectors. In this paper, we describe the family of
conjugate direction algorithms characterized by various variational and projective properties determined
by the corresponding scalar products and norms of vectors

(5)

where the exponent is . Let the direction vectors be -orthogonal, i.e.,

(6)

where  is the Kronecker symbol. Then, the residuals  satisfy the relations

(7)

This implies that, at the values of the parameters

(8)

the functionals  take the minimum values

(9)

Here and below, the index  of the coefficients and vectors is dropped for simplicity, and the matrix  is
assumed to be nonsingular for the time being.

There are two ways to satisfy conditions (6). The first one is to use the Lanczos -orthogonalization,
which can be written as

(10)

where  are chosen from the condition . Another way (by Hestenes and Stiefel), which is most
widespread due to its stability, uses the two-term recurrence

(11)

which, in combination with the formula for the residual in (4), yields other relations for the direction vec-
tors:

(12)

Using (4) and (11), we can obtain the property of -orthogonality of residual vectors and more conve-
nient (for  formulas for the iteration coefficients

(13)

However,  in the case  must be calculated in a different way. Since the exact solution of the SLAE
can be represented as the expansion in the basis
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the vector error of the iterative approximation and the corresponding residual are written as

(14)

Hence, using the -orthogonalization of the vectors , we have

(15)

Here we used the orthogonality of  to the vectors  and  and its relation to the vector  in (12).
The coefficient  must be calculated by formula (11).

The iterative processes of interest possess optimal properties thus ensuring the minimization of the cor-
responding functionals  of form (7) in Krylov subspaces

(16)

In the case , these algorithms are called minimum iteration or minimum error methods (see [8])
and conjugate gradients and conjugate residuals, respectively [5, 9, 27].

The approaches described above admit simple generalization for the SLAEs preconditioned using
some s.p.d. matrices . To preserve the symmetry of systems, this should be done by two-sided precon-
ditioning with the help of the formally introduced matrix . As a result, system (1) takes the form

(17)

As a result of applying the conjugate directions formulas to SLAE (17), we obtain after certain transfor-
mations the following iterative process for the case :

(18)

where the new vectors are related to the old ones by the relations , . For the mini-
mum iteration method with , the parameters  should be calculated by formulas (15) and
(11) in which  are replaced by  and , respectively.

Remark 1. In practice, it is often required to solve a series of SLAEs with the same matrix but succes-
sively computed different right-hand sides. In this case, a significant amount of computations can be
avoided by memorizing the calculated vectors  and  after solving the first system and somehow
using them for expanding the Krylov basis when solving the subsequent SLAEs. These issues are discussed
in a large number of papers (see [28] and the list of 157 works therein). However, the significant improve-
ment of “informativeness” of the basis of iterative processes requires further study.

Remark 2. In book [8], the following methodological circumstance was mentioned: Methods in Krylov
subspaces are closely related to the problem of moments, which plays an important role in the theory of
operators and many applications. The beginnings of this topic were laid by Chebyshev, Markov, and
Stieltjes.

In many applications, algebraic systems with symmetric matrices that have a sign definite spectrum are
of interest. Such SLAEs can be singular, in particular, consistent or inconsistent. Inconsistent systems
have a generalized, rather than classical, solution in the sense of least squares. For these cases, the normal
(or pseudoinverse) solution is defined that has the minimum norm and minimizes the residual:

(19)
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Such a solution always exists and is unique, and its formal representation is obtained using the left Gauss
transformation of the original system ; this representation is

(20)

where  is the psedouinverse or generalized inverse matrix of .
For solving such SLAEs, Saunders with his colleagues (see review [29]) developed the methods SYMMLQ,

MINRES, and MINRES–QLP based on the Lanczos -orthogonalization, which, due to recurrences (10),
can be written in matrix form

(21)

where . Then, the approximate solution is sought in the form  and is

reduced to finding a vector  that minimizes the residual

(22)

This problem is solved using the LQ- or QR-transformations of the tridiagonal matrix  with the orthog-
onal matrix  on the basis of stable Hausholder ref lection operations. The results of representative numer-
ical experiments presented by the authors demonstrate good efficiency of the algorithms, and their soft-
ware implementations are available on the Internet.

The convergence rate of iterations in Krylov-type methods for positive semidefinite SLAEs is charac-
terized by the bound on the number of iterations  required for suppressing the initial error by a factor
of :

here  is generally the effective condition number, which for singular matrices is represented in terms of
the minimum nonzero eigenvalue .

For symmetric SLAEs, the problem of stable numerical solution was basically solved in the 20th cen-
tury, including the case of sign indefinite, singular, and inconsistent systems. As for the classical conjugate
gradient method, we want to mention Kaporin’s ingenious theory of convergence [30] based on the con-
dition -number introduced by him; this number is expressed in terms of the trace and determinant of
the matrix.

More specifically, consider the preconditioned conjugate gradient method in the following form:

In this case, it was proved in [31] that the condition
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where  is the condition K-number of the preconditioned matrix  defined by

In [32], iterative algorithms were optimized for a number of preconditioners so as to minimize the condi-
tion K-number.

2.2. Krylov Algorithms for Asymmetric SLAEs
We continue the description of specific approaches with a wide class of multipreconditioned semicon-

jugate direction (SCD) algorithms [31]. In the general block form, such iterative methods in Krylov sub-
spaces are written as

(23)

Here  are the direction vectors constituting at the th iteration the matrix , and  is the vec-

tor of iteration parameters. For the vectors  in (23), we assume for the time being that only the orthog-
onality conditions

(24)

are fulfilled. However, if we define the coefficients  by the formulas

(25)

then (23) implies the following expressions for the residual functionals:

(26)

they attain their minimums in the block Krylov subspaces

(27)

at , and in the case when the matrix  is skew symmetric also at . Note that in the case of asym-
metric matrices and , the application of algorithms is actually restricted to SLAEs with the matrices
that have a positive definite symmetric part  because, e.g., for skew symmetric matrices,

 for .
The orthogonality property of the direction vectors (24) can be ensured if they are defined using “multipre-

conditioned” recurrences in which each vector  is assigned a specific preconditioning matrix :

(28)

If the matrix  is symmetric, then the recurrence data turn from long ones into two-term data and we
obtain the conjugate gradient and conjugate residual methods (for , respectively, in multiprecon-
ditioned and classical versions). For asymmetric SLAEs, these algorithms are called semi-conjugate gra-
dient or semi-graduate residual (SCG or SCR) methods. In block (multipreconditioned) conjugate direc-
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tion methods for solving symmetric SLAEs, formulas (23)–(25) remain the same, and the direction
matrices  are calculated using the two-term recurrences

These formulas, as well as (28), contain “built-in” preconditioning matrices. If we set  and
 for all , then we obtain the Krylov process in its “pure form” without preconditioning. Note that

formulas (28) implement the Gram–Schmidt orthogonalization algorithm, the stability of which can be
improved by using the modified Gram–Schmidt (MGS) orthogonalization method [5, 33].

A feature of the algorithms considered here when they are applied to solving ill-conditioned asymmet-
ric SLAEs is their high demand for resources in the sense of the amount of computations and memory
when the number of iterations is large. A means for mitigating this drawback is to reduce the number of
stored and used direction vectors, which can be achieved using two approaches. The first one is to reduce
the recurrence by taking into account only its last  vectors. The second approach is to periodically restart
the process after each  iterations, i.e., calculate the residual vector from the original equation as at the
zero iteration rather than from the recurrence formula:

(29)

here  is the restart index (the further computations up to  are performed using recurrence (23)).
Both approaches significantly slow down the iterative process.

To eliminate this stagnant effect, it is proposed to add a second level of iterations using the least squares
method (LSM) [34]. Suppose that we know the restart approximations , . Then to

correct the iteration vector , which is the initial one for the next restart period of method (23)–(29), we
will use the linear combination

(30)

in which the vector of coefficients  is found by minimizing the norm  of the residual by solving the
overdetermined algebraic system

(31)

This SLAE can be solved, e.g., using the - or -decompositions of the matrix . The normal solu-
tion with the minimum norm  is found by applying to (31) the left Gauss transformation

A simpler SLAE in the sense of its decreased condition number is obtained by multiplying system (31) by
the matrix  on the left:

(32)

If  is a full rank matrix, then the matrices  and  are simultaneously nonsingular. In this case, we have
for the correction vector in (30) the formula , where 
( ) is a low-rank approximation of the matrix . In this approach, all restart vectors are stored
in corrected form, and the corresponding residuals are found by the formula . If a matrix
under consideration is not invertible, then a generalized inverse matrix is used. Numerous experiments
with the use of LSM for accelerating Krylov processes with restarts show its high efficiency.

One more possibility of improving the performance of SCD methods with restarts is to store all direc-
tion vectors  and the vectors  obtained during the first restart period and use them in the computa-
tions in the subsequent restart periods rather than calculate new vectors  and .
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The class of semiconjugate direction method with dynamic multipreconditioning is equivalent in terms
of convergence rate to other known algorithms of solving asymmetric SLAEs in Krylov subspaces, among
which the most popular one is the generalized minimal residual method GMRES based on Arnoldi
orthogonalization and its various versions. This algorithm was proposed by Saad and Schultz in 1986 [5],
and it received wide and well-deserved popularity. Among numerous studies of this method, we distin-
guish the results by Knizhnerman [35] on estimating the error of Arnoldi orthogonalization.

Another principle of constructing Krylov iterative processes for solving asymmetric SLAEs is based on
constructing sequences of biorthogonal vectors. In this case, the direction vectors are calculated by short
(two-term) recurrences, but two computations of vector-matrix product is required at each iteration step.
The biorthogonalization ideas underlie the algorithms BiCG, CGS, and BiCGStab and their various
modifications; later, their analogs with -biorthogonalization of direction vectors were invented (see
review in [36]). The closely related family of induced dimension reduction (IDR) (see [37] and references
therein) is based on Sonneveld spaces. Among other approaches, we recommend methods of quasi-min-
imal residuals and least squares method (LSQR and LSMR) [38]. In recent years, algorithms based on
bidiagonal Kreig–Golub–Kahan transformations has also revived (they were originally proposed in 1955
and 1965); their informative study, generalization, and comparative analysis can be found in [25, 39].
Finally, we note f lexible conjugate gradient methods (FCG) [40], which are a generalization of the clas-
sical CG methods (including preconditioned ones) to the asymmetric case.

3. METHODS OF SLAE PRECONDITIONING
In this section, in the description of algorithms we will discuss at the qualitative level issues of their

potential parallelization. A more detailed discussion of technological aspects determining the perfor-
mance of parallel implementation will be given later.

In addition to the use of a preconditioning matrix considered in (17) and (18), this also can be done by
direct preconditioning (left, right, or two-sided) of the original SLAE:

(33)

where , , and  are nonsingular matrices. Note that if  is symmetric, then to keep the matrix  sym-
metric, one should set  in the last case. Since the matrices , , or  obtained from precondi-
tioned algebraic systems are better conditioned, they should be solved using Krylov iteration formulas in
pure form without additional preconditioning (although formally it is not prohibited, and multiprecondi-
tioning may be applied using a modification of both the iterative process (28) and the SLAE itself accord-
ing to (33)).

Among the simple preconditioning methods, we mention scaling and binormalization of matrices. In
the first method, a congruent diagonal transformation ( ) is performed to obtain the unit princi-
pal diagonal; the second method is based on leveling the norms of rows and columns of the matrix (see
review in [41, 42]). Such approaches may be used as preliminary ones in combination with other precon-
ditioners.

For the block structure of SLAE (2), it seems the most natural to solve it using the Jacobi block
method, which in a slightly generalized form is written as

(34)

Here  is an iteration (compensating) parameter, and  is the diagonal matrix determined by the
equation

(35)

which is called the compensation or filtering condition (sometimes, the introduction of matrix  of
form (35) is called lumping). In some cases, the choice of  can be justified and described theoretically,
and it helps significantly accelerate the iterative process. There are generalizations of the compensation
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principle (35) based on a complication of the matrices  with banded structure and on the use of several
compensating (filtering) vectors [2, 9, 10]:

(36)

however, this issue requires further study.
An alternative analog of the block Jacobi method, which belongs to the class of simultaneous displace-

ment iterative or additive algorithms, is the Seidel method and its elaborations—successive over-relaxation
and symmetric successive over-relaxation (SOR and SSOR) algorithms. The last method with some mod-
ification is also known under the names of alternate triangular, incomplete factorization, and explicit
alternate direction scheme (see [2, 9]). These successive displacement or multiplicative methods (the new
approximation  can be made only after the preceding subvectors  have been found) have
improved convergence rate, and the accelerating compensation principle (35), (36) can be applied to
them. However, such algorithms are based on inverting triangular matrices, which is difficult to paral-
lelize. For this reason, in the age of multiprocessor supercomputers, they turned out to be less popular,
and we do not consider them in this paper. On the other hand, it was shown in [43] that the application of
adaptive successive displacement downstream methods can significantly reduce the number of iterations.

Numerous preconditioning methods have theoretical justification and estimates of the convergence
rate (see review in [44–46]). A special case is the dynamic or f lexible preconditioning with variable matri-
ces [17, 47–51]. In iterative processes applied to solving SLAEs arising from approximation of boundary
value problems on a grid with the characteristic step  that have the condition number , its magni-
tude is usually reduced to  due to preconditioning. As a result, the number of iterations in Krylov-
type methods is estimated by . However, it should be taken into account that these asymp-
totic expressions can include large constants in “bad” problems with a large spread of values of the matrix

 elements.

3.1. Domain Decomposition Algorithms

When grid SLAEs (especially of node type) are solved, each component of the vector to be found is
associated with one grid node, and the structure and portrait of the matrix (the configuration of its non-
zero elements) are isomorphic to the grid graph (which is directed for asymmetric matrixes and undirected
for symmetric ones). In this case, the matrix block structure of form (2) is geometrically represented by
the decomposition of the grid computation domain  into grid subdomains  in each of which a sub-
problem algebraically corresponding to the diagonal block  is formed. Historically, the priority in
decomposition methods belongs to the theory of multidimensional boundary value problems since the
19th century, when the solution of differential equations in complex computational domains using the
Schwarz alternating method was reduced to examining a sequence of auxiliary problems in overlapping
subdomains using the Dirichlet conditions on the introduced internal boundaries. Later, such approaches
were generalized on the continuous level in the works by Smelov, Lions, Matsokin, Widlund, Nataf with
his colleagues, Vasilevski, Olshanskii, and many other researchers (see reviews of literature in [5, 7, 17–
19, 52–57]), and they also were extended to discrete or grid level. In the age of multiprocessor supercom-
puters, decomposition methods became the main tool for parallelizing computations in the solution of
multidimensional initial boundary problems with complex real-life data that require high resolution and
speed of computations.

The DDMs may be classified according to three main characteristics. The first one is the dimension
of decomposition depending on one, two, or three families of coordinate planes are used for decomposi-
tion. The second characteristic is the size of subdomain overlappings, which in a simple case are specified
without overlapping, and parameterized overlappings are constructed on the grid level by the layer-by-
layer expansion of each subdomain by elementary grid cells. The third direction of DDM development is
based on generalizing the types of interface boundary conditions when iterating over subdomains.

On the whole, DDMs are implemented as a two-level iterative process in Krylov subspaces—the upper
level is the additive Jacobi–Schwarz block method (34), which for simplicity in its stationary version can
be written as

(37)
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where  is the corresponding preconditioner that will actually be used in the Krylov process. At each th
iteration (37), auxiliary problems are simultaneously or concurrently solved in the subdomains ; for-
mally, this solution is reduced to inverting the preconditioner blocks . This can be done using direct
and iterative methods among which it is natural to choose, in the case of large algebraic systems, precon-
ditioned algorithms in the corresponding Krylov spaces. Note that in the last case we have the problem of
solving multiple SLAEs with the same matrix but different right-hand sides, which can be efficiently done
by reusing bases of Krylov sunspaces, as was mentioned in remark 1.

From the viewpoint of parallelizing computations on multiprocessors, it is preferable to decompose the
computation domain into a greater number of subdomains  ( ) to be able to solve the cor-
responding subsystems synchronously on  processors. However, the number of external iterations will
obviously grow in this case; this number can be estimated as , where  is the geometric dimension
of the domain (assuming that the decomposition forms a -dimensional “macronet” consisting of sub-
domains). The number of external iterations can be reduced by increasing the size of adjacent subdomains
overlapping; however, the implementation of each step will be costlier (in practice, the size of overlapping
net subdomains has the size of several steps ).

To accelerate the Krylov-type iterations in DDMs, there are various approaches, which can be inter-
preted as the application of additional preconditioners, including smoothing preconditioners; for this rea-
son, such methods are sometimes called hybrid (see [58, 59]). By way of example, consider the coarse-
grid correction method based on the deflation principle of choosing an initial approximation .

Let we have an information basis consisting of vectors , which compose the matrix

,  By choosing an arbitrary vector , we will seek an initial approximation
and the corresponding residual vector in the form

where the vector of unknown coefficients  is determined by minimizing the residual 
from the overdetermined equation

(38)

By multiplying both sides of (38) on the left by  with the parameter  or , we obtain the fam-
ily of generalized solutions

where the case  corresponds to the normal solution, which minimizes the Euclidean norms of the
residual  and the solution itself . Hence, we obtain for the corrected residual

(39)

which corresponds to the minimum of the functional

It is easy to see that here the vectors  play the role of direction vectors in Krylov subspaces, i.e., they
provide the residual vector  with orthogonal and variational properties similar to the properties in the
conjugate gradient and conjugate residual methods at  and , respectively.

Following this reasoning, we find using  the initial direction vector for the conjugate direction
method from the orthogonality conditions

(40)

The matrix  here plays the role of the second preconditioner in addition to  in (37), and they both can
be used in the subsequent iterations by the formulas of multipreconditioned conjugate directions
(see [17]). Note that the exponents of the matrix  in (40) are chosen in such a way that they ensure the
symmetry of .
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The choice of the basis vectors  that effectively extend the Krylov subspace is important in
many accelerating iterative procedures. For example, the coarse-grid correction algorithm that is used in
DDMs is based on the simple case of “geometric” decomposition of the grid domain , and its compo-
nents are 1 or 0, depending on whether or not the corresponding node lies in the th subdomain. The fur-
ther elaboration of this approach is in the transition from piecewise constant basis functions  to piece-
wise polynomial functions of higher orders (see [53]).

3.2. Multigrid Methods

In the pioneering works by Fedorenko and Bakhvalov, the multigrid approaches were based on spec-
tral-approximation principles with a separate suppression of the error components corresponding to low
and high frequencies. The further development of these approaches took the geometric, algebraic (the
most popular name is AMG—Algebraic Multi-Grid) and combinatorial directions (see [5, 56, 60–67]).

These approaches occupy an exceptional place in computational algebra, since they are asymptotically
optimal in order, i.e. the required computer resources are proportional to the SLAE size. The most general
algebraic methodology is based on the universal principles of matrix preconditioning. The implementa-
tion of technologies with various number of nested grids is interpreted as a recursive application of a two-
grid algorithm. For simplicity, consider the sequence of nested grids ; i.e., the nodes
of the coarser grids are nodes of the “nearest” finer grid . We assume that  is obtained from  by
“refining by a factor of two,” so that the numbers of grid nodes are related as , where  is the
domain dimension. To solve the SLAE  on , which may be renamed as , a precondi-
tioner  is implicitly constructed by approximately solving the system with a specially constructed
matrix  for the grid , and so on; i.e., the process goes in a “loop.”

In the general modern interpretation, the AMG method can be represented by the following stages of
iterative solution of the algebraic system  on .

1. Given an approximation of the vector , the residual on the “fine” grid  is found:

(41)

2. For the vector , preprocessing (presmoothing) is performed usually by making several iterations
using a simple algorithm. More precisely, this procedure is performed in two steps. At the first step, the
direction vector

(42)

is calculated, where  is the operator (matrix) of this presmoothing step. Actually,  is an approximation
of the matrix  (a formal representation of the results of several iteration steps of the smoothing method).
At the second step, the next (smoothed) approximate solution and the corresponding residual are found:

(43)

3. Using the vector  determined on the coarse grid , the residual vector  on the fine grid 
is formed:

(44)

where  is a restriction operator (the restriction stage). In the simplest case, this operation is the projec-
tion of the vector from the grid  onto .

4. On the fine grid, the direction vector  is found from the solution of the SLAE

(45)

where  is matrix of the SLAE for the grid , which in a certain sense inherits the approximation
and algebraic properties of the operator  on . There are various methods for constructing the matrix

, which is sometimes called the coarse grid correction matrix.
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5. The vector  found from the solution of system (45) is continued from the coarse grid  to the
fine grid  (the prolongation stage):

(46)

In a certain sense, a consistent definition of the operators above is such that satisfies the relation
. If, for example, the matrix  is symmetric, then in order to inherit this property on the

fine grid , it is reasonable to use . In particular, this gives the so-called Galerkin approxima-
tion .

6. For the vector , the corresponding vectors of the approximate solution and residual on the fine
grid (residual update) are found by

(47)

7. Postprocessing, i.e., repeated smoothing, for the new direction vector and the iterative approxima-
tion of the solution on the fine grid  is performed with the simultaneous calculation of the new direc-
tion vector  on the basis of the solution of the auxiliary SLAE with the matrix  (the repeated smooth-
ing operator, the postsmoothing stage)

(48)

similarly to (42).
8. The ultimate direction vector is determined as a result of the first AMG iteration:

where  is the preconditioning matrix of this two-grid stage of the method which can be explicitly rep-
resented in terms of the smoothing, restriction, coarse-grid correction, and prolongation operators; how-
ever, its specific representation is of no importance because the general computations and its implemen-
tation are described by formulas (41)–(48). There are a lot of specific versions of the two-grid method,
and all of them (in the framework of the stationary iterative process) have the form

(49)

which is a two-level iterative process since the operation of multiplying by  includes the solution of a
SLAE with the matrix , which is unreasonable to do by the direct algorithm in the case of large .
It is clear that a preconditioned method in Krylov subspaces can be constructed on the basis of algo-
rithm (49).

However, the idea of the multigrid approach is to use the recursive principle: to approximately solve
the equation on a coarse grid , the methods described above are applied on the coarser grid , and
so on. The computations on each grid  by formulas (41)–(48) may be repeated a prescribed number of
times , which can be written as a generalization of relation (49):

(50)

In practice, the number of such repetitions is  or . In the first case, the computation scheme is
called -loop, and in the second case it is W-loop. In [64, 65], an elaboration of this approach was pro-
posed: K-loop, in which at  a Krylov-type (rather than stationary) iterative process is used (more spe-
cifically, the “flexible” conjugate gradient FCG method described in [40]). In the last formula, it should
be taken into account that the preconditioner  is expressed recursively for , and on the
last th grid SLAE (45) with the matrix  is solved directly (by a direct or iterative method).

Specific implementations of multigrid approaches, which have already became classical, differ in the
way of choosing the matrix operators determining the successive stages of the computation scheme
described above.
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3.3. Incomplete Factorization Algorithms
The most classical methods of SLAE preconditioning are numerous explicit and implicit matrix fac-

torization methods; a thorough analysis of such methods without parallelization aspects can be found
in [10]. Modern approaches to these technologies, including promising approximations of matrices that
are inverse of triangular factors in incomplete matrix decompositions are described in [68–70] and refer-
ences therein.

The typical form of easily invertible preconditioned matrix is obtained by the approximate factoriza-
tion

(51)

Here  and  are the lower and upper triangular parts of the original matrix  and  is a
block diagonal or diagonal (in a special case) matrix. On the basis of the general requirement , the
block diagonal matrix  is constructed using the relation

(52)
where the overscore above a matrix denotes its banded approximation.

Based on formulas (51) and (52), various successive symmetric upper relaxation methods are con-
structed (in this case, , where  is an iteration parameter; another group of methods is explicit
and implicit incomplete factorization, which are analyzed in books [2, 5, 10, 68] and in special reviews
[51, 69, 70]. A large family of algorithms is based on the incomplete LU-factorization of the original
matrix, which in the symmetric case is reduced to the approximate Cholesky decomposition. The quality
of the matrix approximation and the convergence rate are improved due to “compressing” the matrix fac-
tors; however, each iteration step becomes costlier.

A similar approach, but focused on parallelization, is to construct a sparse approximation of the inverse
matrix, thus eliminating the need to solve triangular systems at each iteration. These methods were studied
in both pointwise and block versions. Novel results in this direction were obtained by Eremin, Kaporin,
Kolotilina, Kon’shin, and other researchers in [31, 32, 71, 72]. Another promising direction of research is
based on the factorization (including approximate one) of hierarchical matrices in HSS formats using
low-rank block structures in the LU decomposition (see [73, 74]).

Finally, pay attention to one more promising family of algorithms for constructing preconditioners that
are based on network programming or graph transformation methods (see [75–77]). An important point
is that as traditionally the incomplete triangular decomposition of matrices is realized for nonsingular
matrices, now there are its modifications for positive semidefinite cases.

A general approach to speeding up the iterations is based on the compensation principle or matching
row sums, which is to find a matrix  in (51), (52) such that

(53)

on a given set of  trial vectors (see [49, 78] and references therein). In some works, this method is also
called filtering.

To satisfy condition (53), the matrix  is transformed to the form

(54)

where  is a compensating parameter and  is a block diagonal matrix formed on the basis of the
condition

(55)

Among the incomplete factorization methods for solving network SLAEs, implicit methods are the fast-
est; they are based on triadiagonal matrix algorithms for solving auxiliary tridiagonal systems. Such algo-
rithms can be effectively parallelized on multiprocessors using a multithreading implementation of recur-
sive triadiagonal matrix procedures based on the reduction of original SLAEs or on bordering methods.
Note that in [57] a two-thread block version of alternate-triangular matrix factorization method was pro-
posed, in which each factor is not a lower or upper triangular matrix but rather consists of block rows of
different orientations—some of them are lower triangular and the others are upper triangular; this decom-
position is called twisted decomposition (see review in [27]).
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If  is a symmetric matrix, i.e.,  and , then it is natural to choose symmetric matrices 
and  and use two-sided preconditioning for the original SLAE with preserving the symmetry of the final
system:

(56)

The preconditioned matrix  can be reduced by simple transformations to the form

(57)

in which the vector-matrix multiplication can be implemented in the form

(58)
in many cases, this saves a significant amount of computations. Note that the matrix representations
(56)–(58) also hold without the requirements  and ; i.e., these formulas also apply to
asymmetric SLAEs.

The direct inversion of triangular matrices used in the algorithms described above is poorly paral-
lelized. There are special tricks for mitigating this drawback (e.g., see [79] and the review in [80]). We con-
sider another approach that uses alternate-triangular matrices  and  instead of  and U, which have
nonzero elements only on the left of the principal diagonal in some rows and nonzero elements only on
the right in the other rows. We illustrate the construction of such preconditioners by way of a block tridi-
agonal matrix

(59)

In this case, we define the alternate-triangular matrices by

(60)

In this case,  therefore, the incomplete factorization formulas (51)–(58) for determining
the preconditioner  remain valid. Only  and  should be replaced by  and , respectively. In this case,
the tridiagonal blocks of the matrix  are found by formulas similar to (28) and (29) but using
opposite recursions (block tridiagonal method [25]), which we write for an arbitrary odd :

(61)

where  are diagonal matrices for  and tridiagonal for .
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When the matrix  is used as a preconditioner for an iterative process, the following auxiliary system
must be solved at each step:

Its solution can be found from the successive relations

which are implemented by twisted decomposition by the formulas

(62)

In recurrences (61) and (62), the computations with increasing index  and with its decreasing may be
called forward and backward recursions, respectively. It is clear that they can be executed simultaneously
in two threads. This limited parallelism is based on the alternate-triangulation (60) for the matrices 
and . This approach can be generalized for the case of -alternate triangulation; i.e., we can define
matrices  and  satisfying the condition  as consisting of  block rows each of which suc-
cessively changes the triangulation type. Formulas for the block tridiagonal matrix algorithm (61), (62) are
more complicated, but they can be parallelized to  processors.

For example, matrix (59) corresponds to the five-point Laplace equations on a rectangular grid with
 nodes. In this case,  are tridiagonal blocks and  and  are diagonal blocks. In the case

of three-dimensional problems on a box grid with  nodes, the matrix  can be repre-
sented in block tridiagonal form (59) in which each diagonal block  has the size  and is a
matrix of the same structure as (59).

The elaboration of the above approaches for solving SLAEs on three-dimensional grids received the
name of nested factorization methods; they were proposed in 1983 by Appleyard and Cheshire and later
studied by many researchers (see [57, 82, 83] and references therein). Let the matrix  have the form

(63)

where  is a diagonal and  and , are lower and upper triangular matrices. Let us find the
preconditioning matrix  using the recursive factorization (51):

(64)

as a result, we obtain

(65)

Depending on the definition of M, different preconditioners  can be formed. We consider a simple case
when matrix (63) corresponds to the seven-point approximation of the Dirichlet problem for the Poisson
equation in a box on a box grid. Then, in the case of natural ordering of the nodes, the matrices M,  and

 can be made diagonal, tridiagonal, and five-diagonal, respectively, and the preconditioner can be found
by the formulas

(66)
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Here  and  are iteration (relaxing) parameters, and  and  are diagonal matrices determined from
the conditions of matching row sums similarly to how this was done above:

(67)

Note that instead of (67) we may use matching column sums rather than row sums (see [83] and references
therein):

(68)

The three-level nested factorization considered above can be structurally simplified by reducing it to the
two-level one. To this end, we rewrite the original matrix  (63) in the form

(69)

In this case,  is a block diagonal matrix with five-diagonal blocks  of size  each of which cor-
responds to a plane problem in the section  and has the same structure as the matrix  in (59).
Then, the matrix  in (64) is defined by the formula

which corresponds to the definition  in (64). Note that  and  can be defined as alternate-
triangular matrices, and then the algorithm implementation can be parallelized using twisted decomposi-
tion.

3.4. Solving Saddle SLAEs

Consider a SLAE with a saddle matrix

(70)

where , , , , , and . The matrix  is
assumed to be symmetric and positive semidefinite. A necessary and sufficient condition for the nonsin-
gularity of  is , and a sufficient condition is the positive definiteness of  on

 and , which we assume to be fulfilled.
Problems with a saddle point often arise in mathematical formulations in modeling, including initial

boundary mixed formulations for differential classical or generalized equations, optimization problems,
and computational algebra (see [84–87] and references therein). We focus on methods for solving saddle
SLAEs with large sparse matrices that arise in grid approximations of multidimensional boundary value
problems in many applications—electromagnetism, f luid dynamics, elasticity, plasticity, multiphase fil-
tering in porous media, in optimization problems, etc.

Due to special features of the block structure of saddle algebraic systems, methods for their solution
are studied in numerous works, e.g., see the reviews by Golub and his colleagues [84], Brezzi [85], Vassi-
levski [72], and Notay [86], book by Bychenkov and Chizhonkov [87], series of papers by C. Greif and his
colleagues (including the case of asymmetric saddle SLAEs [68, 85]), and Arioli with coauthors [25, 75]
(also see the reviews in [90–92]).

Note that without loss of generality the saddle SLAE can be considered in the form

(71)

Indeed, if we take a particular solution of system , then the vector , which is a solution of
SLAE (70), satisfies the system
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Note that any solution of SLAE (71) simultaneously satisfies the system

(72)

where , and  is an arbitrary nonsingular matrix. Since the last system is formally a
regularization (or generalization) of SLAE (71), we below discuss algorithms for solving Eq. (72).

Using the Schur complement

the matrix of system (72) is factorized as

If the matrices  and  are replaced by their approximations (preconditioners)  and , then we obtain
a preconditioner for the matrix  in the form of incomplete block factorization

(73)

A somewhat coarser approximation when only one (left or right) factor is used in (73) gives an incomplete
block triangular preconditioning with the matrix

(74)

or the incomplete Uzawa preconditioner

(75)

The implementation of each step of the corresponding iterative processes can be divided into several stages
at which only one block component of the desired solution is recalculated (for this reason, these methods
are sometimes called segregative). In a slightly generalized form, we represent such a stationary algorithm
(without the Krylov acceleration) by the following three stages (see [83, 85, 86]):

(76)

Here  and  are approximations of inverse or generalized inverse matrix of the preconditioner .
In particular, if ,  or , , then we obtain from (76) the Uzawa algorithm
with the preconditioner  defined in (75) (in this case, the third stage is omitted, i.e., ) or the
incomplete block triangular preconditioning with the matrix  defined in (74) (in this case, the first stage
in (76) is omitted and ).

If the matrix  is singular, then the iterative process (76) is associated with
the preconditioner
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In this case, for  (77) implies the so-called symmetrized Uzawa method with the precon-
ditioned matrix

A promising block diagonal preconditioner for solving SLAE (72) is

(78)

where  and  are symmetric nonsingular matrices.

The eigenvalues and eigenvectors of the preconditioned matrix  from the “disturbed” SLAE
(72) are determined by the eigenvalue problem

which in componentwise form is written as

(79)

The analysis of this eigenvalue problem yields interesting results for various special cases. In particular,
it was shown in [81, 82] that unique spectral properties of the matrix  are obtained if the block  is
strongly singular, which is important for algorithms designed for solving systems of Maxwell equations.
For example, we have the following results.

Proposition 1. Let  be an spd matrix and  be a basis of the kernel of the matrix .

Then, the preconditioned matrix  has  linearly independent vectors  associated with
 multiple eigenvalue .

Proposition 2. Let , and let  be a symmetric positive semidefinite matrix with the kernel
dimension equal to . Then,  is an eigenvalue of the matrix  with the multiplicity ,  is an
eigenvalue of multiplicity , and the other  eigenvalues lie in the interval  and satisfy the rela-
tion

where  are  positive generalized eigenvalues

Let  be a basis of the kernel of ,  be a basis of the kernel
of , and  be the set of linearly independent vectors complementing

 in the basis . Then,  vectors ,  vectors ( , ), and  –  vectors
( , ) are linearly independent eigenvectors corresponding to the eigenvalues , and  vectors
( , ) are the eigenvectors corresponding to the eigenvalues .

On the whole, the presence of different matrices , , and  in the preconditioner  provides wide
opportunities for constructing efficient algorithms in particular cases.

We consider a family of iterative methods for solving saddle symmetric SLAEs with the matrix 
defined by (72); this family is based on the efficient Golub–Kahan -bidiagonalization, which was
originally proposed for the singular decomposition of rectangular matrices but later was successfully used
for solving algebraic systems, including the case of block saddle structure, in the works by Saunders, Ari-
oli, Greif, and other researchers.

Without loss of generality, we write the SLAE under examination in the form
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It is easy to verify that, if the function  in (72) is replaced by , then this system takes form (80)
with the right-hand side . It is assumed that  and  in (80) are spd matrices and .

The -bidiagonalization method is based on the construction of -orthogonal vectors  and
-orthogonal vectors  that satisfy the conditions

(81)

where , , and  is a two-diagonal matrix

By introducing new unknown functions
(82)

and multiplying system (80) by the block diagonal matrix block-diag( ), we obtain

(83)

It follows from (83) that the vector  depends on  columns of the matrix  because . Thus, SLAE
(83) is reduced to the form

(84)

Hence, we put

to obtain the initial vector :

(85)

The further vectors , , and the elements ,  of the matrix  are calculated from the recurrences
( )

(86)

The successive approximations , according to (82), are found from the first  columns of the matrix V,
i.e.,

(87)

where  are the components of the vector  in (84) calculated by the formulas
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We omit the details of derivation of these formulas (see [87]) and only present the final recurrences for the
iterative solution

(89)

where  is the th column of . Note that the algorithm just described has the following optimi-
zation properties: at each th step, the iterative approximation error has the minimum

(90)

As is mentioned in [71], this method has high convergence rate in the case of SLAEs arising in finite ele-
ment approximations of continuous multidimensional saddle problems, i.e., in mixed statements. An
important factor is that at each iteration algebraic subsystems with the matrices  and  must be solved;
in a certain sense, these matrices play the role of preconditioners. Their approximate inversion actually
leads to two-level iterative processes in certain subspaces.

4. PARALLELIZATION AND PERFORMANCE ISSUES OF ITERATIVE METHODS
The modern understanding of algorithm quality includes two main characteristics—mathematical effi-

ciency and performance of implementation on a particular supercomputer architecture. The first charac-
teristic includes the construction and optimization of iterative methods with a high convergence rate and
theoretical estimates of the required computational resources (the number of arithmetic operations and
amount of memory). The second characteristic is purely practical—it is determined by the actual execu-
tion time of the algorithm for a certain class of problems, which depends on the scalability of the algorithm
parallelization and on the programming technology on a specific computer platform.

The SLAEs of greatest interest for us have large size (108–1011) and sparse matrices with large condition
numbers (1012–1015) and irregular structure. This not only leads to a large number of iterations, but also
forces one to work with systems of distributed and hierarchical shared memory and also significantly
speeds down data access.

The main quantitative characteristic of parallelization is the acceleration of computations

where  is the time of solving the problem on  processors, which is the sum of data exchange time and
arithmetic operations execution time; in turn, these times are found by the approximate formulas

Here  and  are the average time of an arithmetic operation execution and their total number, respec-
tively,  is the number of data exchanges,  and  are the waiting time and the time of sending one num-
ber, respectively, and  is the average size of one communication.

Machine constants satisfy the inequalities ; therefore, for the algorithms to be con-
structed, we have obvious recommendations: try to minimize the size of communications, and make data
exchanges in large portions, i.e., pre-accumulate data buffers. These conclusions are all the more true
because interprocessor data transfers not only slow down the computational process but also are the most
energy-consuming operations, and this becomes a significant factor in the costs of operating a supercom-
puter [93].

The strategy of parallelizing large grid SLAEs arising as a result of approximation of multidimensional
boundary value problems is based on hybrid programming and additive domain decomposition methods
with two-level iterations in Krylov subspaces. The upper level iterations (over subdomains) are performed
using the message passing interface MPI between processes each of which solves (simultaneously) an
algebraic subsystem in the corresponding subdomain. At each iteration, the values of approximate solu-
tions on the interface between subdomains are exchanged. Naturally, all matrix and vector data for the
subsystems are preliminary distributed between processes. The solution of the SLAE in each subdomain
is parallelized using multithreading computations (like OpenMP) on multicore processors with shared
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memory. Additional acceleration can be achieved by vectorizing operations (AVX-like instruction sets
based on SIMD (Single Instruction Multiple Data) technologies (see reviews in [18]). Unfortunately,
presently there are no ready-to-use software development systems with automatic parallelization of algo-
rithms; hence the success in computations speedup and scalability significantly depends on the skills of
the programmer.

Note that the traditional block Jacobi–Schwarz methods underlying parallel domain decomposition
algorithms are based on the spectral optimization of iterative processes. A possible alternative to them are
projection block Cimmino methods [9, 94], which still are not sufficiently well studied and rarely used in
practice.

From the parallelization viewpoint, implicit alternating direction or Peaceman–Rachford methods
(see [90] and the review in [10]), which were intensively developed in the 1960–1970s seem promising.
They have a record convergence rate of iterations for model grid boundary value problems. In recent
decades, this direction has found a second wind in connection with the development of rational approxi-
mations in Krylov subspaces (see [95]), including the solution of Lyapunov and Sylvester matrix equa-
tions. Note that in [93] a method for increasing the degree of parallelization on the basis of expanding
rational functions in partial fractions was proposed.

Computations can be significantly accelerated by using variable precision arithmetic. Traditionally, the
solution of large SLAEs uses double precision arithmetic in which f loating point numbers are represented
by 64 bits; however, for extremely poorly conditioned matrices, quad precision (128 bits) is required. By
contrast, at certain stages of the algorithm, single and even half precision (32 and 16 bits, respectively),
which is significantly faster may be used. This approach is quite natural at first iterations when the error
of the approximate solution is relatively high. Another option of using low precision is in DDMs when
solving auxiliary problems in subdomains. It should be taken into account that such tricks require a thor-
ough analysis of numerical errors of the method to ensure the stability of computations as a whole.

A further reserve for improving performance is code optimization, which can be achieved by using
high-quality computational tools (e.g., SPARSE BLAS), by using various compiler options, and special
properties of a particular supercomputer platform. In recent decades, a large number of high-quality soft-
ware libraries for computational algebra have been developed (PETSс, HYPRE, MKL INTEL, and oth-
ers, see the review in [22, 23]). Also pay attention to the works performed in the All-Russian Research
Institute of Experimental Physics, Russian Federal Research Center (Sarov) [96] and to projects on inte-
grated computational environments DUNE [97], INMOST [98], and BSM [1, 24].

The creation, maintenance, and development of mathematical methods and software for the efficient
solution of SLAEs is a continuous science-intensive technological process, which includes regular exper-
imental research that requires intelligent means of support, such as systems for automation of verifying and
testing algorithms and their implementations, collections of problems (such as popular Sparse Matrix
Collections offered by various developers) and numerous demo and training versions of software (in addi-
tion to traditional monographs, textbooks, and user guides with recommendations on the application of
various algorithms for solving various practical problems).

5. CONCLUSIONS: PROBLEMS AND PROSPECTS
OF DEVELOPING ITERATIVE PROCESSES

From the systems point of view, the high-performance solution of SLAEs is a widely demanded area
of intellectual activity that is far from being limited by writing and justifying formulas of the algorithm; it
also includes statements of new practical problems or theoretical ideas, technological aspects of software
implementations, and issues of their effective application in supercomputer experiments.

New practical challenges of mathematical modeling will drastically increase the demand for solving
interdisciplinary and inverse high resolution problems on real-life data, which makes the high-perfor-
mance solution of SLAEs with tens or hundreds of billions of degrees of freedom and extremely poor con-
ditioning. In recent decades, the computational algebra methods have been rapidly developing both the-
oretically and experimentally, and promising directions have developed here: low-rank approximations of
matrices, including rational approximations, tensor methodologies graph-theoretic and combinatorial
approaches, aggregation and segregation methods; moreover, novel ideas in traditional matrix factoriza-
tions, algebraic decompositions, multigrid technologies, etc. are appearing.

Another important factor is the ongoing accumulation of a vast number of various problems (interdis-
ciplinary, methodological, practical, typical, and unique) and methods and technologies for their solution
on computers of various classes. At the same time, there is a transition from the amount of processed data
to quality, which requires the concept of developing a new generation of mathematical techniques and
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software. An important task is to create an active base of mathematical knowledge to ensure the automa-
tion or optimization of algorithm construction and their mapping to supercomputer architecture. A pro-
totype of such a base is the project ALGOWIKI developed in the framework of Wikipedia technologies
under the guidance of J. Dongarra and Vl.V. Voevodin. This task is within the realm of artificial intelli-
gence and machine learning which, along with big data technologies, forms the foundation of modern
modeling. The achieved scales of the triad problems–methods–computers lead to the fact that the inte-
grated computing environment for solving SLAEs should become the form and content of a hierarchical
infrastructure that constitutes the industrial-type instrumental environment and implements further
stages of the development of high-tech computing and information technologies, the outlines of which are
outlined in [1, 24, 93]. To prevent deep specialization from leading to the separation of computer theorists,
programmers, end users, their joint efforts should be aimed at creating an intelligent ecosystem that sup-
ports interprofessional and human-machine interfaces both to intensify fundamental research and to
quickly implement their innovations.
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