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Abstract—A singular integral equation of the first kind is considered on the integration interval [—1, 1].
A solution with zero values at the endpoints of the interval is sought. The equations are discretized
using Chebyshev polynomials of the second kind. The expansion coefficients of the unknown function
in the Chebyshev polynomials of the second kind are obtained by solving systems of linear algebraic
equations. The fact is taken into account that a unique solution of this equation vanishing at the end-
points of the integration interval exists under additional conditions on the kernels and the right-hand
side. This additional condition is also discretized. The constructed computational scheme is justified
by applying a function analysis method with the use of the general theory of approximate methods.
The space of Holder continuous functions with relevant norms is introduced. The differences between
the norms of the singular and approximate operators are estimated. Under certain conditions, the exis-
tence and uniqueness of the solution to the approximate singular integral equation are proved, and the
computational error is estimated. The order with which the remainder tends to zero is given. The pro-
posed theory is verified using test examples, which show the efficiency of the method.
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1. INTRODUCTION

Singular integral equations are widely used in various areas of mathematics. The range of applications
in mechanics and technology is well known: the theories of elasticity and thermoelasticity, hydro-, and
aerodynamics. In recent years, singular integral equations have been a major tool for mathematical simu-
lation of problems in electrodynamics.

However, the computation of singular integrals and the solution of singular integral equations are pos-
sible only in exceptional cases, so the main tools for applied problems are numerical methods. The well-
known works in this area are those by Lifanov, Gabdulkhaev, Boikov, Sanikidze, and others (see [1—4]).
These authors mainly constructed discrete solutions in the form of tables of values of the unknown func-
tion. However, it is often needed to find solutions at any point of the integration interval. Solutions of this
type were first constructed by Pashkovskii (see [5, pp. 332—349]) using Chebyshev polynomials for inte-
gral equations.

In this paper, a computational scheme is proposed to approximately solve singular integral equations
with zero values at the endpoints of the interval using Chebyshev polynomials of the second kind. Note
that the series expansions of functions in Chebyshev polynomials converge much faster than other expan-
sions. This is confirmed by numerous examples, some of which are given in this work.
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2. COMPUTATIONAL SCHEME

‘We consider a singular integral equation of the form

1
K@y = 2 ;"0(’) dr +2 j K, 00,(0dt = f(x), —1<x<], (1)
10 T

where K(x,7) and f(x) are given continuously differentiable functions on the interval [—1,1] and @,(?) is
the unknown function.

A solution is sought in the class of functions with zero values at the endpoints of the integration interval

[-1,1] (see [6, 7]). This means that @,(¢) = V1 — t2(p(t); therefore, we consider the equation
1
Ko =2 j Ji- ‘P(’) i + 2 j V1= 2K (x,nye(t)dr = f(x). )
(e

As is known (see [1, 7]), Eq. (2) has a unique solution under the condition

1

j V1 = PK(,D(Dd)dt = (3)

It is also known (see [8]) that the second-kind Chebyshev polynomials

sin(n + 1)arccost

N ’

U)=1, U)=2, U,(t)=4 -1, Us(t)=8¢ —4,...,

U,(t) = n=0,12,..,

are orthogonal on the interval [-1, 1] with the weight function p(¢) = V1 — #* and it holds that

1 .
0 ifnem,
2 | \/l—tzU,,(t)Um(t)dt:{ nawm (4)
n 1 ifn=m

Using the theory of Chebysheyv series (see [5, pp. 104—173]), we then have the representations

oo 1
o0 =Y a0, a =2 [Vi-romu,odr, k=0,1,..,
k=0 T

o0 1
f)=>dUx), d = 2 j V1= X’ f()U(x)dx, i=0,1,...,
5)
K(x,1) = Z U, (x)z ;U (1),

1
=2 j VI- 72U, () [2 j VI - ¥K(x, t)U,-(x)de dt, i,j=0,1,...
n?, s

The coefficients d; (i = 0,1,...) and ¢; (i, j = 0,1,...) can be computed using (5) or approximately computed
using Gaussian quadrature formulas of the highest algebraic order of accuracy (see [9]). The coefficients
ay, a; ... are unknown, since the function @(¢) is unknown.

Substituting expansions (5) of ¢(¢), f(x), and K(x,t) into (2), we obtain
2 j Vi-p2 1 ZakUk(t)dt 42 j Vi (ZU (x)z c,,U,(z)] iakUk (1)dt = idiU[(x). (6)
k=0 i=0

The sums Z U, (x)z o Cii U ;(t) uniformly converge (see [5, pp. 111, 112]), that is, we can change the
order of summatlon
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It is true that (see [10, p. 85])
! H P2 gt = -1,

where T, ,,(t) = cos(k + 1)arccost (k = 0,1,...) are the first-kind Chebyshev polynomials.
Using (4), we can rewrite (6) as

_22 @ Ty (x) + iakicikUi(x) = idiUi(x)- (7
k=0 k=0 =0 =0

Expanding —27,,,(x) in a series in terms of the Chebyshev polynomials of the second kind, we have

~2T,1(x) = D by U (%),
i=0
where
| 0 if i=01...k-2kk+2..,
- —2ZJ'«/1 T OU(x)dx =1 if i=k—1,
T 1 if i=k+l
Then Eq. (7) takes the form

=

iakzbikUi(x) + iakicikUi(x) = idiUi(x)
i=0

k=0 i=0 k=0 i=0
or

Z[Z k+c,k)jU(x) ZdU(x)

i=0 \ k=0

It follows that

Zak( ik +Clk) - 15 i = 0,1,... . (8)

This is a system of linear algebraic equations with respect to the unknowns q,, a,, ... .
We now consider condition (3). It can be similarly represented in the form

1
i.[ [Zdu(’)_zj V1 ZU(f)ZC,, /(T)ZakUk(T)dT]d’ =0.

Since the second-kind Chebyshev polynomials are orthonormal, that is, in view of formula (4), we
have

(Z dU () - Z akz i (t)} dr =

Combining this equality and (8) ylelds the following system of linear algebraic equations of infinite order
with infinitely many unknowns:

1
T 1

Zak(b,k +ey) = i=0,1,..,

| oo
d; - o (U (Odt [ =0
Jo[nJ‘ ll_tz[ kZ(;akaj J
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The approximate system is as follows:

Zak(bik +cy)=d, i=01..,n-1,
k=0
n 1

2 1

- aey U (Ddt | =
;;[R£V1—t( 25 k”j J

1 .
2 1 0 if j=2m-],
=2 U (dt =
& nj U0 {2 it j=2m,

we simplify system (10) and obtain

(10)

Computing the integral

Y ab+e)=d, i=01..n-1,
k=0

Zn:aka =H,
k=0

(11)

where

G, = Zgjcjk, H = Zgjdj.
7=0 7=0

If the functions f(x) and K(x,) satisfy the conditions

j _{(_x) dx = 0, IK(Xt)d =0,

then condition (3) automatically turns into an identity (see [4]); thus, to solve Eq. (2) approximately, it
suffices to solve only the system

Y abi+c)=d, i=0l..n (12)
k=0

After this system is solved for the unknowns q,, g, ..., a,, an approximate solution is given by

O) = §,(1) = D a Uy (0). (13)
k=0

3. JUSTIFICATION OF THE COMPUTATIONAL SCHEME
We first note that the computational scheme will be justified in a similar way to [11].
Let X denote the space of functions of the form @,(¢) = V1 — tz(p(t), where @(¢) is a continuously differ-

entiable function on the interval [-1;1] whose derivative belongs to the Holder class H(o), 0 < oo < 1. The
norm in X is defined as

lo() — (1)
It - ’2|B

Let X, denote the subspace of X consisting of functions @, () = V1 — r (1), where @,() = ZZ:O o U, @)
is the set of polynomials of degree n. The norm in X,, is defined by (14).
Let Y denote the space of Holder continuous functions y(7) defined on the interval [-1, 1] with the norm

_ |J’(tl) - y(t2)|
[y@l = max |y) + Y 0<B<o.

ool = l@er_,,y +sup , 0<B<o. (14)

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 61 No.8 2021



APPROXIMATE SOLUTION OF A SINGULAR INTEGRAL EQUATION 1273
Let ¥, denote the space of polynomials of the form y,(¢) = Z:_O o, U, () with the norm

@ = max|yn<f>|+supw

nax . t2|B 0<B<o.

ki

Let P, denote the projector from Y to Y, defined by the formula y,(¢) = P,[y(r)] and from X to X, defined
by the formula P[@,(r)] = m Plo(?)]. Here, P,[y(¢)] is the projection operator onto the set of nth-degree
polynomials of the form ZZ:O o, U (7). It is known (see [8, 12]) that |£,| < CInn in the space C[-1 1],
where C = const.

We need to prove that the operator K acts from X to Y.

This is obvious, since, according to the properties of singular operators (see [6]), if K(x,7) € H(a) and

o) € H(o), then
1
J V1 - ‘P(’) ~die H()  and [ViI-FKx nendr e H),
-1

that is, Ko e H(x).

Assume that there exists an inverse operator K acting from Y to X.
The approximate equation for (2) can be rewritten as

2J‘ [ (Pn(f)a,tJr 2.",/ PKx,00,(0)dt = f(x). (15)

Then the system of linear algebraic equations with respect to the unknown coefficients g, 4, ..., a, can be
written as

1
1,0, = { - "’"(’)dr}P[ M—ﬂK(x,r)wn(t)dr]=Pn[f<x>1. (16)
g

We estimate the norm of the difference

1
2 [ V1= 2K - K (o0, 0],
T2

where K, (x,1) is the best uniform approximation polynomial in x of degree n for K(x,7). It is evident that

1
2 f V1= A(K(x, 1) = KX (x,0))0, ()d1
T

Cl-11]

< max‘K(x, - KXx, t)‘ max |o,()| < EX(K(x,0) 0,0,

where E(K(x,1)) = sup E)(K(x,1)) and E) (K(x,1)) is the best approximation of K(x,) with respect to

x by a second-kind Chebyshev polynomial.
Repeating the proof of Bernstein’s inverse theorem (see [12, p. 165]), we can show that

1
2 j V1= 2(K(x,1) = K, (x,0)9,(0)di]| < ChP B (K(x,1)) |0, 1)
s

where C = const is independent of .
It follows from the general theory of approximate methods (see [13]) that, for » such that

q=Cn HK‘I“ EX(K(x,0)Inn <1,
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system (16) is uniquely solvable, the operator [, is continuously invertible, and

[0~ < Cn

where ¢(¢) and @, () are solutions of Egs. (2) and (16).

We now use the mechanical quadrature method for singular integral equation (2). It has the operator
form

7)

1 1
P, F [Vi-r j’"ﬁdr} P, F [Vi-rrike. t)]cp,,a)dt] = PLFL (18)
T -x n
Reasoning in a similar manner and applying the collocation method, we can rewrite (18) in the form

1
=2 I Vi- ‘Pn(’) di+ P, { [Vi-Frik, t)]cpn(t)dt} = PL/(0)] (19)
|

Estimating the difference | and using Bernstein’s inverse theorem (see [11, p. 165]), we

n®n — |:Krz(pn

|Kn(pn - l]'_Qn(pn < CnBErII(K(x’ t)) Inn ”(pn” .
The Banach theorem (see [13]) implies that, for » such that
=crf HK‘I“ E'(K(x,f))Inn < 1,

] [Cl-11]]
obtain

the operator [K,, is continuously invertible and
lo, — @, < A’ HK*“ E'(K(x,1))Inn. (20)

Thus, we have proved the following assertion.

Theorem. Assume that the operator K is continuously invertible and the functions K(x,t) and f(x) are con-
tinuously differentiable and belong to the Hélder class H(0), 0 < o < 1. Then for n such that

C HK’IH (EX(K(x,0) + E(K(x, )y Inn < 1,
system (11) has a unique solution and
lo— ¢, < CHK”H(E;‘(K(x, ) + EL(K(x,0))r’ Inn. Q1)
If K(x,t) and f(x) have continuous derivatives of orders up to r — 1 (r = 1) and the derivatives of order r belong
to the Holder class H(o), 0 < oo < 1, then it follows from (21) and the inequality E(K(x,t)) < 0( rlm)
(see [12, p. 138]) that

fo- gl =0(-12%5]). 0<p<a

4. TEST EXAMPLES

We consider the following equations:
1.

1
2J‘ - <P(l) Lar+ 2J\/1 — (X + x)Q(0)dt = —2x + X
T

Here, additional condmon (3)is automatlcally satisfied; therefore, the equation has the unique solution

o) =1.
2.

zjx/ (p(t)dt+zjV 2O+ 4p)eds = =257 +1+ x,

Here, additional condltlon (3) is also satlsfled, thus, the equation has the unique solution @(¢) = ¢.
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Table 1

1275

Coefficients of the solution

expansion

Example 1
solution @(¢) =1

Example 2
solution @(¢) = ¢

Example 3

solution @(¢) = s

a
aq
)
a
ay
as
A
a7
ag
a9

Approximate solution

of the equation

0.9999999
—6.81494E-08
—3.583727E-08
—3.927067E-08
—3.965056E—-09
-1.961513E-08

5.037663E-09
—2.116015E-08

2.833207E-09
—5.829515E-08
10

o) = Y a Uy () = 1
=

9.685755E-08
0.5000001
—1.48749E-08
6.214358E-08
—1.40607E—-08
6.712615E-08
—6.926157E-09
5.175345E-08
3.793914E-09
1.990343E—-08

10
o) = Y q Uy (1) = t
=i

0.2499998
—2.384186E—-07
0.25
—4.396021E-08
9.742919E-09
—9.037535E-09
2.199927E-08
2.166799E-08
—7.175324E-09
9.166978E—-09

10
o) = Y a Upy(t) = £
k=1

Here, additional condition (3) is satisfied as well, and the equation has the unique solution ¢(¢) = .
each example with n = 10.

implementation and efficient in terms of accuracy.

N —

o >® N

11.

12.
13.

2“ ‘P(’)dz+2j«/ £@x* + et = x - x°.

Table 1 presents the numerical results produced by solving the systems of linear algebraic equations (12) for

The results obtained in this paper show that the constructed computational scheme is convenient for
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