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Abstract—A singular integral equation of the first kind is considered on the integration interval .
A solution with zero values at the endpoints of the interval is sought. The equations are discretized
using Chebyshev polynomials of the second kind. The expansion coefficients of the unknown function
in the Chebyshev polynomials of the second kind are obtained by solving systems of linear algebraic
equations. The fact is taken into account that a unique solution of this equation vanishing at the end-
points of the integration interval exists under additional conditions on the kernels and the right-hand
side. This additional condition is also discretized. The constructed computational scheme is justified
by applying a function analysis method with the use of the general theory of approximate methods.
The space of Hölder continuous functions with relevant norms is introduced. The differences between
the norms of the singular and approximate operators are estimated. Under certain conditions, the exis-
tence and uniqueness of the solution to the approximate singular integral equation are proved, and the
computational error is estimated. The order with which the remainder tends to zero is given. The pro-
posed theory is verified using test examples, which show the efficiency of the method.
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1. INTRODUCTION

Singular integral equations are widely used in various areas of mathematics. The range of applications
in mechanics and technology is well known: the theories of elasticity and thermoelasticity, hydro-, and
aerodynamics. In recent years, singular integral equations have been a major tool for mathematical simu-
lation of problems in electrodynamics.

However, the computation of singular integrals and the solution of singular integral equations are pos-
sible only in exceptional cases, so the main tools for applied problems are numerical methods. The well-
known works in this area are those by Lifanov, Gabdulkhaev, Boikov, Sanikidze, and others (see [1–4]).
These authors mainly constructed discrete solutions in the form of tables of values of the unknown func-
tion. However, it is often needed to find solutions at any point of the integration interval. Solutions of this
type were first constructed by Pashkovskii (see [5, pp. 332–349]) using Chebyshev polynomials for inte-
gral equations.

In this paper, a computational scheme is proposed to approximately solve singular integral equations
with zero values at the endpoints of the interval using Chebyshev polynomials of the second kind. Note
that the series expansions of functions in Chebyshev polynomials converge much faster than other expan-
sions. This is confirmed by numerous examples, some of which are given in this work.

− ,[ 1 1]
1269



1270 KHUBEZHTY
2. COMPUTATIONAL SCHEME
We consider a singular integral equation of the form

(1)

where  and  are given continuously differentiable functions on the interval  and  is
the unknown function.

A solution is sought in the class of functions with zero values at the endpoints of the integration interval

 (see [6, 7]). This means that ; therefore, we consider the equation

(2)

As is known (see [1, 7]), Eq. (2) has a unique solution under the condition

(3)

It is also known (see [8]) that the second-kind Chebyshev polynomials

are orthogonal on the interval  with the weight function  and it holds that

(4)

Using the theory of Chebyshev series (see [5, pp. 104–173]), we then have the representations

(5)

The coefficients  ( ) and  ( ) can be computed using (5) or approximately computed
using Gaussian quadrature formulas of the highest algebraic order of accuracy (see [9]). The coefficients

,   are unknown, since the function  is unknown.
Substituting expansions (5) of , , and  into (2), we obtain

(6)

The sums  uniformly converge (see [5, pp. 111, 112]), that is, we can change the
order of summation.
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It is true that (see [10, p. 85])

where  ( ) are the first-kind Chebyshev polynomials.
Using (4), we can rewrite (6) as

(7)

Expanding  in a series in terms of the Chebyshev polynomials of the second kind, we have

where

Then Eq. (7) takes the form

or

It follows that

(8)

This is a system of linear algebraic equations with respect to the unknowns , ,  .
We now consider condition (3). It can be similarly represented in the form

Since the second-kind Chebyshev polynomials are orthonormal, that is, in view of formula (4), we
have

Combining this equality and (8) yields the following system of linear algebraic equations of infinite order
with infinitely many unknowns:
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The approximate system is as follows:

(10)

Computing the integral

we simplify system (10) and obtain

(11)

where

If the functions  and  satisfy the conditions

then condition (3) automatically turns into an identity (see [4]); thus, to solve Eq. (2) approximately, it
suffices to solve only the system

(12)

After this system is solved for the unknowns , , , , an approximate solution is given by

(13)

3. JUSTIFICATION OF THE COMPUTATIONAL SCHEME
We first note that the computational scheme will be justified in a similar way to [11].

Let  denote the space of functions of the form , where  is a continuously differ-
entiable function on the interval  whose derivative belongs to the Hölder class , . The
norm in  is defined as
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Let  denote the space of polynomials of the form  with the norm

Let  denote the projector from  to  defined by the formula  and from  to  defined

by the formula . Here,  is the projection operator onto the set of nth-degree

polynomials of the form . It is known (see [8, 12]) that  in the space ,
where .

We need to prove that the operator  acts from  to Y.
This is obvious, since, according to the properties of singular operators (see [6]), if  and

, then

that is, .

Assume that there exists an inverse operator  acting from  to X.
The approximate equation for (2) can be rewritten as
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Then the system of linear algebraic equations with respect to the unknown coefficients , , ,  can be
written as
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We estimate the norm of the difference

where  is the best uniform approximation polynomial in  of degree  for . It is evident that

where  and  is the best approximation of  with respect to
 by a second-kind Chebyshev polynomial.
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system (16) is uniquely solvable, the operator  is continuously invertible, and

(17)

where  and  are solutions of Eqs. (2) and (16).
We now use the mechanical quadrature method for singular integral equation (2). It has the operator

form

(18)

Reasoning in a similar manner and applying the collocation method, we can rewrite (18) in the form
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obtain
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4. TEST EXAMPLES
We consider the following equations:
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Table 1

Coefficients of the solution 
expansion

Example 1
solution 

Example 2
solution 

Example 3
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of the equation
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6a . −5 037663E 09 − . −6 926157E 09 . −2 199927E 08

7a − . −2 116015E 08 . −5 175345E 08 . −2 166799E 08
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Here, additional condition (3) is satisfied as well, and the equation has the unique solution .
Table 1 presents the numerical results produced by solving the systems of linear algebraic equations (12) for

each example with .
The results obtained in this paper show that the constructed computational scheme is convenient for

implementation and efficient in terms of accuracy.
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