
ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2021, Vol. 61, No. 8, pp. 1315–1329. © Pleiades Publishing, Ltd., 2021.
Russian Text © The Author(s), 2021, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2021, Vol. 61, No. 8, pp. 1336–1352.

MATHEMATICAL
PHYSICS
Characteristic Based Volume Penalization Method for Numerical 
Simulation of Compressible Flows on Unstructured Meshes

I. V. Abalakina,*, O. V. Vasilyeva, N. S. Zhdanovaa,**, and T. K. Kozubskayaa

a Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Moscow, 125047 Russia

*e-mail: ilya.abalakin@gmail.com
**e-mail: nat.zhdanova@gmail.com

Received May 3, 2020; revised November 18, 2020; accepted April 9, 2021

Abstract—A characteristic based volume penalization method for numerical simulation of viscous
compressible gas f lows near solid bodies with immersed boundaries is presented. In contrast to other
immersed boundary methods based on penalty functions, characteristic penalty functions ensure the
correct formulation of the Neumann condition and, specifically, the adiabatic condition on the body
surface. A numerical algorithm based on the method is described in detail. The algorithm combines
the finite-volume approach based on high-order accurate EBR schemes in the outer f low region and
first-order finite-difference schemes within the body. The developed algorithm can be used on meshes
of arbitrary structure, including fully unstructured ones. The efficiency of the characteristic based vol-
ume penalization method and its implementation is demonstrated as applied to benchmark problems,
such as the reflection of a shock wave and an acoustic pulse from a solid wall and the Couette f low.
The solutions of the same problems produced by the well-known Brinkman penalization method are
given for comparison.
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INTRODUCTION
The most widespread and conventional approach to the numerical simulation of boundary conditions

in aerodynamic f low problems is based on body-fitted meshes in which the interface between two media
is determined by mesh nodes and boundary conditions are specified by algebraic relations at these nodes.
If the body has complex geometry, body-fitted mesh generation becomes a resource-intensive problem.
This approach also becomes highly complicated in the case of moving or deformable boundaries, since it
requires continuous adaptation or the construction of a new mesh with solution interpolation from the old
to new meshes [1]. In this case, more efficient can be an alternative approach based on the immersed
boundary method. According to this method, the problem can be considered in a simply connected
domain and the boundary condition on a solid surface can be satisfied without fitting mesh nodes with
the boundary. This approach substantially simplifies the mesh generation procedure and makes it possible
to use methods of dynamic adaptation of a moving grid to the immersed body surface with the preserva-
tion of the mesh topology, which is especially useful in the modeling of f lows around moving objects.

Immersed boundary methods can be divided into two large classes: discrete and differential (volume)
methods. Discrete approaches are based on direct transformations of discretized equations ensuring the
fulfillment of the boundary conditions, so these approaches are difficult to generalize because of their
direct dependence on discretization methods (see, e.g., [2–4]). The most serious shortcomings of discrete
immersed boundary methods are that they lack mathematical proofs of their convergence and the approx-
imation error of boundary conditions is difficult to control. Differential immersed boundary methods
(see, e.g., [5–7]) are based on the solution of differential equations modified by introducing penalty func-
tions in the form of additional forces or feedback terms ensuring the fulfillment of the boundary condi-
tions.

The immersed boundary method as a class was formulated by Peskin for the numerical simulation of a
heart valve [8]. A wide variety of immersed boundary methods for viscous incompressible f lows has been
1315
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developed to date (see, e.g., [1]). Examples are ghost cell methods [9], cut-cell methods [10, 11], the free-
boundary method [12], penalization methods [13], and the fictitious domain method [14].

Penalization methods make up a subclass of differential immersed boundary methods in which solid
bodies are modeled by adding source terms to the system of differential equations determining the math-
ematical model of the gasdynamic process. An example is the Brinkman penalization method (BPM), in
which a solid obstacle is modeled as a porous medium with low permeability. For this purpose, penalty
functions that are nonzero within the porous medium are added to the momentum and energy equations
of the Navier–Stokes system. An advantage of the method is that the error can be controlled by monitor-
ing the value of the penalty parameter. Moreover, mathematical justification of the method for incom-
pressible f lows is based on the proved result that the solution of the Navier–Stokes equations involving
penalty functions converges to the exact solution as the penalty parameter tends to zero [15].

In the Russian-language literature, the differential subclass of immersed boundary methods was devel-
oped as an independent parallel research direction known as the fictitious domain method [14]. Its under-
lying idea is that an approximate problem is solved not in the original domain  of complex geometry,
but rather in a simpler domain  containing . An auxiliary problem in the fictitious (complemen-
tary) domain  is formulated so that it involves a small parameter η determining the size of the
jump in the coefficients of the equations across the domain boundary  and the approximate solution
of the parameterized problem converges to the exact solution in  as . A detailed literature review
on the history and applications of this method can be found in [14]. Below, we brief ly discuss works asso-
ciated with the development and use of the fictitious domain method as applied to problems in hydrome-
chanics. A fundamental work in this direction is due to Vishik [16], where the idea of the fictitious domain
method on the transition to an expanded domain was formulated. For the first time, the fictitious domain
method as a technique for numerical solution of elliptic problems with complex geometry was formulated
in [17, 18]. Specifically, the method with extension with respect to leading coefficients was developed and
the error of the approximate solution was estimated. A generalization of the fictitious domain method with
extension with respect to smaller coefficients was suggested by Lebedev [19]. Extensions of the method to
the incompressible Navier–Stokes equations were considered in numerous studies concerning the numer-
ical simulation of steady (see, e.g., [20–25]) and unsteady (see, e.g., [6, 26, 27]) f lows. Note that the fic-
titious domain method with extension with respect to smaller coefficients is mathematically identical to
the Brinkman penalization method. In the English-language literature, both names are used interchange-
ably (see, e.g., [13, 28, 29]), but the latter is more popular, although the fictitious domain method was
coined earlier. Since these two approaches are mathematically equivalent, to simplify the discussion, all
differential subclasses of the immersed boundary method are referred to in this work as penalization
methods.

The Brinkman penalization method was first proposed in [30] and was later successfully used for
numerical simulation of incompressible f lows [31–34]. Several attempts were made to adapt it to the sim-
ulation of compressible f lows. Among them, we mention the approach suggested in [35] and successfully
used, for example, in [36]. It was shown in [35, 36] that propagation of sound waves through a porous
medium is correctly described by the proposed modification.

Practical application of the Brinkman penalization method was substantially limited by the fact that
only Dirichlet boundary conditions can be specified at the interface between two media. This shortcoming
was overcome in the characteristic-based volume penalization method proposed in [37]. The possibility
of specifying Robin and Neumann boundary conditions in this method is of interest for the study of its
practical applicability. Some results of this type can be found in [37], where the characteristic based vol-
ume penalization method is successfully used for numerical simulation of a number of benchmark prob-
lems, including diffusion in one-dimensional setting, reflection of an acoustic pulse, and laminar f low
around a two-dimensional cylinder. In [38] a numerical solution technique on structured meshes was
developed using the adaptive wavelet collocation method, which provides active error control and the nec-
essary local grid resolution based on dynamic grid adaptation.

In this work, we refine the formulation of the characteristic based volume penalization method and use
it to construct a finite-volume/finite-difference technique for numerical simulation of viscous compress-
ible f lows on unstructured meshes. Spatial discretization is based on high-accuracy quasi-one-dimen-
sional edge-based reconstructions (EBR) of f lux variables [39]. The accuracy and correctness of the new
method are investigated through the numerical simulation of problems with an adiabatic boundary con-
dition: ref lection of an acoustic pulse, reflection of a shock wave from a wall, and the Couette f low.
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1. CHARACTERISTIC BASED VOLUME PENALIZATION METHOD
As a baseline mathematical model for describing viscous compressible f lows, we consider the Navier–

Stokes equations written in terms of physical variables: the density , velocity components , and specific
internal energy :

(1)

Here and below, the abbreviation  with a subscript stands for corresponding physically justified right-
hand sides of the system of equations. System (1) is closed by the ideal gas law , where

 is the ratio of specific heats. The following notation was used in system (1):

•  is the viscous stress tensor, and  is the strain rate tensor;

•  is a dissipative function;

•  is the heat f lux, and  is the Prandtl number;

•  is the molecular viscosity.
Here, repeated direction indices  imply summation over the directions and d is the dimen-

sion of the problem. In the case of external f low over a solid body, we use the following notation:
•  is the domain of the problem;
•  is the internal domain of the solid body;
•  is the boundary of the solid body;
•  is the domain surrounding the solid body;
•  is the inward normal to the boundary .
In the test problems considered in this work, on the boundary of the solid body, we set the no-slip con-

dition  and the adiabatic condition , where  is the velocity of the solid body.
According to the immersed boundary method, the location of the solid body is determined by the indi-

cator function

where .
In the characteristic based volume penalization method, the no-slip boundary condition for velocity

is satisfied by adding penalty functions to the equations for the velocity components:

(2)

For the no-slip condition, the penalty functions have the same form as in the Brinkman penalization
method with a penalty parameter . For the solution to be smooth in the domain , we add a dif-
fusion term with  where  is an artificial viscosity coefficient proportional to the mesh size . This
term introduces artificial viscosity in explicit form. For schemes of first-order accuracy in space, the role
of artificial viscosity is played by numerical viscosity and diffusion does not need to be added in explicit
form. In [16], to make the error of the numerical solution independent of the parameter , the artificial
viscosity was taken proportional to . The expression  used in Eq. (2) means that the con-
vective and diffuse transport terms are eliminated from Eqs. (1) at computational points inside the solid
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body. This is done to eliminate their possible influence on the relaxation of the solution toward the
required boundary condition.

The boundary condition of surface adiabaticity means that the homogeneous Neumann boundary
condition is set for internal energy (or temperature).

In the general case, the fulfillment of the Neumann condition  in the direction of the
inward normal  to the obstacle surface in the characteristic based volume penalization
method is ensured by solving the following hyperbolic equation with a penalty term:

(3)

where  is a small penalty parameter, which is generally different from the penalty parameter  in
Eq. (2).

The penalty source term in Eq. (3) is defined over the entire volume of the obstacle domain , rather
than over its surface, so the definition of the normal to the surface  is generalized to the entire domain

 by taking the gradient of the scalar distance function

where  is the distance to the nearest point of the boundary:

Mathematically, Eq. (3) describes transport of the solution into the interior of  along inward-
directed characteristics, so that the derivative of the function f in the direction of the normal n to the body
boundary  takes the required value. The matter is that the choice of  leads to Eq. (3) becoming
quasi-stationary within  on the scale of the characteristic time  of the solution to the f luid
dynamics equations (here,  is the characteristic size of the obstacle and  is the characteristic f low
velocity near the obstacle). In dimensionless variables (marked with a tilde) Eq. (3) in  can be written as

(4)

where  is the relaxation time. Since  at moderate characteristic f low velocities,
Eq. (4) implies that the boundary condition holds on O(tR) time scales, i.e.,

with an  asymptotic error. Thus, the adiabatic boundary condition on the surface is ensured by
adding characteristic penalty functions to the specific internal energy equation

(5)

In f lows with attached boundary layers, such as f lows in the linear acoustic approximation, the normal
gradient of pressure on the boundary  vanishes. For the equation of state to hold on the adiabatic
boundary of the solid body, the normal gradient of density on the boundary has to vanish as well, i.e.,

, which can be treated as an additional boundary condition on the solid surface for the dis-
cretized Navier–Stokes equations.

In the general case (e.g., for separated f lows), when , we set an inhomogeneous bound-
ary condition on the derivative of density in the normal direction n:
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Then, according to the general definition (3) of Neumann conditions in the characteristic based vol-
ume penalization method, the fulfillment of boundary condition (6) is ensured by modifying the continu-
ity equation:

(7)

Here,  is a function satisfying the following boundary value problem for the transport equation:

(8)

According to [40], the solution of problem (8) can be interpreted as extrapolation of the boundary value
of  to the interior of the domain.

For , penalized equations (2), (5), (7), and (8) written in terms of the physical variables 
determine the solution of the problem inside ; moreover, the no-slip boundary condition is satisfied
and there is no heat f lux across the boundary of the solid body.

Thus, the system of penalized equations (2), (5), (7), and (8) extends the Navier–Stokes equations (1)
to the entire domain  and determines a mathematical model of viscous compressible gas f low over a solid
body with boundary conditions imposed automatically with the help of the characteristic based volume
penalization method.

It was shown in [8] that the asymptotic error in the Dirichlet condition simulated by applying the
Brinkman penalization method is . In the characteristic based volume penalization method, the
error in Neumann conditions has  asymptotics, which was shown in [37] and illustrated in Eq. (4).

2. NUMERICAL METHOD

System (2), (5), (7) written in terms of the vector of conservative variables  is solved together
with Eq. (8) by numerical integration over the entire domain . Here,  is the total
energy determined taking into account the ideal gas law. Time stepping is based on an implicit integration
scheme with Newton linearization.

Spatial discretization of the equations in the domain  (with ) is based on a finite-vol-
ume EBR scheme whose high accuracy is achieved due to quasi-one-dimensional edge-based reconstruc-
tions of f lux variables on an unstructured mesh [39].

The numerical integration of system (2), (5), (7) in  is described as follows.
Rewritten in terms of conservative variables, system (2), (5), (7), and (8) becomes

(9)

The normal derivatives in system (9) are approximated by first-order upwind differences, which are
characterized by numerical diffusion proportional to the mesh size. For this reason, the terms with artifi-
cial viscosity  were dropped from the subsequent analysis.
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System (9) can be written in matrix-vector form as

(10)

where  is the vector of conservative variables,

Without loss of generality, we assume that the domain  is covered by an unstructured mesh with tri-

angular elements  such that  and  . It follows that all nodes ,

where  Note that the grid in  may include quadrilateral cells, which can always be repre-
sented as the union of two triangles.

System (10) is solved numerically by applying the implicit difference scheme

(11)

Here, the inward normal derivative is approximated by a one-sided difference and the point with index 
is the nearest point of intersection of the inward normal starting at the point  and an edge of a triangular
element. The value  is found by linear interpolation between  and , where  and  are the indices
of the nodes forming the intersected face:

where  and  are coefficients of linear interpolation and  is the distance between the points with
indices  and .

To solve the nonlinear difference equation (11) at a single time step, we construct the following iterative

process (  is the iteration number) for finding the increment :
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CHARACTERISTIC BASED VOLUME PENALIZATION METHOD 1321
As a result, we obtain a system of linear algebraic equations (SLAE) for finding the block increment

vector , namely,

(12)

where  is the  identity matrix,  and  are  block matrices (with  blocks) having the
following structure (  is the row number and ,  are the column numbers):

•  is a diagonal matrix,

•  is a matrix having three nonzero blocks in a row.

Solving system (12) yields a vector of variables at the next iteration: . As an initial

approximation of , we use .
Thus, the iterative time stepping process for Eqs. (2), (5), (7), and (8) can be organized in a unified

manner for the entire domain . The dependence of variables in the domains  and  is deter-
mined, on the one hand, by the approximation stencil for the normal derivatives in Eqs. (9) and, on the
other hand, by the reconstruction stencil for variables in the conservative form of the equations of system
(1). At every iteration step, we obtain a unified SLAE, which is solved using the stabilized biconjugate gra-
dient method (BiCGStab) [41] with ILU0 preconditioner.

3. NUMERICAL RESULTS
In this section, we consider numerical results obtained by solving benchmark problems having exact

solutions.
The first two problems are the one-dimensional reflection of an acoustic pulse and a shock wave from

a solid surface, which are considered in two-dimensional setting and in the inviscid approximation. The
solutions of these initial-boundary value problems for the one-dimensional Euler equations are well-
known, and they can be used for comparison with numerical results produced by two-dimensional com-
putations of the Navier–Stokes equations at high Reynolds numbers (for example, ) with a zero
heat f lux on the solid wall (adiabatic surface). Indeed, on the solid surface, the impermeability condition
(zero normal velocity on the boundary) for the Euler equations coincides with the no-slip condition for
the Navier–Stokes equation in the one-dimensional case ( ). The natural condition for the Euler
equations—no energy f lux across the solid surface due to the zero normal velocity on the boundary—also
holds for the Navier–Stokes equations in the case of the homogeneous Neumann boundary condition for
temperature or internal energy ( ). Thus, the solutions of these two problems for the Euler equa-
tions can be regarded as solutions of the Navier–Stokes equations up to  and can be used to verify
the treatment of the Neumann boundary condition in the characteristic based volume penalization
method. Note that the estimate given above is valid only in the one-dimensional case. In the multidimen-
sional case, in the presence of a solid surface, the solution of the Navier–Stokes equations has asymptotics
of order .

As a third test problem, we consider the Couette f low between two plates, in which case the character-
istic based volume penalization method can be verified in the presence of shear stress on the solid wall and
in the case of a moving surface (inhomogeneous Dirichlet condition). In this problem, the pressure gra-
dient is assumed to be zero and, to obtain a nontrivial solution (different from the “classical” linear one
for the velocity profile), the viscosity is specified not by a constant, but rather as inversely proportional to
the square root of temperature. For this formulation in the case of different boundary conditions (Neu-
mann or Dirichlet) set on the opposite plates, the problem has an exact solution (see the documentation
section at https://github.com/bahvalo/ColESo).

For a more complete analysis, the same problems were also solved numerically by applying the Brink-
man penalization method. For this purpose, we used the same grid, time stepping, and spatial discretiza-
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Table 1. Types of grids and their characteristic sizes

Mesh name Type Characteristic element size

SRM3 Structured rectangular 0.000244
UTM1 Unstructured triangular

Quasi-uniform
0.001

UTM2 Unstructured triangular
Quasi-uniform

0.0005

UTM3 Unstructured triangular
Quasi-uniform

0.00025

UTM4 Unstructured triangular coarsened away
from the line x = 0

0.00025–0.001
tion [42]. Note that, in the Brinkman penalization method, there are no explicit tools (like penalty con-
straints on the temperature derivative in the normal direction) ensuring the fulfillment of the adiabatic
condition on the body surface. Note also that, while applying this method, we did not modify the conti-
nuity equation in contrast to [35] and did not introduce porosity to control the acoustic impedance in the
penalty domain and to ensure insignificant penetration and appropriate ref lection of acoustic waves.

3.1. Reflection of a One-Dimensional Acoustic Pulse

The problem was considered in the two-dimensional formulation in the rectangular domain
 with the immersed interface  and the penalty domain

. In  we introduced a structured mesh and a sequence of refined unstructured
quasi-uniform triangular meshes (with a halved element size). Additionally, a nonuniform triangular
mesh was constructed in which the element size near the boundary was equal to its value in the fine grid
and was further increased (with a coefficient of 1.02) to the element size in the coarse grid. The types and
sizes of the grids are given in Table 1, and grid fragments are shown in Fig. 1.

The penalized system (2), (5), (7), and (8) rewritten in terms of conservative variables was solved at the

Reynolds number  and the penalty parameters  = 10–6 and  = 10–2.

[ ] [ ]Ω = − ×0.65,0.25 0,0.1 = 0x

[ ] [ ]Ω = ×0,0.25 0,0.1B Ω

= 8Re 10 ηb ηc
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Fig. 1. Fragments of unstructured triangular meshes: (a) UTM1, (b) UTM2, and (c) UTM4.
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Fig. 2. (a) Pressure f luctuations near the wall at the reflection time t = 0.25 and (b) velocity f luctuations at t = 0.5
(reflected wave).
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Periodic boundary conditions were used at the upper and lower boundaries of the computational
domain, and Dirichlet conditions determined by parameters of the unperturbed medium were set at the
left and right boundaries.

The problem was solved in dimensionless variables. As nondimensionalization parameters, we used the
characteristic parameters of the unperturbed medium, namely, the speed of sound  and the density .
The pressure was nondimensionalized by the quantity .

At the initial time, we specified the one-dimensional acoustic pulse

where

The presence of the small amplitude  in the initial perturbation determines the solution of the linear
evolution problem with use of nonlinear equations.

Over time, the pulse moves from left to right, ref lecting from the solid surface and changing the direc-
tion of motion.

Figure 2a shows the pressure f luctuations near the wall at  (the time of reflection from the wall)
produced by the characteristic based volume penalization method (CBVPM) and the Brinkman penaliza-
tion method (BPM) on various grids in comparison with the analytical solution. The CBVPM solution
agrees well with the analytical one even on the coarse grids, in contrast to the BPM solution, which exhib-
its differences from the exact solution even on the fine grid. At  the acoustic wave reflected from
the solid wall has the velocity profile shown in Fig. 2b. The profile of velocity f luctuations obtained with
CBVPM on the coarse grid UTM1 agrees well with the exact solution, while a small discrepancy between
the BPM and the analytical solution is observed at the minimum point.

Figure 3 compares the profiles of pressure f luctuations produced by CBVPM and BPM on the UTM4
grid in a neighborhood of the extreme point and near the wall. It can be seen that the BPM solution exhib-
its a pressure peak near the boundary on the inner side of ; as a result, the profile of the reflected wave
becomes slightly distorted, namely, its amplitude decreases. In contrast to BPM, the CBVPM-based
energy f lux across the boundary is correctly determined as zero, so the profile of the reflected wave is pre-
served. According to [35], the incorrect reflection of acoustic waves in BMP served as a motivating factor
for the generalization of BPM and the inclusion of porosity in the continuity equation.

0c ρ0

ρ 2
0 0c

ρ = + ρ = = + ≤ ≤ −
γ
11 ', ', ', –0.45 0.05,u u p p x

( ) ( ) −+ +ρ = = = − + =
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Fig. 3. Pressure f luctuations in the reflected wave near the maximum of f luctuations and near the wall.

Pr
es

su
re

 fl
uc

tu
at

io
ns

Exact solution
BPM UTM4

BPM UTM4

CBVPM UTM4

�0.28 �0.26 �0.24 �0.22 �0.01 0 0.01

0.00035

0.00090

0.00095

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0

�0.00005

0.00100

Wall

X

The grid convergence of CBVPM and BPM is demonstrated in Tables 2 and 3, which present the errors
of the numerical solution for pressure f luctuations in the  norm computed in the physical domain 
of the solution at the times  and .

Inspection of the tables (see the UTM1–UTM3 columns) suggests that the convergence is linear
(when the mesh size is halved, the error is roughly halved as well).

The results obtained on the nonuniform UTM4 grid are similar to those on the fine UTM3 grid. This
is explained by the fact that major errors arise in the course of reflection, while the element sizes of UTM3
and UTM4 near the boundary are identical.

The norms of the errors given in the tables also show that BPM is inferior to CBVPM in accuracy.

3.2. Shock Wave Reflection

Consider the problem of a plane shock wave reflecting from a solid wall. The shock front moves from
left to right along the  axis at the velocity corresponding to the Mach number . The problem was
solved in two dimensions in the rectangular domain  with the immersed interface

 and the penalization domain . As in the preceding example, three sequen-
tially refined quasi-uniform triangular meshes with a characteristic cell size of 1 (UTM1), 0.5 (UTM2),
and 0.25 (UTM3) were constructed in . The structures of these meshes were similar to the mesh struc-
tures presented in Fig. 1.

The problem was solved with initial piecewise constant conditions

2L Ω Ω\ B
= 0.25t = 0.5t

OX =M 2
[ ] [ ]Ω = ×0,100 0,4

= 80x [ ] [ ]Ω = ×80,100 0,4B

Ω

( ) ( ) ( )
( )
ρ = γ ≥ρ =  ρ <

v

v

v

1
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, , , 1,0,0,1 , 30,
, , ,

, , , , 30,
u p x

u p
u p x
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Table 2. Error of the numerical solution in the  norm at the time 

Method SRM3 UTM1 UTM2 UTM3 UTM4

BPM 4.43e–6 1.10e–5 6.43e–6 3.61e–6 4.59e–6
CBVPM 1.26e–6 2.83e–6 1.83e–6 5.79e–7 9.13e–7

2L = 0.25t

Table 3. Error of the numerical solution in the  norm at the time 

Method SRM3 UTM1 UTM2 UTM3 UTM4

BPM 4.72e–6 1.33e–5 7.33e–6 3.71e–6 4.93e–6
CBVPM 9.82e–7 3.04e–6 1.67e–6 8.26e–7 7.20e–7

2L = 0.5t
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Fig. 4. Reflected shock wave at the time .
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where the state  ahead of the shock front is determined by the Rankine–Hugoniot relations. The
problem was solved in dimensionless variables. As nondimensionalization parameters, we used the
parameters ahead of the shock front, namely, the speed of sound  and the density . The pressure was
nondimensionalized by .

The penalized system (2), (5), (7), and (8) rewritten in terms of conservative variables was solved at the
Reynolds number  and the penalty parameters  and . The immersed solid sur-
face ( ) was modeled by the immersed boundary method with no-slip and adiabatic conditions.

According to the formulation of the problem, the shock wave reflects from the surface and then moves
from right to left. The profile of the reflected shock wave at the time  is presented in Fig. 4, which
also depicts the numerical results produced by BPM and the exact analytical solution of the problem. The
figure shows that the CBVPM numerical solutions obtained on the fine (UTM3) and coarse (UTM1)
grids agree well with the analytical solution, in contrast to the BPM solutions on the same grids. Specifi-
cally, the reflected shock wave in the BPM solutions has an underestimated amplitude and a phase lag, as
in the previous problem of acoustic wave reflection. However, in the case of the nonlinear problem, this
underestimation is more significant. The cause is the same as before: the energy f lux across the boundary
is incorrectly modeled by BPM. As was noted in [37], in contrast to acoustic waves, the porous extension
of BPM [35] does not eliminate the error caused by the abrupt change in the gas pressure within the pen-
alty domain and by the subsequent smooth decrease in the pressure due to infiltration. The CBVPM yields
the correct pressure gradient on the modeled wall, since the density gradient (extrapolated from the
surface ) and the temperature gradient (relaxing to zero) are correctly determined in the
immersed domain . Altogether, these factors lead to a zero energy f lux across the boundary and, as a
consequence, to the correct reflection of the shock wave.

3.3. Couette Flow
Consider the two-dimensional compressible gas f low in a channel formed by two parallel impermeable

plates. One plate has a given temperature (isothermal surface) and is stationary, while the other plate
moves at a constant velocity and has an adiabatic surface. The considered medium is characterized by a
variable dimensionless dynamic viscosity of the form , where  is the temperature of
the plate. The problem is solved at the Reynolds number .

For the numerical solution, the penalty parameters in CBVPM were specified as  and
. The problem was considered in the rectangular domain , where three

sequentially refined quasi-uniform triangular grids with a characteristic cell size of 0.02 (UTM1),
0.01 (UTM2), and 0.005 (UTM3) were constructed. The plates were perpendicular to the  axis, and
their boundaries crossed this axis at the points  and . On the left boundary of the com-
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Fig. 5. Distributions of characteristics in the Couette f low along the OX axis: (a) transverse velocity and (b) temperature.
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Fig. 6. Distributions of characteristics in the Couette f low near the right boundary: (a) transverse velocity and (b) tem-
perature.
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putational domain, which coincided with the surface of one of the plates , we specified the tem-
perature  and the no-slip condition . The right plate  moved at the velocity 
and was immersed in the rectangular penalty subdomain . The boundary condi-
tions on its surface, namely, adiabaticity  and the no-slip condition  were modeled using
the CBVPM.

The exact solution of the problem for the temperature function is given by the expression

(see the documentation section at https://github.com/bahvalo/ColESo), and the solution for the velocity
function is given by
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Table 4. Error of the numerical solution for temperature in the  norm

UTM1 UTM2 UTM3

1.07e–1 4.05e–2 1.83e–2

2L
The computations produced a -independent stationary numerical solution of the problem. Figures 5a
and 5b present the velocity and temperature distributions along the  axis as computed on the fine
UTM3 grid. Additionally, the figures show the results produced by BPM and the exact solution. It can be
seen that the numerical results agree well with the exact solution, except for the neighborhood of the right
boundary. Figures 6a and 6b present the velocity and temperature profiles near the right boundary
obtained on the coarse (UTM1) and fine (UTM3) grids. It can be seen that the CBVPM yields more accu-
rate results than the BPM.

The grid convergence of CBVPM is demonstrated in Table 4, which presents the errors of the numer-
ical solution for temperature in the  norm as computed in the physical domain  of the solution. It
can be seen that the convergence under mesh refinement is linear, because, as was shown in [37], the error
of the numerical method prevails over the CBVPM error for given penalty parameters. Note that, in con-
trast to the preceding test problems, an inhomogeneous no-slip boundary condition is modeled with the
help of CBVPM in this problem.

CONCLUSIONS

A technique for the numerical simulation of aerodynamic f low problems based on the characteristic
based volume penalization method, which belongs to the class of immersed boundary methods, has been
presented. The method relies on a qualitatively new approach to the implementation of boundary condi-
tions on grids that are not boundary-fitted. On the one hand, boundary conditions of different types (Dir-
ichlet, Neumann) can be modeled with this method. On the other hand, as a penalization method, it
allows a relatively simple numerical implementation.

The developed technique makes use of a mathematical model based on the viscous compressible
Navier–Stokes equations. In the case of the characteristic based volume penalization method, the
Navier–Stokes system is supplemented with an equation for computing the derivative of density with
respect to the normal direction to the surface, which is involved in the source terms of the Navier–Stokes
equations. According to the numerical method proposed for solving this system, the f low region and the
domain inside the obstacle are computed simultaneously. Thus, the numerical solution is reduced to the
integration a unified SLAE obtained by applying an implicit time differencing scheme with the use of the
linearized Newton method.

For the characteristic based volume penalization method, the Dirichlet boundary condition in the
mathematical model is implemented as in the Brinkman penalization method. However, in contrast to the
latter, the characteristic based volume penalization method ensures the fulfillment of the Neumann
boundary condition.

The technique based on the characteristic based volume penalization method was used for the numer-
ical simulation of several benchmark problems having an analytical solution, namely, the reflection of an
acoustic pulse, the reflection of a shock wave, and the Couette f low. The used mathematical models
include Dirichlet and Neumann boundary conditions. The numerical results were compared with an ana-
lytical solution and the numerical solution produced by the Brinkman penalization method. The results
based on the characteristic based volume penalization method were found to agree well with the analytical
solutions. For the considered benchmark problems, this method was shown to yield more accurate results
than the Brinkman penalization method.

Overall, the results obtained in this work suggest that the developed characteristic penalization tech-
nique is efficient as applied to the numerical simulation of aerodynamic f low problems. Its further devel-
opment would be associated with an extension to three-dimensional f low formulations, including f lows
over moving bodies.
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