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Abstract—Modern directions in the development of matrix methods and their applications described
in the present issue are overviewed. Special attention is given to methods associated with separation of
variables, special decompositions of matrices and tensors implementing this technique, related algo-
rithms, and their applications to multidimensional problems in computational mathematics, data
analysis, and machine learning.
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1. LOW-PARAMETRIC REPRESENTATIONS AND APPROXIMATIONS

The basic direction of the development of computational mathematics and applied data analysis over
last decades is associated with progressively increasing sizes of data operated by algorithms. The possibility
of using such data in numerical computations depends directly on whether they have a structure conve-
nient for computations. Mathematically, the presence of a hidden structure in data means that they are
described by a model with a relatively small acceptable number of parameters. It is natural to assume that
knowledge of a small portion of data, rather than all of them, is sufficient to estimate parameters in a low-
parametric representation. This general idea underlies numerous modern algorithms.

An analysis of available applications shows that low-parametric approximations for large-sized matri-
ces are based primarily on the fact that they are close to low-rank matrices. A recent series of works
(see [1—3]) can be regarded as an attempt of interpreting this general phenomenon.

Interest in efficient algorithms for representing or approximating matrices by low-rank ones with the
use of all or only a few entries has been persisted for more than 30 years. Among the variety of approaches,
a noticeable place is occupied by cross approximations, which are constructed using a small number of
matrix columns and rows. Suppose that an m X n matrix 4 can be represented in the form

A=R+F,
where R is a matrix of rank » and F is a perturbation matrix that does not exceed € in the spectral norm.
In [4, 5] it was shown that, if the columns of an m X r matrix C and the rows of an 7 X n matrix R are cho-

sen from A in such a way that the » X r submatrix A obtained at their intersection has the largest volume
(the absolute value of the determinant) among all submatrices of order », then

[4=CAR|, < (r+1)0,. (4) < + e, (1)

where ||- | is a step-by-step (Chebyshev) norm and ,,,(A) is a singular value of 4 indexed by r + 1 when

all singular values are arranged in nonincreasing order. Approximations of the form CGR (sometimes
written as CUR) are known as cross approximations, since they are constructed using entries of a cross
consisting of columns and rows of a given matrix.

Cross approximation methods for obtaining tensor decompositions in the form of tensor trains were
first proposed in [6]. New estimates for TT ranks of approximate tensorizations of some smooth functions
were obtained in [7] (see the present issue).
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An advantage of cross approximations is that they can be constructed using a small number of matrix
entries. However, there is a disadvantage associated directly with estimate (1): its direct use in matrix
norms leads to multipliers depending on the matrix size. To a certain degree, this shortcoming limited the
application of this approach in data analysis algorithms. At the same time, probabilistic methods were
extensively used to construct fairly efficient CGR approximation algorithms (see [§—10]). In many inter-
esting, randomized algorithms had much better accuracy estimates, but they required knowledge of all
entries of the approximated matrix.

Accuracy bounds for cross approximations are examined using the generalized maximum volume prin-
ciple on average are addressed in [11]. Specifically, the most common matrix norms are considered, and
the results confirm the experimentally observed fact that the accuracy of the cross approximation method
is comparable with the accuracy of randomized algorithms. This means that the cross approximation
method preserves its main advantage, i.e., the capability of constructing high-order accurate approxima-
tions based on rather scarce information on a matrix.

2. MATRIX COMPLETION PROBLEMS
The low-rank matrix completion (MC) problem differs from the approximation problem only in the

entry-choosing method. Suppose that a matrix 4 € R™ (the case of square matrices is considered for
notational simplicity) can be represented in the form A = R + F, where R is a matrix of “low” rank » and
F is a perturbation “small” in the norm. Assume that the known entries of 4 make up a small set and are
“uniformly” distributed in A. Can A be recovered from a given set of its entries?

Initially, interest in MC was motivated by applications associated with data analysis: recommender sys-
tems, Netflix prize competitions, collaborative filtering, etc. To date, the range of applications has become
immense. Moreover, low-rank MC is a remarkable example of a computational problem whose solution
relies on profound theoretical results from different areas of mathematics.

It is proved in [12, 13] that, for successful MC, the number of known entries has to be at least

O (nlogn). Additionally, it is proved that, under rather mild constraints, O(n logz(n)) entries are sufficient
for MC. The proposed construction relies on the idea of problem relaxation to a convex formulation with
the subsequent application of well-known optimization methods. The high algorithmic complexity of
convex optimization methods motivated further investigations concerning the search for faster numerical
procedures. As a result, iterative algorithms, such as singular value thresholding (SVT) [14] and singular
value projection (SVP) [15] were developed. Every iteration of these algorithms consists of two steps. An
unconstrained gradient method is applied at the first step, and the new approximation is projected onto
the manifold of rank-7 matrices at the second step. The practical applicability of these methods is limited
only by the complexity of the projection step, which involves singular value decompositions of matrices.

In [16], it is suggested that, at every projection step, the best projection be replaced by an approximate
one, whose computational complexity is much lower than the complexity of singular value decomposi-
tion. Cross approximations based on the maximum volume principle are applied for this purpose. Impor-
tantly, for the SVP algorithm, the high accuracy of low-rank approximations in the Frobenius norm is a
critically important property determining the convergence of the method. In the theoretical part of [16],
it is shown that the convergence properties of the methods change insignificantly. As fast approximations,
one can use a cross approximation based on the generalized maximum volume principle (see [17]) and
probabilistic low-rank approximation algorithms (see [18]). A speedup of several hundred times is
achieved in numerical experiments on matrices of order 1000. A point of special value is that [16] provides
important details concerning a software implementation of the algorithm, such as adaptive stepsize selec-
tion in the gradient method and an adaptive procedure for rank increase. Without these procedures, the
SVP algorithm is significantly outperformed in terms of the speed of computations and stability.

In applications, additional information on the low-rank matrix to be recovered is often available
(see [19, 20]), which would be useful in developing MC methods. For example, subspaces containing the
linear spans of rows and columns can be known. Such problems are called matrix completion with side infor-
mation. Let d; and d, be the dimensions of the subspaces containing the row and column spaces, respec-

mXd,

tively (obviously, r < min{d,,d,}). Assume that the bases of the spaces are specified by matrices X € R
and Y € R, In this case, the number of entries required for MC is O (log(N )) (see [21]). The MC prob-

d\xd,

lem is written as A = XWY, where A is the matrix to be recovered and W € R is the sought matrix of

the predictive model. In [22] W is factorized in the form W = UV with matrices U € R*" and V € R™*
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sparsified in rows and columns, respectively. A modification of the MC algorithm is proposed that takes
into account the sparse structure of the factors. Under certain conditions, the new algorithm additionally
reduces the requirement for the number of known entries, which is of critical importance in applications
where the necessary information is difficult to obtain.

3. MATRIX AND TENSOR METHODS IN MACHINE LEARNING

The overwhelming majority of modern machine-learning models are based on deep artificial neural
networks, which represent a composition of linear transformations and pointwise nonlinear transforma-
tions. Linear transformations are parametrized by matrices (weights), which are a direct link with matrix
analysis. In particular, low-rank approximation methods for matrices and tensors can be used to compress
machine learning models. Namely, given weights, the construction of their approximations yields a new
model with fewer parameters that approximates the previous one. Even if the accuracy of the compressed
model is insufficient, we can apply fransfer learning using representations obtained with the help of matrix
and/or tensor decompositions. This approach has become very popular. In this issue, compression is
addressed in [23], where the idea of using approximations of intermediate values (i.e., activations) rather
than model parameters is proposed. It turns out that various machine learning models can be significantly
compressed by applying a rank factorization of the matrix made up of activation vectors. It should be
noted that matrix and tensor methods for compression of neural network models (they are called “factor-
izational”) have become a separate direction in the design of fast and compact machine learning models
and have been used in commercial software packages.

An important direction in the development of matrix and tensor methods is the solution of optimiza-
tion problems in which the unknowns are naturally represented in the form of two- or multidimensional
arrays. Such optimization problems sometimes fail to be reduced to classical problems, but they can be
solved using special optimization methods with every step involving efficient and stable matrix algorithms.
Specifically, such formulations arise in recommender systems, social network analysis, and natural lan-
guage analysis. Sometimes, it becomes necessary to take a fresh look at classical matrix analysis algorithms
in terms of optimization methods. In the present issue, this subject is considered in [22]. In [24] term
decompositions are used to formulate a mixture separation model. Classical tensor decompositions are
then insufficient, so a new representation is introduced. In this case, researcher’s task is to choose an
appropriate representation, or to develop a new model of input tensor factorization and to solve the arising
optimization problem.

Thus, matrix methods are under active development and are applied in machine learning for the design
of new models and compression of available ones. Stable matrix algorithms provide a basis for more robust
machine learning methods (specifically, in some cases, the use of orthogonal matrices makes it possible
to cope with the vanishing gradient problem). Moreover, due to their high reliability and speed, existing
matrix and tensor decompositions can be successfully applied to a number of multidimensional problems.
An interesting direction seems to be the development of new optimization methods for solving problems
with constraints on the properties of unknown matrices and tensors, including methods of stochastic opti-
mization and game theory.

4. OTHER APPLICATIONS AND CONCLUSIONS

Traditional applications of matrix methods are associated with solving equations of mathematical
physics. They include complicated multidimensional equations, such as the Bellman equation (a tensor
method for its solution is considered in [31]) and classical problems, for example, electrostatics of multi-
particle systems with a significantly higher velocity (see [32]). The important problem of the numerical
solution of volume integral equations on nonuniform grids is considered in the present issue (see [25]).
Discretization of such problems gives rise to dense matrices of huge size, which, however, have a hidden
structure. It is shown that they admit an approximate factorization in the form of the product of sparse
matrices and a multilevel Toeplitz matrix. As a result, efficient implementations of matrix-vector multi-
plication and iterative methods can be designed. Algebras appearing in the study of various generalizations
of specific features of Toeplitz matrices are addressed in [26].

In a number of problems, it is necessary to compute matrix exponentials. Some issues concerning the
application of Krylov subspaces in calculating the exponential of a nonsymmetric matrix are considered
in [27]. A new algorithm for computing eigenvectors of asymmetric tridiagonal matrices is proposed in
[28]. New algorithms for solving nonlinear eigenvalue problems are suggested and investigated in [29].
A useful survey of Shanks’ extrapolation methods and their applications to iteration acceleration are pre-
sented in [30].
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Methods of matrix analysis and applied linear algebra play an important role in science and engineer-
ing. They are discussed at numerous seminars and some serial conferences. In Russia, they are addressed
primarily at regular international conferences Matrix Methods in Mathematics and Applications, which are
usually held in Moscow based on the Marchuk Institute of Numerical Mathematics of the Russian Acad-
emy of Sciences and the Skolkovo Institute of Science and Technology. Some of the results published in
this issue were reported at the Sth conference of this series held in August 2019.
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