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Abstract—The resource allocation problem in computer networks with a large number of links is con-
sidered. The links are used by consumers (users), whose number can also be very large. For the dual
problem, numerical optimization methods are proposed, such as the fast gradient method, the sto-
chastic projected subgradient method, the ellipsoid method, and the random gradient extrapolation
method. A convergence rate estimate is obtained for each of the methods. Algorithms for distributed
computation of steps in the considered methods as applied to computer networks are described. Spe-
cial attention is given to the primal-dual property of the proposed algorithms.
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1. INTRODUCTION
1.1. Motivation

In this paper, the problem of controlling modern communication networks is considered from the
point of view of optimization and stochastic modeling. To solve problems of this type, we need to represent
and analyze the mathematical model arising in the simulation of large-scale broadband networks. It is
expected that, in future communication networks, there appear applications that will be able to change
their data transmission rates according to the available network capacity. An example of such a network is
TCP traffic through the Internet.

The key issue addressed in this paper is how the available capacity of the network is to be allocated
among competing f lows. The use of available capacities by consumers is controlled by correcting the link
prices.

Thus, we consider the problem of optimizing resource allocation in computer networks with a large
number of links. The links are used by consumers (users), whose number can also be very large. The goal
of this study is to determine a resource allocation mechanism, where the resources are understood as
available capacities of network links. Additionally, it is necessary to ensure stable performance of the sys-
tem and to prevent overloads. As an optimality criterion, we use the sum of the utilities of all users of the
computer network.

Originally, standard resource allocation problems reducing to the maximization of the aggregate utility
of users in the case of shared use of available resources were considered in [1]. Resource allocation in com-
puter networks was investigated in the recent work [2]. Proposed in [3], the mechanisms of decentralized
resource allocation drew much attention in economic studies (see, e.g., [4–6] and references therein). In
this paper, following [7, 8], we consider various mechanisms of price adjustment. The proposed
approaches are of practical importance due to their decentralized nature, which means that the price of
an individual link is established and adjusted relying only on the reactions of users employing this link,
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Fig. 1. Example of a computer network with  and .
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rather than on the reactions of all network users. In the case of such an adjustment mechanism, all links
perform independently.

Additionally, one of the approaches proposed in this paper relies on the stochastic projected subgradi-
ent method and overcomes the following difficulty arising in actual networks: data packets sent by users
arrive at a link at different times, so the total traffic through the link is not known in practice. This diffi-
culty is obviated by applying stochastic methods. They can do without the exact value of total traffic, man-
aging only with its estimate, which can be obtained using the traffic of a single user. The idea of using the
stochastic projected subgradient method for solution of this problem was proposed in [2].

1.2. Content of This Paper

This paper is organized as follows. The formulation of the problem and the construction of its dual are
described in Section 2. Additionally, we state all necessary assumptions for the primal problem.
In Section 3, the problem is solved by applying Nesterov’s fast gradient method [9], whose complexity

bound is found to be . In Section 4, this problem is solved using the stochastic projected subgradient

method with  complexity bounds.

In Section 5, the problem is solved by applying the ellipsoid method, which is well suited for low-
dimensional problems, and an algorithm for constructing the accuracy certificate for this method is

described. We present complexity bounds on the order of , where  is the number of links in
the network. A regularization technique for recovering the solution of the primal problem from the solu-
tion of the dual one if the method is not primal-dual is described in Section 6. The regularized problem is
solved using the random gradient extrapolation method in Section 7. Its complexity bounds are presented,

which are on the order of , where the logarithmic factor appears due to the regularization of the

dual problem.
Numerical experiments supporting the theoretical results obtained in the preceding sections are pre-

sented in Section 8.
Additionally, for each algorithm, we describe its distributed computation in the context of the problem

under consideration.

2. FORMULATION OF THE PROBLEM

Consider a computer network with  links and  users (or nodes), see Fig. 1.
The users exchange data packets through a fixed set of links. The network structure is specified by the

routing matrix . The matrix columns , , are -dimensional Boolean vec-
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tors such that  if node  uses link  and  otherwise. The link capacities are described by a vec-
tor  with strictly positive components.

The users estimate the performance of the network with the help of utility functions , ,
where  is the rate of data transmission from the th user. As an optimality criterion for the system,
we use the sum of the utility functions for all users [1].

The problem of maximizing the aggregate utility of the network under constraints imposed on the link
capacities is stated as follows:

(1)

where . The solution of this problem is an optimal resource allocation .
Consider the standard transition to the dual problem for (1). Given a vector of dual multipliers

, which can be interpreted as the price vector of the links, the dual objective function
is defined as

(2)

here, the users choose optimal data transmission rates  by solving the optimization problem

(3)

Let  denote the vector with components . Then, to find optimal prices , we need to solve the
problem

(4)

Assume that the Slater condition is satisfied for the primal problem. Then, by virtue of strong duality, both
primal and dual problems have solutions. By using the Slater condition, it is possible to compactify the
solution of the dual problem. Assume that the solution of the dual problem satisfies the estimate

Here,  has no effect on the performance of the considered algorithms, but is only involved in their con-
vergence rate estimates.

The basic idea of this paper is to apply various optimization methods for solving dual problem (4) with
the addition of primal-dual analysis of these methods, which makes it possible to recover the solution of
primal problem (1). In this sense, we develop the approach addressed in our previous works [10–21]. The
basic difference is that we consider inequality constraints and analyze stochastic algorithms in the terms
of estimates with high probability, rather than on average.

2.1. Strongly Concave Utility Functions

In some sections, we assume that the utility functions , , are strongly concave with a
constant . In this subsection, we describe the properties of the dual problem under this assumption.

Proposition 1 (Demyanov–Danskin–Rubinov theorem, see [22, 23]). Suppose that, for any , it
holds that , where  is a convex and smooth function of  with a maximum reached

at the only point . Then .
Proposition 2 (see [24]). Suppose that the functions  are -strongly concave for all .

Then function (2), where  , solve problem (3), is -smooth, i.e., the gradient of the
function  satisfies the Lipschitz condition with constant :

The proof of the proposition can be found in the Appendix.
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2.2. Concave Utility Functions

Now we assume that the utility functions , , are concave, but not strongly concave. Then
the dual problem is not smooth. In this subsection, we describe some properties of subgradients of the dual
problem under these assumptions.

The subgradient of dual problem (4) is defined as

Since  is a bounded rate of data transmission and the vector  is also bounded, we see that the subgradi-
ents of the dual problem are bounded. Thus, there exists a positive constant  such that

(5)

As a rough estimate from above for the constant  in (5), we can use . The multiplier  appears
because there are  terms and  is used as an estimate for the dependence of the -norm on the vector
dimension .

3. FAST GRADIENT METHOD

In this section, we assume that the utility functions , , are strongly concave with a con-
stant ; therefore, the dual problem is smooth.

Dual problem (4) is solved by applying Nesterov’s fast gradient method (FGM) in the following ver-
sion (PDFGM method, see Algorithm 1).

Algorithm 1. Primal-Dual Fast Gradient Method (PDFGM)

Input:  , are strongly concave utility functions for each user;  is the initial price vector,

, , , and , .

1: for 

2: Compute , 

3:

4:

5:

6:

7: end for

8: return , 

3.1. Distributed Method
The problem under consideration can also be solved using the distributed version of FGM, which

means that each link can compute an optimal data transmission rate only relying on the reactions of the
users that employ this link without interacting with the other links.

The process occurring at the th iteration for link  can be described as follows.
1. Given information received from the users after the preceding iteration with index  (vector

), the link  computes

Here,  only for users employing the link . Therefore, to compute this step, the link needs only
information from the users employing this link.
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2. Similarly, the link  computes

3. After obtaining values at two preceding steps, link  computes the price for the next iteration :

and sends out this information to all users connected to it.

4. The users compute the optimal data transmission rates ; specifically, for user , we obtain

where, by the definition of the matrix , the user needs only data from the links it employs. Next, the user
computes the optimal rate

Remark 1. A disadvantage of this algorithm is that each link has to know the reactions of all users that
employ it at every iteration step. Unfortunately, in actual networks, users do not transmit data simultane-
ously, so it is rather difficult to collect this information for the link. However, if complete information on
the users is available, the link can establish an equilibrium price more quickly.

3.2. Estimation of the Convergence Rate of FGM

Before proving the convergence of FGM for the problem under consideration, we state the key lemma
necessary for estimating the residuals in the constraints and the duality gap after running PDFGM.

Lemma 1. Suppose that Algorithm 1 starts at an initial point  lying in the Euclidean ball of radius  cen-
tered at the origin. Then, after performing  iterations of Algorithm 1, it holds that

(6)

where  and .

The proof of the lemma can be found in the Appendix.
Now we formulate a theorem on the convergence rate estimate for Algorithm 1.

Theorem 1. Suppose that Algorithm 1 starts at an initial point  lying in the Euclidean ball of radius 
centered at the origin. Then, after performing

iterations of Algorithm 1, it holds that

where ,  is an optimal solution of problem (1), and .

Proof. Let  denote the optimal value in the original primal problem (1), and let  denote
the optimal value in the dual problem (4). By the weak duality, we have
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Moreover, for all , the optimal solution  of dual problem (4) satisfies

(7)

Then

Substituting the last inequality into (6) yields the estimate

Consequently, . On the other hand, it follows from (6) that

. Therefore,

Since , we have

Expressing  from the last inequality gives the estimate from the condition of the theorem.

4. STOCHASTIC PROJECTED SUBGRADIENT METHOD

Consider the original problem (1), now assuming that the utility functions , , are con-
cave, but not strongly concave. In this case, dual problem (4) becomes nonsmooth. Accordingly, for its
solution, we propose the stochastic projected subgradient method. For the first time, the idea of using this
method for solving the given problem was proposed in [2].

Consider the probability space . Suppose that a sequence of independent random variables

 uniformly distributed on  is defined on , i.e.,

If there is an oracle producing the stochastic subgradient of the dual function , i.e.,

then

Algorithm 2. Primal-Dual Stochastic Projected Subgradient Method (PDSPSGM), Version 1

Input:  , are concave utility functions for each user, and  is the step of the method.
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4:

5:

6:

7: end for

8: return 

Therefore, the stochastic subgradient is an unbiased estimator of the subgradient.
An optimal solution of problem (2) is sought using PDSPSGM. We describe two versions of this

method (see Algorithms 2 and 3). Algorithm 2 relies on a complete model of reconstructing the
vector  at every iteration. However, the computation of  is nearly equivalent in complexity to the
computation of a complete subgradient of . Therefore, the basic algorithm is Algorithm 3, in which
the vector  is reconstructed using an incomplete stochastic model, which means that only one com-
ponent of the vector  is updated at every iteration step, while the others remain unchanged. In the
proof of the convergence theorem, we first establish the convergence estimate for Algorithm 2 and then
show that the approximate solution of the primal problem produced by Algorithm 3 is close in accuracy
to the solution obtained using Algorithm 2.

Algorithm 3. Primal-Dual Stochastic Projected Subgradient Method (PDSPSGM), Version 2

Input:  , are concave utility functions for each user, and  is the step of the method.

1:
2: for 

3: Compute 

4:

5: ,  for 

6:

7: end for

8: return 

4.1. Distributed Method
Let us describe how the distributed version of the stochastic projected subgradient method can be

applied for solving the problem under consideration.
The process occurring at the th iteration for link  is as follows:
1. Given the information received from the links after the preceding iteration with index , the ran-

dom user  transmits data at the optimal rate

where, by the definition of the matrix  the information required for the user is only from the links used
by the user.

2. The link  computes the price for the next iteration based on the reaction of this user:

Here,  only for users employing link  Therefore, the price changes only for actual links of the user
transmitting data.
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Remark 2. The main advantage of this method is that the link changes the price relying only on the
reactions of a single user, which makes the problem formulation much closer to the situation occurring in
actual networks, where users do not transmit data simultaneously.

4.2. Estimation of the Convergence Rate of the Stochastic Projected Subgradient Method
Before proving the main theorem on convergence rate estimates for the proposed methods, we state the

necessary assumptions for the problem under study. Assume that there exists a positive constant
 such that

(8)

This assumption holds, since the data transmission rate  is bounded and the capacity vector  is bounded
as well in view of the physical considerations. Therefore, by its definition, the stochastic subgradient is also
bounded.

Additionally, we assume that

where  is a positive numerical constant and the order of dependence on  and  is the same as for .
To estimate the convergence rate of Algorithm 3, it is necessary to assume that , are

Lipschitz continuous functions with constant . Then  is a Lipschitz continuous function with a
constant :

where . It may happen that  is a Lipschitz continuous function everywhere, except, for
instance, the point . An example of such a function is , which is one of the most widespread
utility functions. However, by the specific features of the problem, there always exist  and 
such that  and . Then the problem can be solved on the compact set

, and the considered function  becomes Lipschitz continu-
ous on . In the general case, a concave utility function  is Lipschitz continuous on a compact set
lying in the relative interior of the domain of .

Suppose that

where  is a positive numerical constant and

Below is the key lemma necessary for obtaining convergence rate estimates for the residual in the con-
straints and the duality gap after running PDSPSGM.

Lemma 2. Suppose that Algorithm 3 starts at the initial point  with a step . Then, after performing
 iterations of Algorithm 3, with probability 1 – 4 ,
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 is a positive numerical constant, ,

,

and  is determined by the condition .
The proof of the lemma can be found in the Appendix.
Now we formulate a theorem on the convergence rate estimate for Algorithm 3.

Theorem 2. Suppose that Algorithm 3 starts at the initial point  with step . Define

Then, after performing

iterations of Algorithm 3, with probability 1 – 4 ,

where  and  is an optimal solution of problem (1).

Proof. The beginning of the proof is the same as for Theorem 1, but we use the estimate from Lemma 2.

As a result, for the step , we obtain

moreover, up to constants,  and . Next, we find  for which the esti-
mate becomes less than .

We introduce the following notation:

It is necessary to obtain the minimum estimate on the iteration number  required for achieving the pre-
scribed accuracy . For , we obtain

(9)
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Substituting  recursively, we derive from (9) the complexity bound

For , we assume that

Since the minimum  is needed, replacing the last inequality with equality and solving the resulting
equation, we obtain

By analogy with the case , this equality yields the estimate

The worst of the complexity bounds for  and  is the estimate from the condition of the
theorem.

5. ELLIPSOID METHOD
In this section, the original problem (1) is solved by applying the ellipsoid method [25]. This method

can be used when the dual problem has a low dimension ( ) or when high accuracy of the solution is
required. The method is primal-dual, i.e., the solution of the primal problem can be recovered from the
solution of the dual problem.

Consider the original problem (1) and its dual (2). As in the preceding section, the functions ,
, are assumed to be concave, but not strongly concave. Additionally, we assume that the solution

of the dual problem lies in the Euclidean ball of radius  centered at the origin, i.e., . As an initial

point of the method, we use the zero vector . The problem is solved on the set

Let us describe the ellipsoid method (Algorithm 4), which is used to solve the dual problem.

Algorithm 4. Ellipsoid Method

Input: , are concave utility functions
1: ,  is the identity matrix
2: for 

3: Compute 

4:

5:

6:

7:

8: end for

9: return 
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To reconstruct the solution of the primal problem from the solution of the dual one, it is necessary to
determine the accuracy certificate  for the ellipsoid method. Recall that the accuracy certificate is a
sequence of weights  such that

In our case, the accuracy certificate is constructed in the course of running the ellipsoid method (see
Algorithm 5); its general scheme can be described as follows [26].

1. Find the “narrowest strip” containing the ellipsoid  remaining after iteration , i.e., a vector 
such that the following inequality holds on :

(10)

For the ellipsoid method, all  are represented in the form

Then, to solve (10), we need to perform a singular value decomposition  where  and  are
orthogonal matrices and  is a diagonal matrix with positive diagonal elements. Next, the desired vector
is determined as , where  is the index of the smallest diagonal element of ,  is the

value of this element, and  are the vectors of the standard basis.

2. For the vectors  and , find expansions of the form

their existence follows from Proposition 4.1 in [26]. This step is described by Steps 6–13 in Algorithm 5
(see below).

3. From the expansion coefficients  and  of the vectors  and , respectively, derive expressions
for , where

Expansion coefficients are determined only for feasible points obtained in the course of running Algo-
rithm 5.

Algorithm 5. Construction of the Accuracy Certificate for the Ellipsoid Method

Input:  is the number of the iteration at which the accuracy certificate is computed, and

 is the work protocol of the ellipsoid method after  iterations

1: if  then
2:  for all 
3:
4: otherwise

5:
6:  
7: for 

8:
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9:

10:

11:

12:
13: end for

14:  

15: end if

16: return 

Remark 3. In contrast to FGM and the stochastic projected subgradient method, the computation of
Steps 4–6 of Algorithm 4 in the ellipsoid method requires information about all gradient components, i.e.,
information from all users. Accordingly, it is necessary to have a common center for all links that collects
information from them and performs these computations.

An estimate for the convergence rate of the ellipsoid method for the problem under study is provided
by the following result.

Theorem 3 (see [26]). Suppose that Algorithm 4 starts from the initial ball  and
the accuracy certificate  is produced by Algorithm 5. Then, after performing

(11)

iterations, it is true that

where

The proof of this theorem can be found in the Appendix.

6. REGULARIZATION OF THE DUAL PROBLEM
In previous sections, we considered primal-dual methods for solving the dual problem. However, there

is a standard approach in which the solution of the primal problem can be recovered from the solution of
the dual problem without using primal-dual methods. The key idea of this approach is a regularization of
the dual problem such that the resulting regularized problem is strongly convex. In what follows, we
describe this approach in detail and state lemmas relating the solutions of the primal and dual problems.

Functional (2) is regularized in the sense of Tikhonov:

and, instead of problem (4), we solve the regularized problem

An optimal parameter  will be specified later. As in Section 5, we assume that the problem is solved on
the set

For the resulting regularized function, we formulate the following lemma on the smoothness of the regu-
larized problem.
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Lemma 3. Suppose that the function  is -smooth. Then the regularized function  is -smooth,
i.e., for any , ,

(12)

Proof. The gradient of the regularized function is given by

Therefore, we have

By Proposition 2, this estimate implies (12).
Additionally, to estimate the convergence of the algorithm for the primal problem, we need the follow-

ing auxiliary lemma concerning the relationship between the gradient estimate for the dual problem and
convergence estimates with respect to the function and the residual in the constraint for the primal prob-
lem.

Lemma 4 (see [10]). Let  be a solution of primal problem (1). Then

(13)

(14)

where  is defined by (3).
Proof. By virtue of (3), we have

whence

Since , it is true that

Combining this inequality with the relation  yields (13).
Furthermore, estimate (14) follows from

Additionally, we need the following result concerning convergence with respect to the gradient of the reg-
ularized function.

Lemma 5. Let  be a solution of the regularized dual problem. Then

The proof follows immediately from Lemma 3 and the relation

We have formulated the lemmas necessary for the regularized problem. An example of applying this
approach is considered in the next section.

7. RANDOM GRADIENT EXTRAPOLATION METHOD
Consider the random gradient extrapolation method [27]. Note that this method does not require

updating the gradient at every iteration step. It is necessary to update only one of its components at every
iteration, which considerably reduces the computations, especially for large-scale problems. Since this
method is not primal-dual, Algorithm 6 has to be applied to the regularized problem.
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The parameters , , , and  are specified as

(15)

(16)

7.1. Distributed Method
This section presents a distributed version of the considered method. By way of introduction, we note

that the vectors  are stored by the corresponding users and influence the formation of optimal
data traffic for the corresponding user. As was noted in the description of the distributed FGM, the opti-
mal traffic for a user is influenced only by the prices of the links through which this user exchanges pack-
ets. Therefore, we can assume that the only nonzero components in the vector  are those whose indices
coincide with the indices of the used links.

Algorithm 6. Random Gradient Extrapolation Method (RGEM)

Input: Parameters , , , 

1:

2: , 
3:
4: for 
5: Choose  at random from the set  uniformly over all values

6:  

7:

8:

9:

10: , 
11:

12:

13: , 
14: end for

15:

16: return 

Let us describe the distributed algorithm at the th iteration.
1. Using information collected from the users at the preceding iteration, link  computes

Note that, by the definition of the matrix  link  needs information only from the users exchanging
packets through this link.

2. The price of link  changes according to the rule
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3. One of the users, , reacts to the price change and stores the local price vector

while the local prices for the other users remain unchanged, i.e., .

4. The user  computes

and transmits this information to the used links.
5. Link  updates the information for the user :

This information is updated by the link only if the user  exchanges packets through it.

7.2. Estimation of the Convergence Rate of RGEM
Following Section 3, we consider problem (2) with -strongly concave cost functions

. Recall that, since the cost functions are strongly concave, the dual problem (4) is

smooth with Lipschitz constant .

To estimate the convergence rate of the method, we need the estimate for the residual with respect to
the argument from Theorem 2.1 in [27], namely,

(17)

where  and .

By using (17), it is possible to prove the following convergence estimate theorem for the method as
applied to problem (11).

Theorem 4. Suppose that the regularized dual problem (11) is solved by applying RGEM with parameters (15),

(16), and  and with

iterations, where . Then

Proof. Lemma 4 implies estimate (13) for the residual with respect to the constraints and estimate (14)
for the residual with respect to the objective function. By the assumption , we have

(18)

(19)

where . Combining Lemma 5 with inequality (17) yields the following estimate for
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Let us estimate . The function  with a Lipschitz continuous gradient satisfies the inequality

Since , we obtain

Suppose that  is chosen so that . Then . It follows that

Assume that . Then, by virtue of (18) and (19), it is true that

whence

Taking into account

we obtain the following estimate for the number of iterations:

where .

Remark 4. The complexity bound for Algorithm 6 can also be represented in the form

, where the logarithmic factor appears due to the necessity of regularization of
the dual problem. At every iteration, only one component of the user reaction vector to changed prices is
computed; accordingly, the arithmetic complexity of the operation is better than that in the case of com-
puting all components of these vectors. For FGM, the assumptions made about the objective function are
similar, but, since the complete gradient has to be computed at every iteration step, the complexity bound

for the algorithm is . Thus, although the theoretical convergence estimate for RGEM has the
same order as for FGM, in practice the gain is obtained due to the cheaper computations within a single
iteration.

8. NUMERICAL EXPERIMENTS
The software code for numerical experiments was written in Python 3.6 and C++14. The source code

for experiments and the methods considered in this paper is available at https://github.com/dmivilen-
sky/network-resource-allocation. The running time was measured on a computer with a 2-core Intel Core
i5-5250U 1.6 GHz processor and 8 GB RAM.

8.1. Strongly Convex (Quadratic) Utility Functions
Consider problem (1) for utility functions of the form
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Table 1. Comparison of the number of iterations and the running time of FGM and RGEM for strongly convex
(quadratic) utility functions

Network
FGM RGEM

iterations time iterations time

, , 350 24.5 s 3000 21.1 s
, , 380 42.7 s 6700 36.9 s

, , 400 150.0 s 7800 132.6 s
, , 1070 374.5 s 9180 283.7 s
, , 417 175.1 s 8200 164.0 s

, , 421 218.9 s 8600 206.4 s
, , 427 290.3 s 9200 276.0 s
, , 1120 761.6 s 10130 638.2 s

= 2m = 1500n −ε = 210
= 5m = 1500n −ε = 210
= 70m = 5000n −ε = 210
= 70m = 5000n −ε = 310
= 100m = 5000n −ε = 210
= 70m = 7000n −ε = 210
= 100m = 7000n −ε = 210
= 100m = 7000n −ε = 310
where  are independent identically distributed random variables. Then problem (3) can be solved explic-
itly:

For a small number of users ( ), the link capacities are chosen identical (in this case,
), and the demand for data transmission is uniform (  for any ). For a larger number

of users, the capacity vector is generated at random, so that . The elements of the demand
matrix are also chosen randomly and independently, so that  with probability  and 
with probability .

Table 1 presents the number of iterations and the running times of the fast gradient method (FGM)
and the random gradient extrapolation method (RGEM) for various network configurations (with

 links), various numbers of users , and various values of the required accuracy . The cases in which
RGEM converges to the solution faster than FGM, despite the larger number of iterations than in FGM,
are highlighted in the table. Indeed, for , RGEM requires fewer queries for the optimal solution

 from users than in other algorithms, since a query at one RGEM iteration is sent to only one random
user.

8.2. Convex (Logarithmic) Utility Functions

Consider the performance of the stochastic subgradient method (Algorithm 2) and the ellipsoid
method (Algorithm 4) for the utility function

In this case, an explicit solution of problem (3) is given by

(the operation  as applied to a vector is understood elementwise). For a small number of users
( ), the link capacities are chosen identical (in this case, ) and the demand for data
transmission is uniform (  for any ). For a larger number of users, the capacity vector is randomly
generated, so that . The elements of the demand matrix are also chosen randomly and inde-
pendently, so that  with probability  and  with probability .

Table 2 presents the number of iterations and the running times of the stochastic subgradient method
(SGM) and the ellipsoid method for various network configurations, various numbers of users, and vari-
ous values of the required accuracy. The cases in which SGM converges to the solution faster than the
ellipsoid method are highlighted in the table.
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Table 2. Comparison of the number of iterations and the running time of the stochastic subgradient method and the
ellipsoid method for convex (logarithmic) utility functions

Network
Ellipsoid method SGM

iterations time iterations time

, , 40 0.02 s 2000 0.2 s
, , 85 0.06 s 2500 0.3 s

, , 120 1.9 s 4000 1.3 s
, , 800 5.4 s 9020 2.4 s
, , 300 9.0 s 5000 3.1 s

, , 250 8.7 s 5590 5.5 s
, , 380 19.0 s 6480 10.8 s
, , 1830 91.5 s 17970 30.6 s

= 2m = 1500n −ε = 210
= 5m = 1500n −ε = 210
= 70m = 5000n −ε = 210
= 70m = 5000n −ε = 310
= 100m = 5000n −ε = 210
= 70m = 7000n −ε = 210
= 100m = 7000n −ε = 210
= 100m = 7000n −ε = 310
Note that, as in RGEM, only one component of the user reaction vector  to established prices has
to be computed at every iteration in SGM. Thus, when the number of iterations of the method is large, the
number of computed components  is smaller than in other algorithms, for example, in the ellipsoid
method, and the same is true of the communication complexity in the case of distributed implementation.

9. CONCLUSIONS
To conclude, we note some possible directions of development of this work and brief ly describe suit-

able methods without detailed analysis of their convergence estimates.
In Section 5, as applied to low-dimensional problems, we considered the ellipsoid method, which is

primal-dual. There are other methods that are highly accurate and well suited for low-dimensional prob-
lems. An example is Vaidya’s cutting plane method [28]. However, to recover the solution of the primal
problem when the dual one is solved using Vaidya’s method, we need convergence in the gradient norm
for the dual problem. For this purpose, the dual problem has to be smooth, which is ensured by the strong
convexity of the objective function in the primal problem (Proposition 2). If the primal problem is not
strongly convex, it can be regularized as described in Section 6, but the convergence estimate will then
degrade logarithmically.

Additionally, if the dual problem is sufficiently smooth, it can be solved by applying high-order meth-
ods [29, 30]. The steps of these methods can be computed on a distributed basis, since the given problem
makes use of a centralized architecture in terms of the interaction of a link and the users using it. Note,
however, that high-order optimal methods that require linesearch and do not have the primal-dual prop-
erty apply to only preliminarily regularized dual problems.

Another direction is represented by variance reduced methods (see, e.g., [31, 32]), which are interme-
diate between the stochastic gradient method and FGM. However, these methods are not primal-dual
either, so they apply to preliminarily regularized dual problems.

Of special interest are the Hogwild! method [33] and minibatching techniques. In this case, data are
sent out not by all users simultaneously, but by more than one of them, in contrast to stochastic methods.
By setting the size of the batch equal to the number of users transmitting data at a time, one can take into
account the specific features of actual networks.

APPENDIX
Auxiliary Results

Below are some lemmas from other works that are used in the proofs. Additionally, we prove assertions
concerning the properties of the dual function that are used in the proof of the main theorems.

Lemma 6 (see [34], Lemma 2). For a random vector , the following assertions are equivalent up to
a constant multiplying :

1. Tails:  .

λ( )x

λ( )t
kx

ξ ∈ nR
σ

{ }  γξ ≥ γ ≤ − σ 
P

2

2 22 exp
2

∀γ ≥ 0
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2. Moments:  for any positive integer .

3. Light-tail assumption: .

Lemma 7 (see [34, Corollary 8]). Let  be a sequence of random vectors from  such that for
 and any ,

where  belongs to  for all  Let  Then there exists a constant  such
that, for any fixed  and , with probability 

Lemma 8 (see [35, corollary to Theorem 2.1, case (ii)]). Suppose that a sequence  of random vectors
from  satisfies the condition

and let . Assume that the sequence  satisfies the light-tail assumption

where  are positive numbers. Then, for all ,

Proof of Proposition 2. The dual function is represented in the form

Proposition 1 implies that

Define

The necessary maximum conditions of the first order are written as
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Adding these inequalities yields

Since  is strongly concave, for any  and , , we have

whence

Then the following estimate can be obtained for all gradient components :

The matrix , in view of its structure, satisfies the estimate . Then the gradient of the dual func-
tion satisfies

Proof of Lemma 1. First, we state and prove a technical lemma.

Define  and consider the sequences

and

where  is the sequence of points generated by Algorithm 1.
Lemma 9. After executing  steps of Algorithm 1, it is true that

(A.20)

Proof. Inequality (A.20) is proved by induction. At , (A.20) is true. Indeed,

where  holds, since , while  holds, since the function  has a Lipschitz continuous

gradient (see Proposition 2 and [36, Lemma 1.2.3]). Thus, .

Assume that (A.20) holds for :
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Let us prove that (A.20) holds for . Indeed, we have
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where  holds, since the prox-function  is strongly convex and in view of the properties of the

extremum at the point ;  follows from (A.21); and  holds in view of the convexity of the func-
tion .

Since the FGM coefficients  and  are related by the equalities  and

, the relation  from Algorithm 1 can be rewritten as

Using the last relations, we can make the following transformations:

Then

(A.23)

After replacing the last expression in (A.22) by (A.23), we can use an extended version of the Fenchel
inequality for conjugate functions [37], namely,

where  is a finite-dimensional real vector space,  is the space of linear functions on  (dual space), and

the norm in the dual space is given by . In our case, , ,

. Therefore,

(A.24)

To complete the proof of the lemma, we need to show that  is smaller than the right-hand side
of inequality (A.24).

Since the function  is -smooth (see Proposition 2),

Multiplying both sides of the resulting inequality by  yields

Since the FGM coefficients satisfy , we obtain

(A.25)
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Therefore, by virtue of (A.24) and (A.25), , as required.
Proof of Lemma 1. Define the set

where  is defined by the inequalities

All  belong to , since

where the second inequality was obtained taking into account that  for .

The last inequality can be proved as follows. For any , by Lemma 9 and the strong convexity of
the function  with a constant , it is true that

(A.26)

Since the function  is convex, the last expression in (A.26) can be estimated from above as

. Then, for ,

Therefore,

(A.27)

Since  in Algorithm 1 is determined by a gradient projection step for a convex function , the
sequence of points , , generated by the algorithm is bounded (the proof of this fact can be
found, e.g., in [38, Lemma 9.17, p. 183] or in [28, p. 265]):

(A.28)

Furthermore,

Combining this inequality with (A.27) and (A.28) yields the required result:
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where ① holds, since

(A.29)

Applying the definitions of the dual objective function  (see (2)) and of its gradient  (see Prop-
osition 1) yields

where the last the inequality holds, since the utility functions are concave.
Thus,

which yields estimate (6).
Proof of Lemma 2. First, we prove several auxiliary technical lemmas.

Lemma 10. Let , and  be nonnegative numbers such that, for any 
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where  is a positive constant satisfying , i.e., for example, it is possible to use

Proof. Relation (A.31) is proved by induction. For , this inequality holds, since . Assuming
that (A.31) holds for all  we prove that it holds for  as well. Indeed,
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Then, with probability , the inequalities

hold for all  simultaneously, where  is a positive constant,

, , and

Proof. The Cauchy–Schwarz inequality is applied to the second term on the right-hand side of (A.32):
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By Theorem 2.1 from [35], we have
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a unified  for the sequence , , we obtain estimate (A.36).
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Applying this estimate recursively, we conclude that, with probability ,

Next, consider the sequence of random variables . Note that 

. Then, using the Cauchy–Schwarz inequality yields

Define . Then, with probability , it is true that

for all  simultaneously, where

Using Corollary 8 from [34] for , we see that, for any  with probability ,

(A.37)

where  is a constant independent of  or .
Combining the resulting estimates, we conclude that, with probability , estimate (A.37) holds for
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Taking into account the choice of , with probability , the estimate
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for all  simultaneously, where

It follows that, with probability , the estimate

holds for all  simultaneously.

Proof of Lemma 2. For 

i.e.,

(A.39)

Adding  to both sides of inequality (A.39), multiplying it by , and summing the result from  to
, we obtain
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Define . By Theorem 2.1 from [35],

(A.44)

Using Lemma 2 from [34], we obtain

where  depends only on . Using the new notation and (8), we have
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Note that . Then we have

It follows that

The definition of the norm implies that

(A.46)

Using (A.44), we conclude that, with probability ,
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Substituting the values of  and  into the expression  in (A.46)

yields
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By Theorem 2.1 in [35], for all , it is true that

Setting , we conclude that, with probability ,

Then, with probability ,

Note that
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Since the function  is Lipschitz continuous, we obtain
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It follows that

which can be rewritten as

(A.51)

Next, by virtue of (3), for each  and , we have

Multiplying the th inequality by , summing the result over all indices from , and taking into account
that  and the functions , , are concave, we obtain

where . Using estimate (A.51), we derive

(A.52)

Since  and, hence, , whence , it follows from (A.51) that

. Furthermore, since, by the definition of ,  for all
, we obtain

Combining this relation with (A.52) yields . Estimate (11) for the number of iterations
of the method follows from the continued inequality
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