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Abstract—Optimal control problems with terminal conditions without control constraints, problems
with a free right trajectory end and with control constraints, and optimization problems with param-
eters and parameter and control constraints are considered. For each of these classes of problems,
multimethod algorithms involving numerical optimal control methods that are most efficient for the
given class are designed. The performance of the proposed algorithms is demonstrated using numeri-
cal solutions of complicated real-world problems.
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INTRODUCTION
According to the multimethod approach for solving optimal control problems, several iterative optimi-

zation methods are used in parallel to find the solution of the same problem. The basic difficulty arising
when the multimethod approach is applied to the numerical solution of optimal control problems is asso-
ciated with choosing an efficient method for continuing the optimization process after the convergence of
the current method has worsened. Modern operating systems make it possible to organize parallel com-
putational threads for parallel computations based on several methods. Each thread can implement an
iterative process for a single optimization method, and a problem can be solved simultaneously by apply-
ing several methods. On multiprocessor computers, it is more convenient to implement each method on
an individual processor. After the current approximation is found, all the methods are estimated, for
example, in terms of the increment of the functional, the most efficient of them is chosen to continue the
optimization process, and the approximation produced by this method is sent out to the other methods as
an initial approximation for executing the next iteration.

Continuing the iterative process until obtaining an approximation that satisfies the optimality criterion
with prescribed accuracy, we find an approximate solution of the problem. This solution is found by a
multimethod algorithm consisting of a sequence of steps of different methods used in the optimization
process to accelerate its convergence. For example, when three methods are used in parallel (see Fig. 1),
the best approximation is determined by the maximum increment of the functional produced by each of
them at a given iteration step:

Then this approximation is sent out to all three methods for executing the next iteration: ,
.

Thus, the multimethod approach for solving real-world optimal control problems is implemented in
the form of parallel iterative optimization processes with the choice of the best approximation; this
approach yields solutions with automatic application of different optimization methods, thus significantly
enhancing the efficiency and reliability of numerical solutions found with prescribed accuracy in optimal
control applications.
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Fig. 1. Schematic of executing the th iteration in a multimethod algorithm consisting of three methods: , ,
and .

uk

M1

M2

M3

u1
k+1

u2
k+1 ui0 � uk+1ui0

M1

M2

M3u3
k+1

+( 1)k 1M 2M

3M
1. PROBLEM WITHOUT CONTROL CONSTRAINTS
First, we consider an optimal control problem (see [1]) with equality constraints and without control

constraints:

(1.1)

(1.2)

(1.3)
where

The gradients of functionals (1.2), (1.3) are given by

(1.4)

where  is the Pontryagin function from [1] and  is the solu-
tion of the adjoint system

(1.5)
Consider a numerical method for solving problem (1.1)–(1.3) based on applying the first and second vari-
ations. At the first phase of this method, the iterative process is implemented with strongly violated termi-
nal conditions and the penalty functional to be minimized is

(1.6)

where

here,  and  , are the solutions of the additional equations (to system (1.1))

After the iteration at the first phase ceases to converge, we pass to the second phase of the method, at
which the original functional (1.2) is minimized and the variation  is constructed taking into account
the linearized boundary conditions.

Now suppose that 
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and  and  are the solutions of systems (1.1) and (1.7) found for a given control . Then the prob-
lem of constructing a suitable variation  is stated in the form of the linear-quadratic problem

(1.8)

(1.9)

Here, , , , and  are , , , and  matrices of partial derivatives of  computed
for the control  and the trajectories , .

For this problem, the Hamiltonian is defined as

and the adjoint system is given by

(1.10)

The condition  is used to find the solution of variational problem (1.8), (1.9):

(1.11)
Substituting this formula into Eqs. (1.9) and (1.10) yields the linear two-point boundary value problem

(1.12)

(1.13)
where

(1.14)

A standard method for solving the problem consists in applying the Cauchy formula, which relates the
boundary conditions with the help of the  transition matrix :

where  is the solution of the Cauchy problem for system (1.12), (1.13) with  and
.

After splitting the matrix  into four equal blocks and taking into account the equality ,
the last equation can be rewritten as

(1.15)

Substituting boundary condition (1.14) into system (1.15), we obtain the following equation for determin-
ing the initial values :

(1.16)

The blocks  and  can be computed by integrating the matrix equation

where  is the  coefficient matrix of system (1.12), (1.13).
Another method, which requires half as much CPU time, can be described as follows.

Setting  and   (where  are the vectors of the standard orthonormal basis),
we integrate the -dimensional system (1.12), (1.13)  times. Each of the vectors obtained by the integra-
tion is used as the th column of the matrix ; as a result, we obtain its blocks  and .
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180 TYATYUSHKIN
Solving the system of linear algebraic equations (1.16) yields a vector . Next, integrating system
(1.12), (1.13) in direct time and applying formula (1.11) at the solution ( ), we find the desired
variation . Formula (1.11) is applicable only if the matrix  is sufficiently well conditioned. To pre-
serve the numerical stability of the method in the general case, the matrix  is replaced in practice by

, where  is a positive definite matrix. The found variation is used to construct a new approxi-
mation , where . The iterative process of the first phase of the

method terminates when  . Since we minimized the penalty functional (1.6), the
required accuracy of satisfying the boundary conditions may not be attained. Then we pass to the second
phase, which solves problem (1.12), (1.13) taking into account the linearized boundary conditions (1.3).

Assume that, after introducing additional equations into system (1.1), boundary conditions (1.3) are
reduced to the form

(1.17)

or , where  and the functional is given by

The boundary conditions (1.17) are linearizes around the point :

(1.18)

Some of the components , of the vector  are related by equalities (1.18), while the
remaining  free components have to satisfy the terminal conditions

(1.19)

Splitting the above-introduced matrices  and  into blocks according to the components of the vec-
tors  and  we rewrite Eqs. (1.15) as

Substituting boundary conditions (1.18), (1.19) into these equations gives a system of linear algebraic
equations for the initial value vector 

(1.20)

where

Therefore, the variation  constructed at the solution  of system (1.12), (1.13) with initial
values  satisfies boundary conditions (1.17) in the linear approximation and simultaneously mini-
mizes the quadratic approximation of functional (1.2).

Algorithm 1
Let us describe the numerical scheme including both phases of the described method. The first phase

consists of the following steps.

Step 1. Given the control , integrate Eq. (1.1) and store the trajectory  at integration nodes.

Step 2. Integrate Eq. (1.7) in reverse time and store the solution  at integration nodes.
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Fig. 2. Decrease in the functional at iterations of the methods , , and l in the multimethod algorithm.
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Step 3. With the coefficients computed using the control  and the solutions , , integrate
system (1.12), (1.13)  times with initial conditions

Set the th columns of the matrix  equal to  .

Step 4. Use the blocks  and  of the matrix  to form system (1.16) and find its solution .

Step 5. Integrate system (1.12), (1.13) with  and , compute the variation 
at each integration node by applying formula (1.11), and store the results.

Step 6. Find the parameter  by solving  Cauchy problems (1.1) with the use

of linesearch.

Step 7. Construct the new approximation   If , then
go to Step 1 with ; otherwise, go to the second phase of the algorithm.

The basic difference of the second phase is that the vector  is determined by solving system (1.20)
rather than system (1.16). The second phase consists of the same Steps 1–7, except for Step 4, where sys-
tem (1.20) is formed instead of (1.16), and except for Step 2, where Eq. (1.5) with  is integrated
instead of (1.7).

In fact, the second phase of Algorithm 1 is a version of the quasilinearization method (see [2]), which
converges quadratically, but requires a rather good initial approximation, which is provided by the first
phase of the algorithm. Thus, the most efficient algorithm is one in which the sequence of approximations
is produced by two optimization methods if we are able to determine a suitable moment of switching
between them.

Graphically, the decrease in the functional  at iterations of the multimethod algorithm is depicted
by the polygonal line made up of the plots of the constituent methods. Figure 2 demonstrates the perfor-
mance of the multimethod algorithm in the case of two methods,  and . The plots present the
decrease in the functional at iterations of these methods. Then these plots are combined to show the
decrease in the functional at iterations of the multimethod algorithm (see the curve , where the seg-
ment  is obtained by parallel translation of the curve ). According to Fig. 2, a zero value of the func-
tional is reached after  iterations of the method  and  iterations of the method . The multi-
method algorithm follows the method  until the th iteration (curve ) and then switches to the
method  (curve ), since, starting at , the rate of decaying the functional in  is higher. As a result,
a zero value of the functional in the multimethod algorithm is reached after  iterations, where  is
much fewer than the number of iterations required in each of the methods  and .
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182 TYATYUSHKIN
2. PROBLEMS WITH CONTROL CONSTRAINTS
To solve the practically most important class of problems with control constraints

(2.1)

where  is a compact subset of , we construct multimethod algorithms based on the maximum princi-
ple (see [3, 4]) and on gradient-type methods (see [5–8]).

Assume that introducing a penalty functional yields a problem with a free right end. Suppose that the
solution  of Eq. (1.1) is found for an admissible control  . Solving Eq. (1.5) with

  , we find  and compute

(2.2)

Define the scalar function

(2.3)
which, for , obviously satisfies the inequality

(2.4)

Let  be a maximizer of the function :

(2.5)

Then the first-order necessary condition (the maximum principle [1, 2]) is formulated as follows: if 
is an optimal control in problem (1.2), (1.1), (2.1), then

(2.6)

Assume that condition (2.6) does not hold for the given  and found :

Then we can find a new control for which the value of functional (1.2) is less than .

The interval  is constructed according to the following rule:

(2.7)

where  and  are the nearest left and right discontinuity points of the function . This interval
with measure   , has the following properties:

(i)  as ;
(ii) as , the interval contracts to the point ;

(iii) for all , the function  is continuous on .
Next, we find the parameter

(2.8)

where

(2.9)

and determine the new approximation

(2.10)
The numerical scheme for the described method can be described as follows. Its convergence was proved
in [4].
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Algorithm 2

Step 1. Specify a boundary control ; set .

Step 2. Integrate system (1.1) with  in direct time and store  at integration nodes.
Step 3. Integrate adjoint system (1.5) in reverse time. Specifically, at each integration node, find and

store control (2.2), compute the value of the function , and determine the maximizer .

Step 4. If , then terminate the process. Otherwise, go to Step 5.
Step 5. Solve problem (2.8), (2.9), (2.7) by applying the linesearch procedure. Since control (2.9) is

equal to  at points  satisfying the inequality , the integration of system (1.1)
should start at the left node  nearest to , at which  was found at Step 2. Taking
into account the structure of control (2.9), the initial point can also be specified as the “largest” node

. Since the search for  involves repeated integrations of system (1.1), this
choice of the initial point can significantly reduce the time required for solving the problem.

Step 6. Given the found , the accuracy  of the computed , and the step size , if
 and , then reduce the interval  by setting  (  is the number of

reductions in ) and go to Step 5.

If , then set   and go to Step 2. Otherwise, terminate the iterative
process.

Since the iterations of the algorithm are performed in the class of piecewise constant controls, the opti-
mality condition (2.8) for the resulting control may not be satisfied with the prescribed accuracy (although
the value of  is sufficiently small). In contrast to gradient methods, this algorithm is also
applicable to optimal control problems in which the vector function  is not differentiable with
respect to  and the set  is not convex or even connected.

As was noted in [4, 8, 9], algorithms based on the maximum principle often lead to a control stuck on
the boundary, which deteriorate their convergence. This effect is caused by the fact that, in certain systems
(e.g., in control-linear ones), the solution of problem (1.2) is reached on the boundary and, hence, control
approximations of the form (2.9), (2.10) also have boundary values. With this approximation, the conver-
gence of the algorithm at the last iterations is ensured by a very small step size, which leads to excessive
CPU times. The convergence of the iterative process in this situation can often be recovered or improved
by applying a simpler technique, namely, by constructing a convex combination of the controls 
and :

(2.11)

on the interval .
The ceasing of convergence can also be caused by the fact that the integration nodes remaining within

the reduced interval  are too few to construct a control variation for which the functional increment is
greater (in absolute value) than the integration errors.

Consider a numerical method in which a new approximation is specified as a control generated using
the maximum principle on the set

(2.12)

The set  includes all points  of violation of the maximum principle and consists of several disjoint
intervals if the function  has several extrema. By varying , it is possible to find  for which
control (2.9) minimizes the functional. For many problems, the convergence of Algorithm 2 is improved
when interval (2.7) is replaced by set (2.12). When the maximum of  is reached on a set  of
positive measure, the algorithm may cease to converge. Then the iterations of Algorithm 2 are continued
with  given by formula (2.7).

Finally, the numerical scheme for constructing a new approximation can be described as follows.
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Algorithm 3

Step 1. Integrate Eq. (1.1) with  and store the trajectory  at integration nodes.
Step 2. Integrate the adjoint system (1.5) in reverse time and, at each integration node, compute and

store the control  and the scalar function

Step 3. Find the point . If , then terminate the iterative process.

Step 4. Solve the linesearch problem . Specifically, for each  used in the line-
search procedure, integrate Eq. (1.1) starting at the node  where the inequality  holds for
the first time, and choose the control by using the formula

Step 5. If  and , then execute Step 5 of Algorithm 2, where  is given
by formula (2.7) and the first approximation is specified as .

Step 6. If the iteration of Algorithm 2 also does not improve the control , then, on the interval 
obtained at Step 4, perform an iteration of the conditional gradient method (2.11), where  is again deter-
mined using linesearch.

Step 7. If Steps 4–6 produce  or  for which the new control approximation ensures a smaller value
of the functional, then go to Step 1 (with ). Otherwise, terminate the iterative process.

Note that this algorithm, like the one described above, is intended for problems with control con-
straints and a free right end.

3. GENERAL OPTIMAL CONTROL PROBLEM WITH PARAMETERS
Now we consider a more general optimal control problem, namely, one with state constraints and a

right-hand side of the system depending not only on controls, but also on parameters. The initial values
of the system can also depend on parameters, and their choice usually ensures, for example, an optimal
“start” of the process.

Before solving this complicated problem, we first reduce it to a finite-dimensional one and then con-
struct a multimethod algorithm for finding an optimal control.

Consider a controlled process depending on parameters, namely,

(3.1)

with terminal conditions

(3.2)

and state constraints

(3.3)

The control and parameters obey the constraints

(3.4)

(3.5)

(3.6)

where the functions , are continuously differentiable with respect to  and piecewise contin-
uous in , while  is a continuously differentiable vector function. The functions determining condi-
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tions (3.1)–(3.3) satisfy the assumptions stated above; additionally, they are assumed to be continuously
differentiable with respect to the parameters.

The task is, among the controls and parameters satisfying constraints (3.4)–(3.6), to find ones that
ensure the fulfillment of conditions (3.3) for controlled process (3.1) and drive it to a state point where
conditions (3.2) hold with the prescribed accuracy and the functional

(3.7)
reaches its smallest value.

3.1. Reduction to a Finite-Dimensional Problem

To construct a finite-dimensional problem, on the given interval  we introduce a grid with nodes
 such that

(3.8)
This grid is allowed to be nonuniform.

The control functions , are sought only at nodes (3.8), while the intermediate values

, are obtained using the piecewise constant approximation

or the piecewise linear approximation

(3.9)
Then the finite-dimensional problem approximating problem (3.1)–(3.7) has the form

(3.10)

where

Note that the controlled process (3.1) in approximating problem (3.10) remains continuous and, in the
course of the computations, it is modeled by the numerical integration method with the required (suffi-
ciently high) accuracy.

3.2. Numerical Solution of the Finite-Dimensional Problem

With the help of the functions  and the adjoint system

the gradients of the functionals , are traditionally defined by the formulas

For each , the gradients of , can be computed in a similar manner:
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where  and   are the solutions of the adjoint system

with boundary conditions

We linearize the constraints in the approximating problem. The Jacobian matrix of the linearized con-
straints is made up of the gradients , and  . Since the right-hand sides and
initial values of system (3.1) depend additionally on parameters, we need to know the gradients of the
functionals , and  , with respect to these parameters (see [3, 8]):

(3.11)

(3.12)

(3.13)

Now suppose that  and the corresponding  have been found on grid (3.8) at the
th iteration of the outer method. To calculate the gradients with respect to the control , sys-

tem (3.10) is integrated  times from  to  with various initial conditions. Simultaneously, gradients
(3.11) are computed using quadrature rules for evaluating the integrals. Next, we find the gradients of the
functionals  . For this purpose, the Cauchy problem is solved  times for each node
of grid (3.8), i.e., the system is integrated  times on average on a half of the interval .

The resulting solutions are used to compute the components of the gradients , and
 . Taking into account the control approximation, their values are equal to

in the case of a piecewise constant approximation and to

(3.14)

in the case of piecewise linear approximation (3.9). Here,  is computed using formula (3.9) with
 .

The resulting values of the control gradients , and ,  , and the gradients
with respect to the parameters computed using formulas (3.11)–(3.13) make up the coefficient matrix of
the linearized constraints. It is supplemented with the block of elements  corresponding to the con-
trol constraints to become a matrix of special block structure, which is denoted by .
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3.3. Reduced Gradient Algorithm from [6]
After introducing vector notation for equalities (3.2)–(3.4), the augmented Lagrangian (see [7]) for

problem (3.1)–(3.7) is defined as

(3.15)

where

Next, constraints (3.2) and (3.3) are linearized at the th approximation:

(3.16)

(3.17)

Here,  and . Therefore, we have  constraints (3.16) and  con-
straints (3.17), which represent linearized  constraints (3.2) and (3.3) written in explicit form
(in terms of , , ); moreover, equalities (3.3) specified at each time  are replaced by  equalities
determined at nodes of grid (3.8).

Conditions (3.4) are also linearized:

(3.18)

where . The primal constraints on the control and the parameters remain unchanged:

(3.19)

(3.20)

For functional (3.15) with variables  determined by system (3.1) with a given , we consider
the finite-dimensional approximation

(3.21)

where

Functional (3.21), which is, in fact, a multivariable function, is minimized under linear constraints
(3.16)–(3.20) by applying the reduced gradient method (see [6]). Note that functional (3.21) assumes the
use of the original system (3.1) for computing the trajectory  for given parameters ,

 and control  , i.e., a complete model of the auxiliary problem is described by relations
(3.1) and (3.16)–(3.21).
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Let  denote the coefficient matrix of linear equations (3.16)–
(3.18),  be the vector of free terms of dimension , and  denote the vector of desired
variables ( ; ; ) of dimension . Then the problem under study can be written as

(3.22)

Problem (3.22) is solved by applying the reduced gradient method (see [6]), which differs from the simplex
method well-known in linear programming in that, in view of the nonlinearity of the objective function,
its successive approximations are not necessarily vertices of the linear constraint polyhedron, but may be
its interior points.

3.4. Projected Lagrangian Algorithm (see [6–9])

Now we describe the complete algorithm for solving the original problem (3.1)–(3.6).

Step 1. Given the control , integrate system (3.1) and store the state trajectory points

 at nodes of grid (3.8). Here,  is the iteration number (starting from ).
Linearize the constraints of problem (3.10) at the resulting solution and construct auxiliary problem

(3.16)–(3.21).
Step 2. Solve the auxiliary problem of minimizing the augmented Lagrangian (3.21) with linear con-

straints (3.16)–(3.20) by applying the reduced gradient method.

As a result, new approximations for the control , the parameters  and , and the

dual variables  and , are found.
Step 3. Check the stopping rule for the iterative process with respect to both primal and dual variables:

where

If at least one of these conditions is violated, then go to Step 1 to execute the new th iteration. If
these inequalities hold for the given , then terminate the iterative process and output the found values

, and  as an approximate solution of the optimal control problem.

4. NUMERICAL EXPERIMENTS: REAL-WORLD PROBLEMS WITH SOLUTIONS

Below are examples of applications related to the classes of optimization problems considered in Sec-
tions 1–3 with solutions found by applying the multimethod algorithms described in these sections.

4.1. Optimal Control of a Spherical Mobile Robot with Three-Dimensional Control Functions

The problem was formulated by M.M. Svinin and can be found in [10]. Consider a mobile spherical
robot moving in a plane. The robot consists of a shell with three engines (rotors) mounted on it. The
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dynamics of the robot in terms of contact coordinates is described by the system of ordinary differential
equations

where the state and control vectors are defined as

and , denote the angles of rotation of the engines.
The position of a point of contact on the plane is specified by the coordinates , while its coordi-

nates on the sphere are defined by the angles .
The matrix and vector quantities are defined as

and the vectors  are the columns of the matrix

The matrix of inertia of the system is defined as

where  is the total mass of the robot, while  and  denote the mass of the spherical shell and the mass
of a rotor, respectively.

The problem of optimal control of the spherical robot is to drive it from the point  to the point 

so as to minimize the control energy .

For example, let  and . Then the resulting solutions are phys-

ically feasible, and they are presented in Fig. 3. The constraints are satisfied up to  and the functional
value is .

4.2. Optimal Control of a Robotic Manipulator
The dynamics of a moving industrial robotic manipulator is described by the system of differential

equations
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Fig. 3. Controls and trajectories found for a mobile robot.
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where

For the considered robot model, , , , , , ,
, , and . The trajectory of motion is assumed to satisfy the constraints

 for  and  and  for .
The task is to find a control driving the system from the point  to the point

 over a minimum time 

Starting at the approximation , ,  , a solution was obtained for which
the constraint residuals did not exceed  and the functional value was 2.88. The optimal control and
the corresponding state coordinates are shown in Fig. 4.
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Fig. 4. Plots of the controls and state coordinates for the problem described in Subsection 4.2.
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4.3. Optimization of an Electric Power System (EPS)
A mathematical EPS model was developed at the Melentiev Energy Systems Institute of the Siberian

Branch of the Russian Academy of Science. It consists of a family of subsystems describing the generation
and consumption of electricity, which are combined in a unified system by electrical network equations.
For many years, this model has been successfully used to compute various operation modes of designed
EPSes. Consider a small EPS model consisting of  synchronous generators and  steam turbines. Each
synchronous machine is described by the Park–Gorev differential equations (without allowance for tran-
sient processes in the stator armature), which, after reducing them to the standard form, become

The dynamics of the steam turbines are governed by the equations

The state variables , are the generator rotor angle, slip, the transition emf components in the
longitudinal and transverse directions, and the field coil voltage for each . The control  changes
the setting of the velocity regulator to ensure a stable dynamic transition to the prescribed post-emergency
state after emergency load shedding. The right-hand sides of the equations also involve technical param-
eters of the generators and turbines, whose interpretations are omitted. The number of generators and tur-
bines is set equal to five. Thus, for , the number of differential equations is 35, i.e., .
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The electrical network model consists of algebraic equations for node voltages, which also involve the
state variables. These equations are usually set in complex variables, but, for the numerical solution, they
are rewritten in real variables. For example, in the experiment, the number of equations in complex vari-
ables was specified as , while the transition to real variables produced a system of 28 algebraic
equations:

where   and .
Additionally, the state and control constraints were specified as

The objective functional was a terminal state function for the system (at  s) that measures the devi-
ations of some of the state coordinates from prescribed values (e.g., power ratings).

The problem was solved numerically by applying the projected Lagrangian method. After performing
11 outer iterations, each involving about 20 inner iterations of the reduced gradient method, the given
equalities were satisfied up to  and all variables remained within the prescribed ranges. The resulting
optimal control ensured that the EPS reached the required operation mode in 10 s after the emergency
load shedding.

Conclusions. The multimethod computational technique implemented in the form of parallel iterative
optimization processes with the choice of the best approximation solves problems with automatic appli-
cation of different optimization methods, thus significantly enhancing the efficiency and reliability of
numerical solutions obtained in optimal control applications. Obtaining numerical solutions at the lowest
computational cost is important in the design of computer-controlled robotic and electric power systems.

CONCLUSIONS

Practice has shown that the sequence of approximations produced by a multimethod algorithm for
solving complicated control problems is based, as a rule, on several (three to five) numerical methods cho-
sen automatically according to a given criterion in the optimization process. The conducted numerical
experiments confirmed the efficiency of this approach as applied to real-world optimal control problems.
It was established that the multimethod approach is often the only technique available for obtaining
numerical solutions of complicated optimal control problems, since each of the methods taken separately
cease to converge before obtaining an optimal solution. Multimethod algorithms can be efficiently imple-
mented in practice relying on modern information technologies and multiprocessor computers. Based on
this approach, the software code implementing the multimethod technique for computing optimal control
and optimal parameters (see [9–12]) has been successfully used to solve complicated real-world optimal
control problems from various fields of science and engineering (see [10–14]). The use of an efficient
technique for control computation is especially important in real-time control systems, for example, in
control systems for high-maneuverability aircraft. For example, this software was used to solve a series of
optimal maneuvering problems in the design of the Su-57 jet fighter aircraft, which has the world’s highest
maneuverability (see [11]). It is also well known that the successful high-accurate landing of the Buran
space shuttle was ensured by onboard software for choosing an optimal initial approximation. Specifically,
the onboard computer chose a least cross-wind-dependent initial point for landing and calculated an opti-
mal glide path.
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