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Abstract—The applicability of a low-order monotone shock-capturing scheme to the simulation of the
laminar–turbulent transition is demonstrated. The laminar–turbulent transition is simulated in a
supersonic boundary layer over a f lat plate at a Mach number of 3. The numerical results are compared
with results of other authors based on low-dissipative schemes. The spectral characteristics of distur-
bances in the linear and nonlinear development regions, the structure of the transient f low, and aver-
aged boundary layer characteristics are compared.
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1. INTRODUCTION
Modern aircraft design relies on results of aerodynamic research. An experimental study is usually

associated with high financial costs of setting up and carrying out experiments in wind tunnels, while
resulting experimental data are limited. In contrast to experiments, numerical simulation of unsteady
compressible gas f lows allows one to study f lows over bodies of arbitrary configuration, to reveal the fine
structure of observed phenomena, and to obtain results that are difficult to produce experimentally. Sim-
ulation results are used to calculate aerodynamic and thermodynamic characteristics, such as the pressure,
friction, and heat transfer coefficients. The last characteristic is of crucial importance at high supersonic
and hypersonic f low speeds, in particular, when the boundary-layer f low undergoes turbulization and the
friction and heat transfer coefficients to the surface increase by several times.

Wind tunnel data on the position of the laminar–turbulent transition (LTT) vary, since they depend
on the background of disturbances in the f low through a particular tunnel. That is why the direct numer-
ical simulation of f lows in the LTT regime is of special value, since this background can be strictly con-
trolled. Unfortunately, for practically important regimes, the space and time costs of such simulations are
too high. High-performance multiprocessor computer clusters (supercomputers) make it possible to per-
form only local computations aimed at the study of linear and nonlinear mechanisms underlying LTT. The
computational costs can be reduced by applying numerical schemes of low order of accuracy.

Monotone shock-capturing schemes are dissipative. As a result, they are suitable for stable computa-
tion of f lows with shock waves, separation regions, boundary layers, and other f low features, taking into
account their interaction. Excessive dissipation leads to the numerical decay of small disturbances. How-
ever, the growth rate of disturbances in unstable boundary layers can noticeably exceed the effects associ-
ated with numerical dissipation. In this work, a monotone scheme of second-order accuracy in space and
time is successfully used to simulate LTT in a supersonic boundary layer over a f lat plate at a Mach number
of 3. The simulation results are compared with their counterparts produced by a much less dissipative
method [1] based on a fourth-order accurate scheme in the streamwise and normal directions and the
spectral method in the spanwise direction; the time stepping relies on the fourth-order Runge–Kutta
method. The present study was started in [2]. In contrast to [2], the spectral characteristics of disturbances
in the linear and nonlinear development regions and integral f low characteristics are compared in detail.
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2. FORMULATION OF THE PROBLEM
2.1. Brief Description of the Numerical Method

In this work, the solver HSFlow++ [3] is used for direct numerical simulation of f lows based on the
Navier–Stokes equations. The differential equations are written in a curvilinear coordinate system 
in dimensionless conservative form:

The equations are solved numerically in dimensionless variables. The Cartesian coordinates ,
, and  are normalized by the characteristic length ; the time , by the charac-

teristic time ; the velocity components , , and , by the free-stream
speed ; the pressure , by the doubled free-stream dynamic pressure; and the other gasdy-
namic variables, by their free-stream values. Dimensional variables are denoted by a star superscript. Vari-
ables with no star are supposed to be dimensionless. The symbol  denotes free-stream values.

The differential equations are approximated using a fully implicit finite volume method and a second-
order accurate scheme in time:

Convective f luxes on cell faces (e.g., ) are determined using dimensional splitting. In each direc-
tion, we find the Jacobian matrix (  in the  direction), which is diagonalized in the form

, where B is the matrix made up of the right eigenvectors of A and Λ is a diagonal matrix whose
elements are the eigenvalues of A. The convective components of the f luxes , , and  on cell faces are
approximated using a monotone Godunov-type scheme:

where the subscripts L and R denote quantities computed on the right and left sides of the considered face
with the use of gasdynamic variables recovered by applying a reconstruction procedure. For example, for
face i + 1/2, the index L corresponds to cell i, while the index R, to cell i + 1. The subscript LR denotes
quantities computed using the Roe method for the approximate solution of the Riemann problem. A phys-
ically correct variation in entropy at discontinuities is ensured by modifying the eigenvalues . The
reconstruction procedure is based on the WENO-3 method.

The diffusion components of the vectors , , and  on faces of elementary cells are approximated
by applying a second-order accurate central-difference scheme:

where  is any of the nonconservative (primitive) dependent variables , , , , or of the problem.
After approximating the Navier–Stokes equations and the boundary conditions, the integration of the

original partial differential equations is reduced to solving a system of nonlinear algebraic equations
R(U) = 0, where R is a discretization operator computing the residual vector based on the approximation
of the equations and  is the vector of desired nonconservative variables (u, , w, p, T) (velocity compo-
nents, pressure, and temperature) at all grid nodes. The length of the vector  is , where N is the total
number of grid nodes, including boundary ones and  is the number of unknowns at each node
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(  and  in the three- and two-dimensional formulations, respecively).
The system of discrete equations R(U) = 0 is solved using the modified Newton–Raphson method

where  and  are iteration numbers with respect to nonlinearity ( ),  is the Jaco-

bian matrix of the system of nonlinear equations,  is the residual vector, and  is the regularization
parameter. Here, the expression  is the solution to the linear system of equations

The regularization parameter of Newton’s method with respect to the initial approximation  is deter-
mined by the formula

With the convergence of the iterative process, we have  and the convergence rate theoretically
tends to a quadratic one.

Since the considered numerical scheme includes solving the Riemann problem, an analytical form of
the corresponding Jacobian matrix  is difficult to obtain. In the present solver, the matrix

 is formed at the nonlinear iteration  by applying the universal method of finite incre-
ments of the residual vector  with respect to the vector of desired variables . Here, the mth column of
the matrix  is computed as

where  is the -dimensional unit vector consisting of 0's, except for the only 1 in position m. This
technique for computing the Jacobian is applicable to an arbitrary system of discrete equations.

2.2. Flow Parameters and Formulation of the Problem
We considered the formally two-dimensional f low over a sharp f lat plate at the free-stream Mach num-

ber  and the free-stream temperature  K. The evolution of disturbances was computed
in a subdomain. The computation procedure was similar to the one described in [4]. The Reynolds num-
ber was  m–1. The Prandtl number was set to a constant: . The

Navier–Stokes equations were closed by the equation of state , where γ = 1.4 is the ratio of
specific heats. The dynamic molecular viscosity was calculated according to Sutherland’s law:

, where .
The numerical integration was carried out in the rectangular domain shown in Fig. 1. At inlet and

upper boundaries, we set the dimensionless free-stream parameters . For
steady computations, the wall was assumed to be heat-insulated with no-slip conditions specified on it.
The outlet boundary was preceded by a buffer zone with enlarged cells in x and y for damping disturbances
going out through the boundary. At the outlet boundary, we set mild conditions, such as linear extrapola-
tion of primitive variables from the computational domain. Symmetry conditions were specified at the lat-
eral boundaries zmin and zmax.

The computation was performed as follows. First, the two-dimensional steady unperturbed flow over
the f lat plate was computed until the residual reached a value of 10–8. Second, a subdomain for the sub-
sequent simulation of the evolution of disturbances was cut out of the resulting solution. The gasdynamic
quantities obtained at the first step were fixed at the new inlet boundaries of the subdomain. A steady field
was established additionally until complete convergence (the residual value did not exceed 10–8). Third,
the steady field obtained in the subdomain was duplicated in the third (spanwise) direction . The surface
temperature distribution was fixed. Disturbances of the blowing–suction type were introduced into the
boundary layer as described below. Unsteady computations were performed until a quasi-steady f low
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Fig. 1. Problem formulation: (a) computational domain and grid (every 10th grid line is shown); (b) mesh refinement in
the normal direction to the wall; and (c) mesh refinement in the longitudinal direction: grids consisting of (1) 80 million
nodes and (2) 20 million nodes.
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regime was established. In the case of this approach, the surface of the plate was adiabatic, but temperature
fluctuations on the surface were absent.

2.3. Source of Disturbances

Following [1], a source of disturbances is modeled for  m. In this range,
the normal velocity has the form

where

where ,  is the amplitude and . The other f low parameters near the source are
computed as in the case of a wall with no source. The disturbance at the frequency  kHz
with the wave number  m–1 is called fundamental.

As will be shown later, the present results agree well both qualitatively and quantitatively with those of [1].
However, the disturbance amplitude  in this work is nearly twice as large as in [1] (where ) and
is chosen so that the positions of the LTT onset coincide. As will be shown below, numerical dissipation
does not affect the position of LTT in this work. Possibly, this is why the disturbance amplitude in [1] was
indicated incorrectly.
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2.4. Numerical Grid

The characteristic length scale is specified as  m. The streamwise size of the buffer zone,
which is bounded by the dashed rectangle in Fig. 1, is equal to 1.5λx, where  is the wavelength
of the fundamental disturbance.

Figure 1 shows the computational domain and the grid (side view). The subdomain for basic unsteady
computations is bounded by the solid rectangle and begins at a distance of  m from the leading
edge of the plate. The length of the subdomain is 14.3 times larger than the streamwise wavelength of the
fundamental disturbance. The height of the subdomain is specified as  m, which is at least five
times the local boundary-layer thickness at the outlet boundary. The size of the subdomain in the lateral
direction is one wavelength  in the spanwise direction, where  m.

The grid is presented in Fig. 1a, and the corresponding grid refinements are shown in Figs. 1b and 1c.
The basic computations in this work were carried out on a grid consisting of 80 million nodes (fine grid).
This grid corresponds to the one in the x0y plane in [1]. The grid lines are distributed uniformly in the
spanwise direction. On the fine grid, the number of points in z is 201. The number of nodes in both x and
z on the coarse grid is less by half than on the fine grid. In the vertical direction, both grids have an iden-
tical number of points. Across the boundary layer, there are at least 100 points. On the fine grid, the res-
olution of disturbances is 201 points per wavelength in the spanwise direction (in z) and 320 points per
wavelength in the streamwise direction (in x). It should be noted that, for a monochromatic acoustic wave
propagating in uniform flow, about 40 points per wavelength are required for achieving a nearly natural
level of viscous wave attenuation for the used numerical method. Therefore, the numerical dissipation of
the fundamental disturbance on the constructed grids is insignificant.

2.5. Analyzed Quantities
Data for processing and comparison were collected after establishing a quasi-periodic f low regime,

namely, starting at the dimensionless time  after introducing disturbances into the boundary
layer. The properties of the transient f low are analyzed in the next section.

The spectral content of disturbances was analyzed by comparing the amplitudes of individual Fourier
harmonics or the maxima of these amplitudes in the normal direction to the surface in the considered
cross section x = const. Fourier analysis and processing of unsteady results were implemented in Python
(library numpy). The results produced by the fast Fourier transform procedures in time and coordinate z
were normalized by , where Nt and Nz are the numbers of points of the analyzed signal in time
and coordinate z, respectively. In this work, we study the amplitudes of harmonics of f luctuations in
streamwise velocity, pressure, temperature, and the maxima of these quantities in the normal direction to
the surface.

The vortex structure of the f low fields were visualized using the Q-criterion ,
where , , and ui are the velocity components (here, we used ten-
sor notation with summation implied over repeated indices in products).

Additionally, we compared instantaneous fields of streamwise and spanwise vorticity and average f low
parameters (skin friction coefficient and streamwise velocity profiles averaged in the sense of Favre and
Reynolds).

3. ANALYSIS OF THE RESULTS
3.1. Flow Structures and Disturbance Spectrum

Figure 2 shows the instantaneous structure of the perturbed flow in terms of the Q-criterion. The
source of disturbances is immediately followed by a region of linear development of disturbances, where
they form X-shaped structures amplifying in the downstream direction. Near  mm, we can see the
first signs of nonlinear interaction, namely, the disturbances become distorted. Intense nonlinear break-
down of disturbances is observed for  m. Behind this region, there appears a zone of early
turbulence with growing small-scale vortices. This zone develops in the downstream direction.

Since the exciting disturbances are periodic ones with a distinguished frequency and the nonlinear
interactions lead to the generation of subharmonics, the response of the boundary layer to such distur-
bances also has to be periodic (quasi-steady f low regime). To study the spectral properties of LTT, the
unsteady f low was first relaxed to a quasi-steady regime, and then statistic data were gathered within five
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Fig. 2. Visualization of vortex structures in the boundary layer based on isosurfaces of the Q-criterion, Q = 5: (a) side view
from +z and (b) top view from +y. Color depicts the magnitude of the longitudinal velocity. The buffer zone begins at

 m.
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periods of this regime. An example of a quasi-steady signal at some point within the boundary layer is
shown in Fig. 3a.

In each cross section x* = const, the disturbance can be represented as a sum of harmonic oscillations
by applying the Fourier transform. For the considered f low over a f lat plate, it is reasonable to perform the
two-dimensional Fourier transform in time and spanwise coordinate for each line x* = const, y* = const.
The result of this two-dimensional transform can be represented in the form of the amplitude of the har-
monic . Thus, the result of the two-dimensional Fourier transform can be represented
in the form of amplitudes of two-dimensional harmonics . Figure 3b shows an example for the begin-
ning of the early turbulence region.

In the described problem formulation, the Fourier spectrum is symmetric, so only the spectral region
for h ≥ 0 and k ≥ 0 is of interest. It should be noted that the spectral peaks represent a staggered pattern,
which is explained by the quadratic (nonlinear) interaction of the disturbances. For example, for a steady
disturbance, and other peaks are observed only at even wave numbers k = 2, 4, 6, … in the case of even
frequencies h = 0, 2, 4, … and at odd wave numbers k = 1, 3, 5, … in the case of odd frequencies h = 1,
3, 5, … . This pattern is typical of the oblique breakdown mechanism, when two harmonics with identical
frequencies, but with oppositely signed wave numbers interact nonlinearly (quadratically). In this case,
the frequency is doubled and the wave number is nullified: [1, 1] + [1, –1] → [2, 0]. The closer the har-
monic to the fundamental one, the higher is its amplitude. This is associated with the fact that the non-
linear breakdown gradually progresses into the high-frequency domain and with the numerical spatiotem-
poral dissipation of the used numerical method. The computations in this study were executed on two dif-
ferent grids, one being twice finer in the streamwise and spanwise directions. As will be shown later, the
results obtained on both grids are similar.

Below, the present results are compared with those of [1].

3.2. Linear Regime
Consider the evolution of disturbances in the linear regime, which is observed from about x* = 0.4 m

to x* = 0.6 m. In Fig. 4, the amplitudes of the fundamental mode  of the streamwise velocity f luctua-
tions u' at x* = 0.5 m obtained in this work are compared with the results of [1]. Good agreement is
observed for this case and for the other lines x* = const, y* = const (Figs. 4a–4c).

Among all possible lines y* = const in a given section x* = const, we can distinguish the line  on
which the amplitude of the considered harmonic is maximal. For f luctuations u' or T ', this line lies in the
critical boundary layer, . The downstream evolution of this maximum agrees well with the
results of [1] (Fig. 4d) even on the coarse grid.

As a characteristic of an unstable boundary layer, the growth rate of disturbances is sensitive to the
structure of the steady solution. Consider the evolution of the streamwise disturbance growth rate for the

streamwise velocity, . Here, the subscript max denotes the maximum (in y) Fourier

amplitude of the harmonic. Figure 5a demonstrates good agreement in the level of the growth rates in

β = β0 0* *( *, *) ( , )f hf k
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Fig. 3. (a) Quasi-stationary fluctuations of streamwise velocity, , at the point 
; and (b) two-dimensional Fourier transform of the field  on the line
 m.
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maximum (in y*) amplitude of  as a function of x*: (1) work [1], (2) fine grid (HSFlow++), and (3) coarse grid
(HSFlow++).

0.80.4

2.0

1.6 1
2 1

2

1
2

1
2
3

1.2

y/
��

0.8

0.4

0

(a) (b) (c) (d)

�u'�[1.1]/
�u'�[1.1]_max

0.80.4

2.0

1.6

1.2

y/
�

0.8

0.4

0
�T '�[1.1]/

�T '�[1.1]_max

0.80.4

2.0

1.6

1.2

y/
�

0.8

0.4

0

�P '�[1.1]/
�P '�[1.1]_max

1.00.80.60.4

0.1

�u
'� [

1.
1]

_m
ax

x*, m

0.01

0.001

0.0001

[1,1]'| |u [1,1]'| |T [1,1]'| |p

[1,1]'| |u
cross sections x = const. Starting at  m, the growth rate increases significantly. This moment cor-
responds to the beginning of the nonlinear stage in the disturbance development.

It should also be noted that good agreement is observed in the structure of disturbances within the
boundary layer in various cross sections y* = const, which is demonstrated in Figs. 5b, 5c.

3.3. Nonlinear Regime
Consider the nonlinear stage of the disturbance development. The manifestation of the nonlinear

interaction can be seen in the Q-criterion-based patterns, which exhibit a strengthening of the rope-like
structures (Fig. 6). For small values of Q (15 and 100), our results agree well with those of [1]. However,
in the early turbulence region, where there appear small-scale structures and the maximum value of
Q grows (10000 and 40000), the dissipative scheme fails to perfectly reproduce the results of the low-dis-
sipative scheme of [1]. The most probable cause of this discrepancy is the application of the spectral
method in the spanwise direction in [1] and the use of high-frequency harmonics lying near the Nyquist
frequency (wave number) for the used fine grid, which leads to their poor resolution.

Consider nonlinear breakdown via the evolution of the maximum (in ) amplitudes of disturbance
harmonics. The oblique resonance mechanism develops sequentially. Initially, the most unstable funda-
mental oblique wave [1, ±1] grows, which is caused totally by the instability of the boundary layer. As a
certain critical amplitude is attained, it begins to interact nonlinearly with itself, generating subharmonics:
h = 0 and h = 2, k = 0, k = 2, which grow due to the nonlinear interaction of the fundamental harmonics.

≈ 5* 0.6x

y

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 61  No. 2  2021



SIMULATION OF THE LAMINAR–TURBULENT TRANSITION 261

Fig. 5. (a) Streamwise growth rate of  based on the results of (1) [1], (2) present work (80 millions nodes), (3) linear
stability theory (Mack code); (b), (c) the instantaneous contour of f luctuations u' in the cross section x* = 0.546–0.67 m,
y* = 2.3 mm: (b) work [1], (c) fine grid. 
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Fig. 6. Instantaneous isosurfaces of the Q-criterion, top view, based on the results of [1] (left panels) and of the present
work, fine grid (right panels): (a) Q = 15, x* = 0.546–0.670 m; (b) Q = 100, x* = 0.670–0.798 m; (c) Q = 10 000, x* =
0.798–0.924 m; and (d) Q = 40 000, x* = 0.924–1.051 m. 
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Fig. 7. Evolution of the maximum amplitude (in y) of the Fourier harmonic at odd frequencies for (a) h = 1 and
(b) h = 3 (1), (4), (7) work [1]; (2), (5), (8) present work, coarse grid; (3), (6), (9) present work, fine grid; (1)–(3) k = 1;
(4)–(6) k = 3; and (7)–(9) k = 5.

1.11.00.90.80.70.60.5
x*, m

0.40.3

0.1

0.01

�u
'�_

m
ax

0.001

(a) (b)

1
2
3
4
5
6
7
8
9

0.0001
1.11.00.90.80.70.60.5

x*, m
0.40.3

0.1

0.01

�u
'�_

m
ax

0.001

1
2
3
4
5
6
7
8
9

0.0001
When the subharmonics reach sufficient amplitudes, they begin to interact nonlinearly with each other
and with the fundamental harmonics, generating progressively more subharmonics. This process and its
sequential stages in time can be seen in Figs. 7 and 8, which show the evolution of the harmonic ampli-
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Fig. 8. The same as in Fig. 7, but at even frequencies for (a) h = 0 and (b) h = 2: (1)–(3) k = 2; (4)–(6) k = 4; and
(7)–(9) k = 6.
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Fig. 9. Instantaneous field of spanwise vorticity at the time t = 2.82891 for (a) z* = –0.0092 m, (b) z* = –0.0047 m, and
(c) z* = –0.0017 m. The results of the present work, fine grid, and of [1] are shown in the upper and lower halves, respec-
tively. 
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tudes in the downstream direction. The described mechanism explains the staggered structure of the spec-
trum presented in Fig. 3b.

It should be noted that the evolution of the harmonics agrees well with [1] in the domains of linear and
weakly nonlinear development of disturbances. However, in the early turbulence region, the results
obtained on the coarse grid begin to differ from their fine-grid counterparts. The latter still agree well with
the results of [1] for the basic energy-containing frequencies h = 0, 1; k = 1, 2, and exhibit a small mis-
match with growing h and k. Note that, in all cases, the Fourier amplitudes remain unchanged in value,
but diverge in phase. This can be caused by the accumulation of the error of the more dissipative method.
Overall, however, the described comparison of the results confirms the reliability and applicability of dis-
sipative schemes for LTT simulation.

In Fig. 9, the instantaneous structures of spanwise vorticity in various cross sections z* = const
obtained in this work (upper half of the figure) are compared with the results of [1] (mirrored in the lower
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Fig. 10. Instantaneous field of the spanwise vorticity at the cross section z* = –0.0087 m at various times: (a) t = t0, (b) t =
t0 + 6T/20, (c) t = t0 + 12T/20, and (d) t = t0 + 18T/20. The results of the present work, fine grid, and of [5] are shown
in the upper and lower halves, respectively.

0.960.940.920.900.880.860.840.820.80

(d)

(c)

(b)

(a)

�2000 �1500 �1000

�2.0
�10�2

�1.5�1.0-0.500.51.0

�500 0 500 1000

x*, m
half of the figure). It can be seen that small-scale structures typical of developed turbulence appear near
 m. A detailed comparison shows that the vortices obtained in this work are less intense than

those in [1] and contain fewer small-scale vortex structures, which was discussed above. The basic large-
scale structures agree well with [1].

Now we consider a time visualization of the evolution of small-scale structures in a particular cross sec-
tion z = const. Figure 10 shows the instantaneous structures of spanwise vorticity computed at various
times. They are compared with the results of [5], where the parameters of the problem coincide with those
in [1], but the computations were performed on a fine grid consisting of 211 million nodes. Inspection of
Fig. 10 suggests that the velocity of vortices propagating in the boundary layer is about 0.7.

Figure 10 also demonstrates the development of small-scale structures. The vortex at  m
(Fig. 10a) moves through the point  m (Fig. 10b) and reaches the point  m (Fig. 10c),
where it actively breaks up into small vortices, which are then carried away by the f low to  m
(Fig. 10d). By this time, a new vortex has arrived at  m, and the process repeats (quasi-steady
regime).

Once again, we note that the dissipative HSFlow++ scheme well reproduces large-scale structures,
preserving them qualitatively and quantitatively. However, small-scale structures are reproduced insuffi-
ciently accurately, so they do not agree completely with the results of [5].

In Fig. 11, the computed instantaneous cross sections of streamwise vorticity are compared with the
results of [1]. Since the f low structure is symmetric with respect to the plane z* = 0, only a half of the
domain in z* is presented. A large vortex can be seen in the cross section  m (Fig. 11a). With
increasing , it grows and begins to break at  m (Fig. 11b), after which numerous small vortices
are formed at the point  m (Fig. 11c). The vorticity fields produced by the dissipative numerical
scheme (this work) agree well with the results of [1].  
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Fig. 11. Instantaneous streamwise vorticity at the time t = 2.82891 for (a) х* = 0.862 m, (b) х* = 0.866 m, and (c) х* =
0.870 m. The left panel presents the results of [1], and the right panel depicts the results of the present work on the fine grid.
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Fig. 12. Skin friction coefficient averaged in space and time: (1) laminar branch, (2) theoretical turbulent branch [6],
(3) work [1], (4) present computation on the coarse grid, and (5) present computation on the fine grid. 
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Consider the averaged skin friction coefficient  as a function of the streamwise coordinate x. The
local skin friction coefficient was computed using the formula

In this work, the results were averaged in time over five fundamental periods  and in z over the
entire computational domain:

Starting at  m, the value of cf increases sharply in the neighborhood of  m. In this
region, the results produced by the dissipative scheme coincide with those of [1] even on the coarse grid.
In the downstream region, the coarse-grid results are lower than their fine-grid counterparts. The latter
agree satisfactorily with the results of [1] in the early turbulence region for x* ≥ 0.9 m.
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Fig. 13. (a) Favre-averaged streamwise velocity and (b) Reynolds-averaged temperature on the fine grid for (1) х* =
0.942 m; (2) х* = 0.996 m; (3) х* = 1.051 m; (4) laminar boundary layer; and (5) work [1], х* = 0.996 m. 
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Figure 13 shows averaged profiles of gasdynamic variables. The stronger the effect of nonlinear inter-
actions in the considered section, the more convex the average profiles. Once again, the results produced
by the dissipative scheme at  m agree well with those of [1]. Figure 13 confirms that, despite the
insufficiently detailed pattern of small-scale vortices produced by the dissipative method, the integral f low
characteristics (average profiles of gasdynamic variables, the average skin friction coefficient) are fairly
similar to the results obtained with low-dissipative schemes [1]. This conclusion is important for applica-
tions that do not need a detailed resolution of all developed turbulent structures, but require reliable inte-
gral f low characteristics.

4. CONCLUSIONS

Dissipative numerical schemes are suitable for LTT simulation and reliable reproduction of integral
f low characteristics, such as skin friction coefficients and average profiles of gasdynamic variables. This
conclusion was confirmed by a detailed comparison of the present results with those produced by low-dis-
sipative schemes [1].

The location of the LTT onset nearly does not depend on the number of grid nodes and the order of
accuracy of the scheme when the fundamental harmonic and its nearest subharmonics are resolved suffi-
ciently well. Apparently, the grid resolution of higher order harmonics plays a minor role in the simulation
of the LTT onset and integral f low characteristics.

In the linear regime, the results based on the dissipative scheme agree well with those of [1]. In the
developed nonlinear regime, the excessive dissipativity of the scheme can lead to an insufficiently detailed
resolution of small-scale structures, which can be avoided by mesh refinement. To improve the accuracy
of LTT simulation, the dissipativity of the scheme can be reduced in regions where this property is not
required (for example, in boundary layers). This aspect will be the subject of further research.

FUNDING

This work was performed at the Moscow Institute of Physics and Technology and was supported by the Russian
Science Foundation (project no. 19-79-10132) with the use of computing resources of the federal collective use cen-
ter Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute,”
http://ckp.nrcki.ru/.

=* 0.996х
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 61  No. 2  2021



266 EGOROV et al.
REFERENCES
1. C. S. J. Mayer, D. A. V. Terzi, and H. F. Fasel, “DNS of complete transition to turbulence via oblique break-

down at Mach 3,” AIAA Paper No. 2008-4398 (2008).
2. I. V. Egorov, A. V. Novikov, and K. Kh. Din’, “Direct numerical simulation of laminar–turbulent transition in

supersonic f low over a sharp-edged plate,” Uch. Zap. TsAGI 49 (5), 17–25 (2018).
3. I. V. Egorov and A. V. Novikov, “Direct numerical simulation of laminar–turbulent f low over a f lat plate at hy-

personic f low speeds,” Comput. Math. Math. Phys. 56 (6), 1048–1064 (2016).
4. P. V. Chuvakhov, A. V. Fedorov, and A. O. Obraz, “Numerical simulation of turbulent spots generated by un-

stable wave packets in a hypersonic boundary layer,” Computers Fluids 162, 26–38 (2018). 
https://doi.org/10.1016/j.compfluid.2017.12.001

5. C. S. J. Mayer, D. A. V. Terzi, and H. F. Fasel, “Direct numerical simulation of complete transition to turbu-
lence via oblique breakdown at Mach 3,” J. Fluid Mech. 674, 5–42 (2011).

6. F. M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1991).

Translated by I. Ruzanova
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 61  No. 2  2021


	1. INTRODUCTION
	2. FORMULATION OF THE PROBLEM
	2.1. Brief Description of the Numerical Method
	2.2. Flow Parameters and Formulation of the Problem
	2.3. Source of Disturbances
	2.4. Numerical Grid
	2.5. Analyzed Quantities

	3. ANALYSIS OF THE RESULTS
	3.1. Flow Structures and Disturbance Spectrum
	3.2. Linear Regime
	3.3. Nonlinear Regime

	4. CONCLUSIONS
	REFERENCES

		2021-04-05T21:13:23+0300
	Preflight Ticket Signature




