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Abstract—The problem of a priori estimation of the result of a mulicriteria two-person competitive
game is considered in the framework of operations research. Various aspects of decision making in
such games are discussed. Relations between the values of a vector best guaranteed result (BGR) for
both players are obtained. The difference of the mulicriteria antagonistic game considered as a model
of taking into account the natural uncertainty from the mulicriteria zero-sum game considered as
interaction with a purposeful opponent is formalized. Special attention is paid to the concepts of the
value and solution of the latter game. As the basic solution of this game, we use the multicriteria Shap-
ley equilibrium when it gives to each player the result not worse than her or his BGR. It is shown that
the last condition is not restrictive. The definition of the one-sided value of the multicriteria game as
the player’s BGR if her BGR is independent of the order of the players' moves and the definition of
the corresponding one-sided solution are given. It is proved that the equilibrium is weaker than the
one-sided solution, and the equilibrium always exists in mixed strategies. The existence of a one-sided
solution in mixed strategies is guaranteed by a special interpretation of multicriteria averaging. To jus-
tify the conclusions, Slater’s value of the multicriteria optimum is parameterized using Germeier’s
scalarizing function.

Keywords: multicriteria competitive games, decision-making, multicriteria equilibrium, Germeier’s
scalarization, average scalarizing function, tradeoff
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1. INTRODUCTION
Operations research in which an operation is considered as a set of purposeful actions includes the

mathematical theory of decision-making, which is the subject of this paper. The majority of decisions in
real-life systems have multiple goals. A part of these goals can be ranked, and then the most important of
them can be included in constraints; some other goals can be scalarized, i.e. aggregated into more general
goals using weighting coefficients [1]. However, most often the problem cannot be reduced to a single-
criterion problem for the following reason.

Decision-making in complex systems is usually cooperative—different participants may have different
goals, and it is not known in advance what the tradeoff will be [2]. Even if an organization has a hierarchi-
cal structure and there is a person that makes a decision (this person is called decision maker, or DM), she
is hardly able to formulate her goal to a system analyst. In the theory of operations research and the man-
agement practice, the DM and the operations researcher (OR) are intentionally separated because the DM
must make the ultimate choice and be responsible for it [1].

However, the range of operation goals can usually be restricted, and the task of the OR as the developer
of the decision-making support system is not to select a decision by optimizing the given criteria but to
reject nonoptimal solutions and obtain a representative set of estimates of cooperatively formed possible
decisions and generally under the conditions when not everything depends on the operation’s parties. Due
to the need to take into account uncontrollable factors while estimating the consequences of various deci-
sions, this task is difficult even to formulate.

In simple cases, the uncontrollable factors in operations research are treated as uncertain factors, and
the estimation of proposed decisions uses their worst values. However, such estimates are often little infor-
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MULTICRITERIA COMPETITIVE GAMES 1571
mative—they are trivial, too pessimistic, etc. In this case, one should build a model of the uncontrollable
factors; in particular, one should try to separate them, classify the causes of their occurrence, and refine
the parameters. In this paper, we pay considerable attention to such a modeling. We show that different
models of uncertainty and uncontrollability give different results; therefore, the model validity is the pri-
mary condition for its successful application.

The situation is much simpler in single-criterion problems if the random nature of the uncontrollable
factors can be substantiated and information about the form (and even better about the parameters) of
their distribution function can be obtained. In this case, the criteria (but not the constraints, which must
be satisfied with a given probability, in particular, with probability 1, for all values of the random factors)
are typically averaged, which reduces the analysis to more or less standard optimization statements [3]. In
multicriteria (MC) problems, the issue of taking into account the random factors remains open. It cannot
be resolved by averaging as in the scalar case because the mean value of each component of the vector pay-
off function is attained on a different realization of the random factor, and it is not clear which realization
should be used for the optimization of the vector as a whole. The issues of how random factors can be
takeb into account in MC models were considered in [4, 5]. We also discuss them in Section 4 in the con-
text of estimating the use of mixed strategies by the DM.

Another model of nonrandom uncontrollable factors used in operations research is their interpretation
as purposeful actions of the opponent. Such a game theoretic interpretation in scalar problems gives the
same result as in the model with uncertainty; however, the pessimistic value gets a meaningful explana-
tion. In MC problems, the proposed interpretation changes the result (the estimates of the feasible values
of the vector criterion). In Sections 2 and 3, we analyze and formally compare the two models in terms of
MC games with a fixed order of moves to distinguish the statements in which the maximum guaranteed
payoff of the maximizing player automatically coincides with the minimum guaranteed loss of the mini-
mizing player from the statements in which this occurs only in singular cases. In Sections 4–6, we consider
the concepts of decision making and the MC game value primarily for the second statement, and analyze
the properties of these concepts. A parameterization of the solution and value of the MC game using Ger-
meier’s scalarization [6, 1] is proposed. This scalarization is compared with the linear scalarization for the
Shapley generalization [7] of the Nash equilibrium for the multicriteria case.

2. MC PROBLEM WITH UNCERTAIN FACTORS

Suppose that the goal of making a decision (the operation goal [1, 3]) is formulated as the MC problem
[1, 2, 8] of maximizing a vector function  =  by choosing the control parameter

 taking into account the uncontrollable factor  Note that, strictly speaking, the presence of a
vector criterion indicates that the goal is not clearly defined, and according to [1] it should be made
clearer. However, we have already mentioned above that the goal refinement is the DM’s responsibility,
who sometimes defines the goal during the announcement of the decision. From the OR’s point of view
(and the authors of this paper agree with this viewpoint), there is the implicit goal specified by the set ,

.
Without loss of generality, we assume that . Here and below, the standard inequality signs

for vectors are interpreted as component-wise inequalities; the crossed sign means the negation of the cor-
responding vector inequality. The sets  and  are assumed to be finite or compact in the Euclidean
space; in the latter case, the functions  are assumed to be continuous. In this section, we consider the
operation in which the parameter  models an uncertain factor that takes arbitrary values in the set Y, and
no probability characteristics for it are given.

If the OR expects to have information about a particular realized value  of the parameter  before
making the decision to select  then he rejects nonoptimal decisions and recommends the DM to
select  from the set of unimprovable strategies with respect to the vector criterion; i.e., he recommends
to select an  from the set on which  is attained. (Everywhere in this paper, the minimum and
maximum written with a capital letter denote the set of maximum (minimum) elements in the sense of the
relation  between vectors, so that we usually deal with the Slater set [8].) However, the OR cannot guar-
antee to the DM the vectors  in advance because the choice of  is not known yet, and

the OR should estimate the possible values of  assuming that any  is possible. The guaranteed MC
estimates are introduced as follows.
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Fig. 1. Guaranteed estimates ((a) for a single point and (b) for an interval) and the BGR of an informed DM (c) in the
MC maximization problem.
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If the OR can guarantee a value  of the vector criterion , then, taking into account the DM’s
desire to maximize , we consider every MC estimate of the DM’s result not exceeding  in every com-
ponent as a guaranteed one. Thus, we assume that the ability to obtain the result  with respect to a partial
criterion, e.g., , automatically means for the DM the feasibility of all estimates  of the criterion

 by realizing the stronger estimate . Note the difference between the feasible value of the vector crite-
rion and the feasible estimate of the resulting value (for a particular ). More precisely, the value 
of the vector criterion is feasible if there exists an : ; and the estimate  of the vector
criterion for the maximizing DM is feasible if there exists : . (Figure 1a illustrates this
difference.)

Now, we write the set

of feasible MC estimates of the vector criterion  for the given . Then, if any  is a priori possible,
then the OR can guarantee to the DM only the estimates belonging to the intersection  of these
sets. In this case, the best guaranteed result (BGR) is determined by the unimprovable guaranteed MC esti-
mates—it is given by the formula

(2.1)

Following the reasoning in [8–13], set (2.1) can be considered as the BGR of the informed DM player (i.e.,
the second player to move) in the antagonistic MC game (which we rigorously define in Section 3). The
occurrence of the set as the value of the maximum in (2.1) is characteristic for MC problems due to the
incomplete order formed among the vector estimates  by the relation  (see Figs. 1b and 1c).

If the OR is not sure that the concrete realized value of the parameter  becomes known before making
the decision about the selection  then, whatever decision  is chosen by the DM, the OR cannot
guarantee any estimates of the criterion vector that do not lie in the set

The entire set of guaranteed estimates of the vector criterion, i.e., the estimates that can be relied on in
such a situation, is given by the formula . Since the BGR, similarly to the preceding case, is
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determined by the unimprovable guaranteed MC estimates, we derive the following formula for the BGR
of the uninformed DM:

(2.2)

Set (2.2) is the BGR of the first player to move in the antagonistic MC game [8–13]. The pair of sets (2.1),
(2.2) is an MC analog of the concepts of minimax and maximin for the maximizing DM (in Section 3, we
show that they are different for the minimizing DM in contrast to the scalar case).

Formalization of the MC maximin and MC minimax and derivation of MC guaranteed estimates in
the presence of uncertain factors are considered in many works (in addition to the ones mentioned above),
including dynamic problem statements. Among the works devoted to dynamic statements, we distinguish
[14], which is based on the approach proposed in [15]. The connection of (2.1) and (2.2) with the con-
structions in [15] was thoroughly discussed in [16], and we do not dwell on the details of their differences
in this paper; rather, we use as the basis the most widespread definitions from [8]. Furthermore, for these
statements (in distinction from [14]), the generalization of the scalar relation the maximin is not greater
than the minimax proposed in [16] holds, which corresponds to a basic principle of operations research
that information cannot deteriorate the result [1]. (All the available and expected information must be
used in the model when the BGR is calculated.)

To take into account in an operation with a vector criterion that an uncontrollable factor is caused by
actions of another DM who pursues her own goals, we study in Sections 3 and 4 a zero-sum MC game
defined in [13] and its difference from the antagonistic game in the general logic of opposite interests.
Independently of the order of moves, we will call the player that maximizes the vector criterion the first
player (DM-1), and the opponent will be called the second player (DM-2).

3. MODELS OF UNCONTROLLABLE FACTORS CAUSED BY DM’S ACTIONS
Consider a generalized operation involving two DMs (DM-1 and DM-2) with their teams; they are

also called players. Let the vector efficiency criteria for each of them also depend on the opponent’s
actions. This operation will be called a two-person MC game. We could deal with two operations with two
DMs and two ORs; however, for the analysis of relationships, it is more convenient to join them to inter-
pret the uncontrollable factor as a result of a partial operation (purposeful actions even though with an
implicit goal).

In a competitive MC game, it is assumed that the choice of the uncontrollable factor values  is
made by DM-2 on the basis of the desire to minimize the vector function , which is maximized by
DM-1. Formally, the competitive MC game is written as , where  is the set of strategies of
the first player,  is the set of strategies of the second player, and as the players select the pair

 the first player gets the payoff vector , and the second one
gets the same vector  as her loss vector. Unfortunately, this is not sufficient for describing the result
of this MC game because it is not specified how the DMs interpret their vector criterion.

According to [1] the nonuniqueness of the function to be optimized corresponds to the subjective
uncertainty in the optimization goal. The players' attitude to this internal uncertainty can be generally dif-
ferent. In conventional vector optimization (e.g., see [8]), the presence of multiple criteria assumes the
desire to optimize all of them. A less popular interpretation of the multiplicity of criteria first proposed in
[10] is reduced to the desire of a player to optimize one criterion in the given set. In games with a vector
payoff function, both interpretations may be used [17]. To reveal the influence of these interpretations on
the game result, we introduced in [13] two types of competitive MC games —antagonistic ( ) and zero-
sum ( ) games.

In antagonistic games, one player is an antagonist of the other player, i.e., her purpose is to prevent the
other player to achieve her goal. For example, assuming that the goal of the first player in  is to maximize
the payoffs , we conclude that the goal of the second player in  is the minimization of at least
one (arbitrary) . It is clear that in this case the first player is also the antagonist of the second
player. Any DM in the antagonistic statement of a competitive game embodies for her opponent a source
of uncertain factors (natural uncertainty), which was touched upon in Section 2.

In the zero-sum game, the goal of one player coincides with the goal of the other player with the neg-
ative sign. More precisely, if the goal of the first player is to maximize the payoff vector , then
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Fig. 2. Weak estimates ((а) for a single point and (b) for an interval) and the BGR of an unaware second player in the

antagonistic MC game  (c).
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the goal of the second player in the zero-sum game  is to maximize the vector , i.e., to min-
imize the loss vector . If the goal of the first player is to maximize at least one (arbitrary)

, then the goal of the second player in the game  is to minimize at least one (arbitrary) .
(The players may select different partial criteria.) In this case, the name zero-sum game is very tentative,
and it is used for this statement to stress that there is no other aspect of competitiveness in this game in
contrast with the antagonistic game, in which everything, including the interpretation of multicriteriality,
is opposite.

Rigorous definitions of the games  and  are implied by the following formal construction [13, 8]
based on the two main interpretations of vector optimization mentioned above. Note that intermediate
interpretations of MC problems are possible, when a group of partial criteria is optimized as a whole, and
for the other group it is sufficient to optimize an arbitrary criterion; however, we do not consider such gen-
eral statements in this paper and restrict ourselves to the extreme cases. It is essential that if such extended
interpretations of vector optimization are considered, only two types of competitive MC games are distin-
guished according to Definition 2 below.

Definition 1. In an MC maximization problem, for any , the guaranteed estimates of the value 
are defined as the elements of the set , and the weak estimates of the value z are defined as

the elements of the set . For estimates in an MC minimization problem, the signs in the
inequalities are reversed (see the example in Fig. 2).

The guaranteed estimates were considered in Section 2. The purpose of using weak estimates is similar.
Let  be the vector payoff of the first player. Then, the components  are the values achieved by this player
for each partial criterion  (simultaneously). Since the first player wants to maximize the vector with the
components , then all vector estimates that are “less” than  are already achieved. The set of weak esti-
mates characterizes the values that the maximizing player considers to be achieved if her payoff is  when
she uses the binary relation  for comparing the payoff vectors (in distinction from the relation  used in
the case of guaranteed estimates). The situation for the second player in the minimization problem is sim-
ilar. Definition 1 implies that any guaranteed estimate  for  is not better than the vector result  with
respect to all criteria, and any weak estimate  is not better than  with respect to at least one criterion
(however, this criterion is not indicated, and this is the idea of multicriteriality).

Definition 2. The MC zero-sum game  is defined as a competitive game ( ) in which both players use
the same type of estimates of the vector criterion. The game  in which the players use complementary
estimates is called antagonistic ( ).

These definitions of the zero-sum and antagonistic games cover the cases when the first (maximizing)
player uses not only guaranteed, as in the examples above, but also weak estimates. All main properties of
the classes of games defined above are independent of the estimates by which the players are guided; it is
only important whether these estimates are identical or different. Following the original statement in Sec-
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tion 2, we assume that the first player uses the guaranteed estimates (the results obtained in [13, 16] imply
that the most part of the propositions below also hold for the other case). We have also taken into account
that the term MC zero-sum game is most often used in the literature for guaranteed estimates.

Remark 1. For an antagonistic game in which the first player uses guaranteed estimates, we can give
the following simple illustration. DM-1 has two uncontrollable factors  and , and she adheres the guar-
anteed result principle with respect to both factors. For DM-2, the index  is the control; therefore, she
can use weak estimates. This behavior corresponds to the defense against attack model [1]. However, the
zero-sum game requires another example in which the second player also interprets the criterion index as
an uncontrollable factor and uses guaranteed estimates. Here, we deal with an indirect conflict, and we
may imagine a competition game with respect to a number of indicators specified by the index  (in the
simple case, ) or the model game described in [4, 5], in which each player cares for her
interests but the players' vectors turned out to be oppositely directed. Therefore, the formal separation of

 into the game , in which the players' preferences are opposite, and the game , in which the vector
payoff functions are opposite, is justified. Note that in [7], the second version of the MC game with guar-
anteed estimates (and optimization of all criteria) is considered; and [10–12] consider the first version (in
relation with modeling coalitions in multi-person scalar games without side payments); in [8, 9, 13], both
interpretations are admitted.

As for the first player in Section 2, the BGR of the second player playing the role of an independent
DM depends on her information. Consider two versions of information in the game :  and . In 
the first player makes the first move, and the second move is made by the second player when she already
knows the first player’s move. The value of such an MC maximin for the second (minimizing) player [16]
differs from the similar value (2.2) constructed for the first player, and it is given by

(3.1)

or by

(3.2)

depending on the type of estimate of the vector criterion values by the second player. Set (3.1) is consid-
ered as the least guaranteed loss or the BGR of the second player in the competitive MC game with the
order of moves first player–second player for the zero-sum ( ) and (3.2) for the antagonistic state-
ment ( ).

Similarly, in the MC game  with the order of moves second player–first player, the BGR of the sec-
ond player is given by the values of her vector minimaxes determined by

(3.3)

for the zero-sum game  or (see Fig. 2c) by

in the antagonistic statement . By comparing the BGR (2.1) of the first player with the BGR (2.2) of
the second player, we can formulate the following rule for determining the BGR. The players make the
union of the sets of the corresponding estimates of the vector criterion with respect to their own strategies
and the intersection with respect to the opponent’s strategies. The order of the variables is determined by
the order of moves. The first player selects the Slater maximum estimates, and the second player selects
the minimum estimates.

In [16], the identities (for the illustration, cf. Figs. 1c and 2c)

(3.4)

were proved; they imply that in an antagonistic MC game with a fixed order of moves, the greatest guar-
anteed payoff of the first player equals the least guaranteed loss of the second player; i.e., there is no need
for them to negotiate because the game has the value equal to the BGR. As a result, we obtain that, in the
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Fig. 3. Typical relation between the BGR’s of the first and second players in the zero-sum MC game ( ).
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antagonistic MC game, as in the ordinary single-criterion game, the second player plays the role of an
equivalent of a natural uncertainty and has no specific features of a reasonable opponent. This case has
already been described in Section 2. For this reason, we will below study the MC games primarily in the
zero-sum statement assuming that the difference of the opponent DM from the uncertain factor manifests
itself for these games.

For zero-sum MC games, identities similar to (3.4) do not hold, and even their relaxation to Pareto val-
ues is valid only for the games that are actually equivalent to the independent set of single-criterion games.
More precisely, denote by  and  the Pareto bounds of the set  in MC maximiza-
tion or minimization problems. Then  [18] and

 [13], where

Thus, in the zero-sum MC game with the fixed order of players' moves, the greatest guaranteed payoff of
DM-1 intersects with the least guaranteed loss of DM-2 if and only if the Pareto value of the BGR of each
player consists of a single vector. We conclude that Germeier’s theorem about the existence of solution in
perfect information games [1], which guarantees the equality of the maximin and minimax in scalar games
(in mapping strategies), cannot be extended for the multicriteria case .

The condition of uniqueness of the Pareto optimum in the MC optimization problem is equivalent to
the absence of competition between partial criteria; i.e., to the condition that each of them can be opti-
mized independently of the others. In this case, the MC game  also decomposes into  scalar games. In
the other cases, the zero-sum MC game with a fixed order of moves has no solutions in the sense that is
conventional for scalar games. The greatest guaranteed payoff of the first player in  is strictly less with
respect to a certain component than the least guaranteed loss of the second player because the guaranteed
estimate for at least one side will be worse (at least with respect to one criterion and not better with respect
to the other ones) than the value of the vector criterion that the player can obtain. The guaranteed esti-
mates in MC games in which multicriteriality is essential are pessimistic in the sense that there are no
opponent’s actions that would result in such estimates (independently of the order of moves)—see the
example in Fig. 3. This suggests that there is a potential possibility for finding a tradeoff in the zero-sum
MC game. We consider this possibility in Sections 5 and 6, and the next section is devoted to the state-
ments of the MC game in normal form and various definitions of its solution.

4. SPECIFIC FEATURES OF MAKING DECISIONS IN MC GAMES IN NORMAL FORM
In the games in normal form, making decisions is complicated by the fact that the players select their

strategies simultaneously without knowing the opponent’s move [19]. In the scalar case, the zero-sum
game in normal form (by contrast to the games with a fixed order of moves) does not always has a solution;
more precisely, it has a solution only if the maximin of the payoff function equals the minimax, i.e., the
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BGR of each player is independent of the order of their moves [1]. In this case, the players can simulta-
neously select their guaranteeing strategies and obtain a solution and the game value, which equals to the
BGR that is the same for both players is the same.

In zero-sum MC games, the BGRs of the players do not usually intersect (see Section 3); however, we
may speak of the conditions of independency of the BGRs of the order of moves. This means the equality

 for the first player and (or)  for the second player. In this situation, we say that there is a
one-sided solution. It is one-sided because the equality may hold only for one of the players. Moreover,
even if it holds for both players, the one-sided value of the game, i.e., the BGR (estimate of the DM pay-
off) is different for different players. The term solution is used because this estimate and the optimal player
strategies do not depend of her information of the opponent’s actions. A good property of MC games 
with a one-sided solution is the absence of fight for the order of moves (as in the scalar case [19]).

For the antagonistic game in normal form, the existence of a one-sided solution for one of the players
is equivalent to its existence for the other one due to identities (3.4). Therefore, the existence of a one-
sided solution in  implies the existence of its classical solution in the sense that is conventional for scalar
games, which implies the equality of all BGRs. (For zero-sum MC games, this is not the case.) By the
definition of the antagonistic game, one of the players in it is guided by guaranteed estimates. For her, the
existence of a one-sided solution is independent of the game she takes part in. Therefore, this property is
characterizing for . It is also important for  and for making decisions in MC problems with uncer-
tainty. Let us examine the existence conditions of the one-sided solution for the maximizing and mini-
mizing players in an arbitrary MC statement. (For the first time, the question about the class of compet-
itive games for which  was considered in [10] in the context of  interpretation in the analysis of
cooperative games.)

The criteria of coincidence of  and  or  and  (MC maximin and MC minimax for any player)
were obtained in [13, 20] in the form corresponding to the use of Germeier’s scalarization [1, 6] by both
DMs. In particular, for the equality of two sets  or

(4.1)

of the MC maximin and the MC minimax of the first player, it is necessary and sufficient that

 the following number equalities hold

(4.2)

where . Conditions (4.2) are based on the representation of the sets of estimates to
be maximized on the left- and right-hand sides of (4.1) using the Germeier’s scalarization [20]

(4.3)

where ,  are defined in (4.2). The same applies to the minimizing DM [13]: the MC maximin coin-
cides with the MC minimax in the guaranteed estimates of the second player, i.e.,  or

(4.4)

if and only if  it holds that

(4.5)

Pay attention to the difference of signs of the minimum and maximum in the definitions of Germeier’s
scalarizing function (the GSF) for the first and the second players (the GSF values are shown in braces in
(4.2) and (4.5)).

≤ ≤= ^f ≥ ≥=^ f

Γ0

ΓA

ΓA Γ0

≤ ≤= ^f ΓA

≤f ≤^ ≥^ ≥f

≤ ≤= ^f

+ +
∈ ∈ ∈ ∈

ψ ∈ ψ ≤ Φ = ψ ∈ ψ ≤ Φ∪∩ ∩∪R RMax { | ( , )} Max { | ( , )}n n

x X y Y y Y x X

x y x y

{ }=
∀μ ∈ μ ≥ μ =

def

1
= 0 | 1

n
ii

M

{ } { }− +

∈ ∈ μ ∈ ∈ μ∈ ∈
θ μ ϕ , μ = θ μ ϕ , μ ,

def def

( ) ( )
[ ] = max min min ( )/ [ ] = min max min ( )/i i i iy Y i I y Y i Ix X x X

x y x y

μ = μ >
def

( ) = { 1, | 0}iI i n

−
+

=∈ ∈ μ∈

+
+

=∈ ∈ μ∈

ψ ∈ ψ ≤ Φ = θ μ μ

ψ ∈ ψ ≤ Φ = θ μ μ

∏

∏

∪∩ ∪

∩∪ ∪

R

R

1

1

{ | ( , )} [0, [ ] ],

{ | ( , )} [0, [ ] ],

n
n

i
ix X y Y M
n

n
i

iy Y x X M

x y

x y

−θ +θ
≥ ≥= ^f

∈ ∈ ∈ ∈
ψ ∈ ψ ≥ Φ = ψ ∈ ψ ≥ Φ∩∪ ∪∩R RMin { | ( , )} Min { | ( , )},n n

x X y Y y Y x X

x y x y

∀μ ∈ M

{ } { }∈ ∈∈ ∈ μ ∈ ∈ μ
ϕ , μ = ϕ , μ .

( ) ( )
max min max ( )/ min max max ( )/i i i iy Y y Yx X i I x X i I

x y x y
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 9  2020



1578 KREINES et al.
We are not aware of other general conditions for (4.1) and (4.4). At least, the use of the linear scalar-
ization [1, 8] does not give an adequate parameterization of the BGR [4] and does not allow one to derive
criteria for their equality. The satisfaction of (4.2) or (4.5) for all  implies the equalities

i.e., the existence of solutions of scalar games with any partial criterion. However, the examples in [10]
show that the last condition is insufficient for (4.1) to hold. It is also insufficient for (4.4). Therefore, it is
insufficient to use mixed strategies for the existence of a one-sided solution in a finite MC game in normal
form (see [10, 11, 13, 21]) even though they ensure the equality of the maximin and minimax with respect
to each individual averaged . The application of mixed strategies by the DM extends the sets of estimates
that are guaranteed for her (i.e., the left-hand sides of (4.3) if we consider the first player); the optimal
estimates among them determine her BGR. However, this does not necessarily give equalities (4.2) or
(4.5). The point is that the appearance of the inner minimum or maximum sign with respect to 
for  violates the customary bilinearity of the convolution of mathematical expectations with
respect to mixed strategies. After averaging the partial criteria, the function in braces in (4.2) or (4.5) becomes
concave or convex with respect to the strategies of both players rather than a concave–convex one.

Thus, the standard technique of mixed extension of the MC game does not help derive conditions (4.2)
and (4.5) for the existence of solutions of the corresponding scalar games with the payoff function equal
to the minimum or maximum with respect to  for each  i.e., it does not yield relations of
type (4.1) and (4.4). A different situation occurs when the GSF of the partial criteria, rather than the par-
tial criteria themselves, is averaged by the corresponding DM. In this case, the bilinearity of the GSF
expectation ensures the equality of the maximin and minimax for all . The average of GSF also
remains concave–convex when the expectations of the partial criteria over the player’s own mixed strate-
gies and the expectation of the GSF with respect to the opponent’s strategies, as proposed in [5], are used.
Thus, we can obtain a one-sided solution of the game if we reconsider the BGR concept for this case (tak-
ing into account the modification of the mixed extension) rather than immediately replace the partial cri-
teria by their mean values.

Let us formalize this idea for the finite MC zero-sum game in which the first player is guided by the
GSF in her decision making. Since the existence of a one-sided solution for one player is independent of
the other player, it is not necessary to refine the optimality principle for the minimizing player; however,
assume for definiteness that it is the same as for the first player. Assume that  and  are finite sets and

 and  are the players’ mixed strategies on these sets. Denote by  and  the sets of corresponding mixed
strategies. Let DM-1 and DM-2 estimate their MC mean payoffs and losses using the following mean
GSFs with the parameters  and 

The objective vector function for each player is replaced by a parametric family of scalar functions, where
the functions in the first set are maximized by the first player and the functions in the second set are min-
imized by the second player. A justification of the use of this rule of averaging MC games in Germeier’s
scalarization can be found in [5] (it allows the DM to avoid too optimistic estimates occurring when the
players use linear scalarization following [7]).

Define the mixed extension of the original MC game  consistent with Germeier’s scalarization as the
parametric family of scalar games in normal form

Hence, we determine the MC mean maximin and MC mean minimax for DM-1 by parameterizing using
the Germeier’s scalarization maximin and minimax of the mean GSFs

(4.6)

rather than after averaging the original partial criteria  with respect to  and  [7].
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Since the function  is concave in  and linear in , it holds that

(4.7)

Equalities (4.7) imply the equality , which corresponds to the existence of a one-sided solution in
mixed strategies when DM-1 uses Germeier’s scalarization and averages the GSF with respect to the
opponent’s mixed strategy for estimating her own MC mean BGR. Since this result is extremely import-
ant, we repeat it in the following proposition.

Proposition 1. The MC game  has a one-sided solution in mixed strategies for the first player.
The result for the second player is the same, and we do not discuss it here in more detail. We only note

that the scalar games in the family  are noncompetitive even for  due to differences in GSFs. The
antagonism of interests in the case of identical scalarization coefficients occurs in the games of the similar

extension  of the antagonistic MC game because the GSF for the minimizing player who makes deci-
sions on the basis of weak estimates is specified using the minimum of partial criteria (reduced to the sca-
larizing function coefficients); this GSF coincides with the GSF of the maximizing player who is guided
by guaranteed estimates. Let

where

As the game , the game  has a one-sided solution not only for the first but also for the second player
if the second player uses the MC mean BGR by analogy with (4.6). Furthermore, for the MC averaging
under examination, equalities (3.4) can be generalized. However, to skip here cumbersome manipula-

tions, we simply formulate the ultimate result for the game  taking into account Section 3 and the exis-
tence of a one-sided solution for the minimizing DM.

Proposition 2. The game  has a classical solution of the MC game in normal form.
Here the classical solution of the MC game is understood, as above, in complete accordance with the

solution of the scalar game in normal form but taking into account the MC mixed extension introduced
above. This implies that the MC mean least guaranteed loss of the second player in weak estimates ( )
coincides with the MC mean BGR of the first player (4.6) independently of the order of moves (because

 both for the game  and the game ). Recall that without the GSF averaging, the MC game
can have no one-sided solution in mixed strategies [11, 10]. Therefore, Proposition 2 is not valid for arbi-
trary antagonistic games in normal form.

For the zero-sum MC game, even if one-sided solutions exist, a common game value usually does not
exist. Therefore, the opponents have a nonempty bargaining set even though their payoffs are opposite.
We have already mentioned that the use of several criteria by DMs corresponds to uncertainty. In games
with uncertain factors, the opposition of objective functions turns out to be ambiguous [22] (also see
Remark 1 in Section 3). If the attitudes of DMs to the subjective uncertainty are identical (rather than
opposite) as in zero-sum games, then solutions can exist that are better than both BGRs of both players
(e.g., see Fig. 3). Informally, this can be explained by using the operations research methodology.

Two players are actually two teams with two DMs and two ORs who support decision making in their
teams. From the viewpoint of ORs, every joint solution (the game outcome) that ensures a result not worse
than the BGR to their teams and is a nondominated response to the opponent’s strategy can provide a
basis for compromise. This approach (we consider it in Section 5 in more detail) elaborates the concept of
Nash equilibrium proposed in [7] for zero-sum MC games and is a generalization of the concept of impu-
tation in the scalar two-person game [19]. Imputation in two-person games is defined as the Pareto opti-
mal outcome that is not worse for both players than their BGR in the absence of information. In the con-
text of the further comparison with imputation, we note that, as in the scalar case, any outcome of the
zero-sum MC game is Pareto optimal with respect to the system of all partial criteria of both players. For
this reason, we do not introduce this condition as an additional constraint.
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5. APPLICATION OF GERMEIER’S SCALARIZATION FOR THE ANALYSIS
OF EQUILIBRIUM IN THE MC GAME

According to [7], the equilibrium situation for the zero-sum MC game  is any pair of strategies
( ) for which

(5.1)

Such pairs are called Shapley equilibriums or simply equilibriums (in MC cases). Depending on the sca-
larization method for the Slater MC maximum and MC minimum, the set of points (5.1) is reduced to the
corresponding set of equilibriums in two-person scalar games with the payoff functions that are scalariza-
tions of the partial criteria for all versions of the scalarization coefficients for each player. Thus, the selec-
tion of the scalarizing function specifies a parameterization of set (5.1). Let us analyze the possibility of
adding the comparison with the BGR to (5.1) for obtaining an equilibrium allocation as a solution of the
game .

For the description of the BGR of the first player, we use representation (4.3) of the sets of guaranteed
estimates, and assume that the standard regularity conditions

(5.2)

hold, where the symbol  denotes the closure in . Then, according to [20], we have

(5.3)

where  and  are defined in (4.2). (In the absence of regularity, the right-hand sides of (5.3) do not
contain a number of insignificant elements of the set on the left-hand sides; more precisely, they do not
contain some Slater points that are not Pareto points [18, 20].)
To determine the second player’s BGR, we prove a similar representation to (4.3). Define the -dimensional
vector  with identical components

and ignore for the second player the estimates exceeding  because they are not informative. Then,
rename (3.1) and (3.3) as

Proposition 3. The BGR of the second player can be represented using the GSF as

(5.4)

(5.5)

Proof. We give an outline of the proof. By the direct repetition of the manipulations in [1, 6], we verify
the validity of parameterization using Germeier’s scalarization in MC problems for the maximizing player
and a vector criterion with all nonpositive components. The results obtained in [20] can also be extended
for the case of nonnegative partial criteria. Now, the validity of (5.4) and (5.5) follows from (4.3) if we
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Fig. 4. Representation of the second player BGR in  using Germeier’s scalarizing function.
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21
assume that the second player maximizes the vector function  with respect to  and the first
player minimizes it with respect to 

Indeed, by exchanging the maximizing and minimizing players in (4.3) and using the second equality
in (4.3), we write for the criterion 

where the intersection with the nonnegative orthant is replaced by the condition not less than  due to
the nonpositiveness of the payoff function . For the same reason, for the components not
included in the GSF with a given , we substituted  for the zero values (for which purpose we had to
separate the components  from the total Cartesian product). For the other components on the
right-hand side, we use the transformation of the equality in

Next, change the variables  for  on the left- and right-hand sides to pass to nonnegative values
in the problem for the second player who minimizes , to obtain (5.4). (Here, the degenerate interval

 is denoted by the single number .) Formula (5.5) is derived from the first equality in (4.3) in a
similar fashion (an example illustrating formula (5.5) see in Fig. 4).

In the case of regularity, an analog of (5.3) can be derived for representing the second player’s BGR
using Germeier’s scalarization. However, we do not need such a concretization for the further reasoning.
Note that the regularity conditions (5.2) can be weakened to take into account the cases when some of the
sets of estimates on the left-hand side of (4.3) have an empty interior. This case is thoroughly considered
in [20], where the transition to spaces of lower dimension is justified. Therefore, the regularity conditions
are not too restrictive.

In the regular case, we can use the parametrization with the help of the GSF as suggested in [23] for
describing the set of points (5.1) because condition (5.1) imposed on the equilibrium outcomes can be rep-
resented in the form  (see [1, 6]), where

(5.6)

−Φ ,( )x y ∈y Y
∈ .x X

−Φ ,( )x y

∈ ∈

∈ ∈ ν∈
∈ ν ∈ νν∈ /

χ ∈ − ≤ χ ≤ −Φ

 
= − , ν −ϕ , ν − , − , 

 
∏ ∏

∩∪

∪ ( )
( ) ( )

Max { | ( , )}

Max [ min max min( ( )/ )] [ ]

n

x X y Y

i j jx X j Iy Y
i I i IM

c x y

C x y C C

R

−c
−Φ ,( )x y

ν −C
∈ ν/ ( )i I

∈ ∈ ν ∈∈ ∈ ∈ ν
χ ≤ ν −ϕ , ν = −ν ϕ , ν .

( ) ( )
min max min( ( )/ ) max min max ( )/i i j j i j jx X j I y Yy Y x X j I

x y x y

χ ψ − χ
def
=

Φ ,( )x y
,[ ]C C { }C

, ∈0 0 0( )x y R

{
}

∈ μ∈

∈ ∈ ν

, ∈ × ∃μ, ν ∈ : ∈ ϕ , μ ,

∈ ϕ , ν

def0 0 0 0 0

( )

0 0

( )

= ( ) | Arg max min ( )/

Arg min max ( )/

i ii Ix X

j jy Y j I

R x y X Y M x x y

y x y
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 9  2020



1582 KREINES et al.
(in the irregular case,  (5.6) is narrower than defined in (5.1) due to insignificant Slater points that are
not Pareto points). In this case, the outcomes in  satisfy the relation

and for DM-2 they satisfy the relation

Thus, we conclude that any pair of strategies in  (that is a Shapley equilibrium in the MC game) gives
to each player a result that is not worse than the estimate that is guaranteed for the corresponding player
with the same parameters of the GSF of her partial criteria. Now, we give a formal definition that allows
the players that use guaranteed estimates to compare sets in the criterion space.

Definition 3 (see [2]). The Edgeworth–Pareto hull of an arbitrary set  is defined as the set
 in the maximization problem or  in the minimization

problem. These sets will be denoted by  and , respectively.

Now, we define the equilibrium value of the MC game  as the set .
Then, the inequalities above imply the following result.

Proposition 4. In the case , it holds that

(5.7)

Proof. For every  on the left-hand side of (4.3) and, therefore, for , (4.3) implies that :
 . Thus, we have

as has been shown above. Therefore, :  = , and for  we have
; hence,  (because  is nonnegative); i.e., . Similarly, for , we

conclude from (5.4) that  for  and

for the other criteria indices , which gives the second inclusion in (5.7).
By adding to (5.7) the relations  and  obtained in [13], which once more

emphasize the principal difference of the MC maximin and MC minimax interpretation used in this paper
(both for the maximizing and the minimizing players) from their analogs used in [14], we summarize the
specific features of multicrieriality in the zero-sum game. By the classification of scalar two-person games
used in [19], the outcomes that are imputations (i.e., the outcomes that give for both uninformed players
the results not worse than their BGRs) constitute the -core of the game, and its -core is defined as the
set of outcomes belonging to the -core that give for both players the results not worse than their BGRs
under the conditions when the players know the opponent’s move. The outcomes in  (and in the regular
case, also all Shapley equilibrium outcomes) in the MC game can be assigned both to the - and -core,
if these concepts are generalized for the case of multicriteriality by replacing the inequalities by the inclu-
sion in the Edgeworth–Pareto hull. On one hand, we have here the correspondence to the value of the
scalar zero-sum game, which coincides with the maximin and minimax of the objective function under
the assumption that they are equal; i.e., the solution of such a game is included both in the - and in the

-core. On the other hand, (5.7) also holds when the MC maximin is not equal to the MC minimax for
any player and the equality of the MC BGRs of the players is possible only in the degenerate case. In Sec-
tion 6, we show that the nonemptiness of  is not a rare case, i.e., good properties of the set  as the
solution of the MC game  (and of the set  as its equilibrium value) are to a large extent caused by the
fact that the MC BGRs are pessimistic.
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Fig. 5. Relation between the MC equilibrium and BGR in the MC game .
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In the antagonistic MC game, the estimate of the result for the informed second player can be repre-
sented (taking into account that  is exceeded) in the form

(5.8)

where by contrast to (5.4), the inner maximum over the indices of the partial criteria is replaced by the
minimum for the lower bounds of the intervals to be multiplied. Hence, using (4.3) and the definition of

 we can once more derive the equality , i.e., the existence of solution for the antagonistic MC
game  (and also for ). To find an analog of the MC Shapley equilibrium for the antagonistic MC
game in normal form, we can replace the Slater MC minimum in the second membership in (5.1) by weak
estimates (see Definition 1). However, we do not dwell on generalizing the standard definition (which is
not used below); rather, we use Germeier’s scalarization and define the set

(5.9)

as the equilibrium solution of the MC game . For its equilibrium value 

, we prove the following expected result.

Proposition 5. In the case , it holds that  and , where

.
Proof. The first inclusion is proved in the same way as the proof of the first inclusion in Proposition 4

by replacing the superscripts 0 by . To prove the second inclusion, we take , and obtain from (5.8)
that  for  and

for the index  that realizes the minimum of . The first equality follows from (5.9).

The inequality for  proves the second inclusion in Proposition 5.
Thus, for the antagonistic MC game in normal form, we have obtained the same property as (5.7) by

defining the MC equilibrium for it by analogy with (5.6); this property shows that the equilibrium out-
comes give to both players the result not worse than their BGRs. The existence of equilibrium in the

c

</ ∈ ∈ ν∈
∈ ν ∈ νν∈ /

 
= ν ϕ , ν , , 

 
∏ ∏∪ ( )

( ) ( )
Min [ max min min ( )/ ] { }i j jy Y j Ix X

i I i IM

f x y C C

−θ μ[ ] < ≤/ =f f
Γ12

A Γ21
A

{
}

∈ μ∈

∈ ∈ ν

, ∈ × ∃μ, ν ∈ : ∈ ϕ , μ ,

∈ ϕ , ν

def

( )

( )

= ( ) | Arg max min ( )/

Arg min min ( )/

A A A A A
i ii Ix X

A A
j jy Y j I

R x y X Y M x x y

y x y

ΓA def
=AZ

{ }Φ , , ∈( ) |( )A A A A Ax y x y R

≠ /0AZ ≤ ≤⊆^ ( )eph AZ </ </⊆ ( )eph Af Z

{ }</ ψ ∈ ∃ ∈ : ψ </R
def

( ) = |eph nZ z Z z

A </ψ ∈ f
ψ = ≥ ϕ ,( )A A

k kC x y ν = 0k

∈ ∈ ν ∈ ∈ ν ∈ ν∈
ψ ≥ ν ϕ , ν ≥ ν ϕ , ν = ν ϕ , ν =

= ν ϕ , ν = ϕ ,

0 0 0 0

0 0 0 0

( ) ( ) ( )
max min min ( )/ min min ( )/ min ( )/

( )/ ( )

A A A
j j j j j ji i i iy Y j I y Y j I j Ix X

A A A A
i i i i

x y x y x y

x y x y

∈ ν0 ( )i I ϕ , ν( )/A A
j jx y

0i
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 9  2020



1584 KREINES et al.
game  imposes certain constraint on its parameters because the equality , along with the inclu-
sion , implies the following corollary to Proposition 5:  and .

This entails that the intersection  is not empty in the case . (For the example
in Figs. 2 and 3, this is seen in Fig. 5.)

Let us investigate the conditions for the existence of equilibrium paying attention to the zero-sum MC
game because we are mainly interested in the existence of solution in this game. By the solution of the
games  and , we understand in Section 6 the equilibriums  and  due to the proven properties
(5.7) and Proposition 5 for the equilibrium values  and .

6. THE EXISTENCE OF EQUILIBRIUM IN MC GAMES
In Section 5, we reduced the question of existence of an equilibrium imputation solution of the zero-

sum MC game to the nonemptiness of  (5.6). If we do not speak about the application of mixed strate-
gies, then it does not matter which scalarizing function is used by DMs; in the regular case, the parame-
terization of the set of outcomes (5.1) in form (5.6) using Germeier’s scalarization remains the same. It is
seen on the basis of this parameterization that condition (5.6), by contrast to conditions (4.2) and (4.5),
which characterize the existence of one-sided solutions, follows from the existence of solution of the scalar
game with at least one partial criterion. Indeed, to ensure that  includes the solution of this scalar game,
it is sufficient to choose in (5.6) as  and  the vector with the unit at the place of this partial criterion.
The same solution also belongs to  by definition (5.9). Let us show formally that the condition in (5.6)
is weaker than the existence of the one-sided solution.

Proposition 6. If for a certain vector  the situation  is a solution of the scalar zero-sum game
on  with the payoff function in the form of the GSF or the maximizing player

(6.1)

then  belongs to the solution of the MC game  in the sense (5.6) and (5.1).
Proof. By the definition of the solution of the scalar game with (6.1), we have

Let

Then

i.e., for  with , we have

Taking into account

we obtain for  the fulfillment of (5.6) with the corresponding  and .

Note that the GSF (6.1) in Proposition 6 for the maximizing function in the game  coincides with
the GSF of the minimizing player in the game . Therefore, the situation  is also the equilibrium
outcome for the antagonistic MC game due to (5.9).

Similarly to Proposition 6, we can prove the symmetric proposition for the GSF of the minimizing
player in the game . It gives one more sufficient condition for the existence of an MC equilibrium
obtained using the GSF and a set of equilibrium outcomes in .
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Proposition 7. If the situation  is, for a certain vector of parameters , a solution of the scalar
zero-sum game on  with the payoff function in the form of the GSF or the minimizing player in the MC
game 

then  belongs to the solution of the MC game  in the sense (5.6) and (5.1).
Note that the assumptions of both Propositions 6 and 7 are insufficient for the existence of a one-sided

solution of the MC game because the existence of solutions of the scalar games for all coefficients of the
GSF is not required. On the other hand, conditions (5.6) (and (5.1)) clearly give a too wide set. The
attempt in Section 5 to introduce additional informal requirements for constructing a solution as a proper
subset of the Shapley equilibrium strategies failed to reduce the set  due to (5.7). For the example con-
sidered in [5], the set of outcomes (5.1) turned out to be nonselective. For the arbitrary zero-sum MC
game,  can easily be made nonempty by using mixed strategies because, as has been shown above, it is
sufficient that the scalar game with one partial criterion has a solution. These properties are independent
of the scalarizing function form used to describe the Slater sets in (5.1). The standard approach is to use
the linear scalarizing function [7]; however, according to [24], set (5.1) parameterized using the linear sca-
larizing function is the largest one and, therefore, not smaller than (5.6). In actual fact, in the regular and
convex case, these sets are identical because, for any  satisfying (5.1), there exist parameters ,

 with which the conditions in (5.6) are satisfied. The number of the coefficients of the scalarizing
function in the parameterization based on the GSF can be even reduced. Let (for simplicity) 
(in this case, the regularity conditions are automatically satisfied).

Proposition 8: :

Proof. For any pair  satisfying (5.1), select

From (5.1), we conclude that   (= ): . Therefore,

The last quantity equals  ; hence, it also equals the minimum over .
Hence,  maximizes the GSF.

On the other hand,  :  and, therefore,

; i.e., the equality of the maximum over  also holds. Hence  is a minimizer of Ger-
meier’s scalarizing function of the second player with  for this . Due to (5.6), this completes the proof.

For the antagonistic MC game, the nonemptiness of (5.9) is also ensured by passing to mixed strategies
(by contrast to the existence of a one-sided solution). For the one-sided solution, it is required that the
scalar games (6.1) have solutions for any . However, this cannot be achieved by using mixed strat-
egies without using an MC mixed extension with averaging over the GSF considered in Section 4. In turn,
the proposed concept of MC averaging of the scalarizing function for obtaining a solution of a finite MC
game in mixed strategies allows us to use the mathematical techniques of Germeier’s scalarization for
parameterizing and analyzing the structure of the MC equilibrium with retaining good properties of linear
scalarization. Thus, the competitive ability of Germeier’s scalarization, which is widely used in operations
research, improves.
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7. CONCLUSIONS
In spite of the description of various approaches to the formalization of the solution of MC games, the

results obtained above suggest that this concept still needs elaboration. This also follows from the differ-
ence in the concepts of the one-sided solution and equilibrium, one of which seems to be too narrow and
the other too wide. But the main thing due to which the refinement is needed is that no solution in which
all the possibilities of compromise caused exclusively by multicriteriality, i.e., by subjective uncertainty in
goal setting, that would be acceptable from the viewpoint of operations research can be obtained. An intu-
itively clear definition of solution is available only for antagonistic MC games with a fixed order of
moves in which, by the way, there is no room for compromise. For zero-sum MC games in which it
is conventionally recommended to use equilibrium, its nonselectivity is suspicious (e.g., in Fig. 5,

).
Certainly, the set of scalarizing function coefficients ( ,  for GSF) can be a priori reduced, e.g.,

by establishing the relative importance of partial criteria for the DM [25]. Rather than selecting all non-
dominated points in the original problems (2.1), (2.2), (3.1)–(3.3), this approach leads to the selection of
points conforming to the system of preferences specified by a lexicographic order on the set of criteria.
This additional information was not taken into account in the analysis of competitive MC games, and it is
of independent interest.

An interesting method for reducing set (5.1) by imposing additional constraints follows from the con-
structions proposed in [26] (Definition 2.13 and Theorem 2.14) for mixed extensions of finite MC games.
This method is based on the concept of set optimization (partial order relations between the sets of reach-
able estimates similar to inclusion relations of their Edgeworth–Pareto hulls are introduced). It would be
interesting to estimate how much the constraints proposed in [26] can reduce the set of alternatives for
the OR.

In addition to specifying stronger constraints on the equilibriums in order to obtain a more adequate
solution of the MC competitive game, it is possible to try to generalize the concepts of -core and -core
described in [19] to MC games using the results obtained in [27]. The idea is that the concepts of solution
cores of a scalar game are based on its information extensions, i.e., on taking into account information
exchange between the players in the process of the game (another term used in the Russian literature is
hierarchical games [22]). More specifically, the  (or )-core consists of imputations that are Stackelberg
(or Germeier) equilibriums. The construction of these equilibriums requires the development of strategies
for the players to a priori inform each other; these strategies should include threat, warning [19], and pun-
ishment [22] scenarios, which improve the BGR of the player who applies such strategies. As a result, the
condition not worse than the BGR, which is used in all concepts of the core, becomes more significant.
Such extensions are also promising for dynamic games; e.g., they can model negotiation processes.

However, the issues of MC formalization of the bargaining process between two DMs who represent
the interests of their teams presently remain out of the scope of studies. In part, this is due to the fact that
the strategies mentioned above require the specification of assumptions about the information available
to both DMs about each other scalarizing parameters and about the attitude of the opponent to uncer-
tainty. For this reason, the further development of the theory of hierarchical games with uncontrollable
factors in the direction indicated in the title does not fit within the framework of this paper. Note that
Propositions 4 and 5 make it possible to use the idea of bargaining set from this theory, which is the basic
concept for scalar noncompetitive games [22] the properties of which manifest themselves in zero-sum
MC games. More precisely, we can introduce the concepts of bargaining estimates—in the MC game  as

 and in the game  as . For the case of a finite

MC game in which the players use Germeier’s scalarization for the MC mixed extension , there is a
chance to reduce the set of equilibrium outcomes even more down to the candidates for the game solution
by selecting in the corresponding set of bargaining estimates the vectors that are nondominated in the cri-
terion space for any player.

The issue of nonemptiness of the set of bargaining estimates when  and  are nonempty and the
issue of selection (if these sets of estimates are not empty) of a set of bargaining solutions in  and  is
the subject of study in the near future. We are going to elaborate this idea and examine (in particular, on
examples) what are the prospects if we can count in advance on the use of Germeier’s scalarization, by
DMs. Then, the parameterization of the BGR and equilibrium values using the GSF will give their illus-
trative description (with expansion in the scalarizing function coefficients) recommend to the players
potential tradeoff versions, i.e., give to the players more possibilities for coming to an agreement and for
ORs to slightly reduce the set (in the criterion space) that provides an a priori estimate of the DM’s result
in the MC competitive game.
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