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Abstract—A model describing the dynamics of a set of quantum states generated by a nonlinear
Schrödinger equation is studied. The relationship between the blow-up of a solution with self-focusing
and the transition from pure to mixed states of a quantum system was investigated in [1]. In this con-
text, a natural question is concerned with the dynamics generated by the nonlinear Schrödinger equa-
tion in the set of mixed quantum states. The dynamics of mixed quantum states is described by the
Liouville–von Neumann equation corresponding to the nonlinear Schrödinger equation. For the for-
mer equation, conditions for the global existence of a unique solution of the Cauchy problem and
blow-up conditions are obtained.
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1. FORMULATION OF THE PROBLEM
In this work, we study the evolution of a set of quantum states generated by a nonlinear Schrödinger

equation with a potential being a power function of the state probability density in coordinate space:

(1.1)

(1.2)

Here,  with  and  is the Laplacian in the space  whose domain is the space  of func-

tions from the Sobolev space  satisfying the homogeneous Dirichlet boundary conditions
 and . It was shown in [1] that, for low nonlinearity exponents , the Cauchy

problem (1.1), (1.2) generates a continuous group , , of nonlinear transformations of the initial
data space  that preserve the -norm of the solution and the value of the energy functional

on the vectors , . For , it will be shown that there are initial data (1.2) for which the
solution of the Cauchy problem admits finite-time self-focusing, which is followed by gradient blow-up
of the solution.

Nonlinear Schrödinger equations were intensively investigated in the context of mathematical justifi-
cation of wave self-focusing in nonlinear optical media (see [2]). Nonlinear Schrödinger equations were
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studied in -dimensional Euclidean space and its subdomains, and various nonlinear dependences of the
interaction potential on the unknown wave function were examined (see [3–7]).

It was shown in [3–6] that the Cauchy problem for a nonlinear Schrödinger equation with a nonlinear
potential being a power-law dependence on the unknown function either has a unique global solution or
a local solution that blows up when the boundary of the solution existence interval is approached. In the
former case, the Cauchy problem determines a one-parameter group of transformations of the initial data
space, and, in the latter case, the solution existence interval of the Cauchy problem depends on the initial
condition; moreover, the length of the existence interval can take any positive value depending on the
choice of the initial data (see [1, 4–6]).

In [8, 9], a regularization procedure was proposed that approximates the Cauchy problem with a blow-
ing-up solution by a directed family of Cauchy problems. By a regularization of the Cauchy problem, we
mean a topological space of initial-boundary value problems in which the Cauchy problem under study is
a limit point (see [9]). For the Cauchy problem with a polynomial nonlinearity, a regularization is speci-
fied as a one-parameter family of Cauchy problems for the nonlinear Schrödinger equation in each of
which the nonlinear Hamiltonian is a semi-bounded nonlinear operator (which ensures the global solv-
ability of the regularized Cauchy problem in the space corresponding to the energy functional). Moreover,
the directed family of graphs of regularized Schrödinger operators converges to the graph of the Hamilto-
nian of the Cauchy problem under study on the everywhere dense common domain of these nonlinear
operators. In [1, 8] the original Schrödinger equation (1.1) was approximated by its energy regularizations
specified by a directed set of energy functionals semi-bounded from below:

It was shown in [1, 8] that the directed set of solutions to Cauchy problems for regularized Schrödinger
equations converges to the solution of Cauchy problem (1.1), (1.2) on the entire solution existence interval
of the last. On intervals containing the boundary points of the solution existence interval for problem (1.1),
(1.2), the sequence of regularized solutions was established to diverge. Outside the solution existence
interval of Cauchy problem (1.1), (1.2), the directed set of solutions to Cauchy problems for the
Schrödinger equation with a regularized operator has a limit set in the space  of quantum states
equipped with the -weak topology. Equipping the set of regularized problems with the structure of a mea-
surable space with a measure makes it possible to define a one-parameter family of measures on the set of
vector quantum states, i.e., a one-parameter family of mixed quantum states.

In this context, we consider the Cauchy problem for the Liouville–von Neumann equation

(1.3)

(1.4)

where  is a set of quantum states defined as the intersection of the unit sphere with the cone of pos-
itive elements of the space  of linear continuous functionals on the Banach algebra of bounded
linear operators . Here,  is a mapping of some set  from the space of quantum states  to
the set of linear operators in , which to each state  assigns the operator  of multiplication by a
function depending on the state . If the potential  in the nonlinear Schrödinger equation (1.1) is the
operator of multiplication by the function , where  for , then the poten-
tial  in the nonlinear Liouville–von Neumann equation (1.3) is the operator of multiplication by the
function , where

provided that the quantum state is specified by the density operator  with a set of eigenval-

ues , and an orthonormal basis of eigenvectors  Here and below,  denotes the one-dimen-
sional orthogonal projector onto the linear span of the vector .

Thus, given the Cauchy problem for a nonlinear Schrödinger equation, we can specify a one-parameter
family of transformations of the set of quantum states  into itself that is an extension of the transfor-
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DYNAMICS OF A SET OF QUANTUM STATES 1339
mation taking each initial value of Cauchy problem (1.1), (1.2) to its solution. Under this extension, a pure
state is transformed into a mixed one in the transition through the moment of the gradient blow-up. The
task is to extend the family of dynamic transformations from the set of vector states to the set of mixed
states and to determine the conditions under which this extended family of transformations is a semigroup.
Additionally, we determine the relationship between the extended transformation and the solution of the
Cauchy problem for the Liouville–von Neumann equation (1.3), (1.4).

Note that the study of dynamical systems generated by Hamiltonians on an infinite-dimensional phase
space, including the Schrödinger equation (see [10]), leads to the study of not only vector states, but also
of general ones (i.e., nonnegative linear normed functionals) on the algebra of bounded linear operators
and its various subalgebras (see [11, 12]).

In this paper, the Sobolev normal quantum state is defined as a mixture of vector quantum states deter-
mined by vectors from a Sobolev space. The Sobolev solution of the Cauchy problem for the Liouville–
von Neumann equation (1.3), (1.4) is defined. For the nonlinear Liouville–von Neumann equation, we
propose a method of study based on its reduction to a nonlinear Schrödinger equation in an extended Hil-
bert space. Conditions under which the Cauchy problem (1.3), (1.4) specifies a continuous group of trans-
formations of a set of Sobolev quantum states are obtained, and conditions for finite time blow-up of
Sobolev states are derived.

2. LIOUVILLE–VON NEUMANN EQUATION AND THE SCHRÖDINGER EQUATION
IN EXTENDED SPACE

Let  be the Hilbert space of a quantum system and  be the Banach space of bounded
linear operators in  The space of quantum states is defined as the space  of linear continuous
functionals on the Banach space . The set of quantum states  is the intersection of the unit
sphere with the positive cone in the space  (see [13, 14]).

The space of normal quantum states is defined as the space of trace class operators  equipped with
the trace norm . The set  of normal quantum states is the intersection of the unit sphere with the
positive cone in the space  (see [13, 15, 16]).

Definition 1. The space of Sobolev states is a subspace  of the space  of normal states such
that, for any , it is true that , where  is a self-adjoint operator in  with
the domain

The space  is equipped with the norm .

Note that the operator  has a discrete spectrum located on the positive half-line . Therefore,
the spectrum of the self-adjoint operator  is also discrete and lies on the positive half-line.

A normal state  is called a Sobolev state if . Each normal state  can be
represented in the form of a nonnegative trace class operator  with a unit trace having the form

(2.1)

where , ,  is the orthoprojector onto the one-dimensional linear space , and

 is an orthonormal basis in  Moreover, if , then the vectors  in (2.1) satisfy the condition

  and

(2.2)
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1340 GREKHNEVA, SAKBAEV
state with a density operator  specifies a probability distribution with an absolutely integra-
ble density

If  is a Sobolev state, then condition (2.2) implies that . Since each function from the

space  can be treated (after changing it on a set of measure zero) as a continuous function on the
interval , on the set  of Sobolev states, a mapping  can be defined that takes each state

 to the linear operator  of multiplication by the continuous function

Here,  is a parameter of the nonlinear dependence of the potential on the density (see (1.1), (1.3)).

Lemma 1. If  is a Sobolev state, then the operator  of multiplication by the function
 is a bounded linear operator in the space 

Proof. Since , we have , where  , , and

 . Therefore, for any , the function  can be regarded as con-
tinuous (after changing it on a set of measure zero); moreover, there exists a constant  such that

 for any . Therefore, for any ,

Thus, if , then the function  is continuous and there exists a constant  such that
.

Definition 2. A continuous mapping of the interval  to the space  is called a Sobolev
solution of the Cauchy problem (1.1), (1.2) if

To study the Liouville–von Neumann equation, we introduce the extended Hilbert space ,
where the space  is isomorphic to  for each . As a result, the nonlinear Liouville–von Neumann
equation (1.3) for the unknown function with values in the space of quantum states  can be consid-
ered a nonlinear Schrödinger equation of form (1.1) for the unknown function with values in the space .

Consider Hilbert spaces , , and , where the spaces 
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DYNAMICS OF A SET OF QUANTUM STATES 1341
The nonlinear mapping  of the space  to the space  is defined as applied to a vector
 according to the rule

(2.3)

where, for each , the operator  is defined as the operator of multipli-

cation by the function .

In equality (2.3), , , and , where the projector  is

defined as .

Along with Cauchy problem (1.3), (1.4), we consider the Cauchy problem for the nonlinear
Schrödinger equation (2.4), (2.5)

(2.4)

(2.5)

The -solution of the Cauchy problem (2.4), (2.5) on the interval   is a mapping
 such that

(see [1]).
Theorem 1. The operator function

is a Sobolev solution of problem (1.3), (1.4) with initial data  if and only if the function

, , is an -solution of the Cauchy problem for the nonlinear Schrödinger equa-
tion (2.4), (2.5).

Proof. 1. First, we show that, if , is a Sobolev solution of the Cauchy problem (1.3), (1.4),
then it can be represented in the form
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1342 GREKHNEVA, SAKBAEV
with initial condition (1.4) and the time-dependent linear evolution operator , where 
for each  is a linear bounded operator in  that is the operator of multiplication by the func-
tion

Therefore,

where, for each , the function  is a solution of the Cauchy problem for the
Schrödinger equation

(2.7)

Therefore, the function

solves the Cauchy problem for the Schrödinger equation

where  is a linear operator in  defined as

Since

we have  Therefore, the function  solves Cauchy problem (2.4),

(2.5) with initial data .

2. Now, let us show that, if the vector function  is a solution of the Cauchy
problem for the nonlinear Schrödinger equation (2.4), (2.5), then the operator function

is a Sobolev solution of problem (1.3), (1.4) with initial data .

If the vector function ,  is a solution of the Cauchy problem (2.4),
(2.5), then this function is a solution of the linear Schrödinger equation with the time-dependent potential

Therefore, the mapping  defined by the equality  is a solution of the
Cauchy problem for the linear Liouville–von Neumann equation (2.6) with the time-dependent potential

 Therefore, since , the mapping 
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DYNAMICS OF A SET OF QUANTUM STATES 1343
Corollary 1. If , is a Sobolev solution of the Cauchy problem (1.3), (1.4) with initial data

, then

(2.8)

where, for each , the function , is an -solution of the Cauchy problem for Eq. (2.7)
with the initial value  and the potential , .

The transformations of the Sobolev space  generated by the nonlinear Schrödinger equation (1.1)
have the following properties:

(i) On each -solution of Eq. (1.1), the -norm of solution values is a constant: 
.

(ii) For each -solution of Eq. (1.1), the energy functional preserves a constant value:
 where

Note that a transformation of the Sobolev space may not preserve the inner product of  and the norm
of , i.e., the equality , , and the equality ,

 may not hold. Let us show that a nonlinear transformation of the set of Sobolev states preserves
the orthogonality of the vectors in the expansion of the density operator (2.8).

Corollary 2. Let , be a Sobolev solution of the Cauchy problem (1.3), (1.4) with initial

data . Then  , where  are the vec-
tors in the expansion of density operator (2.8).

Proof. It suffices to recall that, by Corollary 1, the functions  are solutions of the
Cauchy problem for the linear Schrödinger equation (2.7) with initial data  and , respectively, and with
the potential , . Since  is a common potential for the evolution of the vector func-
tions,

Remark. Theorem 1 shows that the Cauchy problem for an unknown function with values in the space
of density operators of the quantum system is equivalent to the Cauchy problem for an unknown function
with values in the extended Hilbert space. Moreover, the extended Hilbert space describes quantum
dynamics on a graph (see [17]) formed by a finite or countable set of edges with specially chosen boundary
conditions (homogeneous Dirichlet conditions on each edge) and with a special nonlinear interaction
potential determined by equality (2.3).

3. LOCAL SOLVABILITY OF THE CAUCHY PROBLEM
FOR THE LIOUVILLE–VON NEUMANN EQUATION

Relying on the established equivalence between the Cauchy problems for the Liouville–von Neumann
equation (1.3), (1.4) and the nonlinear Schrödinger equation (2.4), (2.5) and using the results of [1, 18],
we can prove the following assertion.
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Proof. The existence, on the interval , of a Sobolev solution to the Cauchy problem (1.3), (1.4)
with initial data (3.1) is equivalent to the existence, on the same interval, of a solution to Cauchy problem
(2.4), (2.5) with initial data . In [1, 18], a local existence and uniqueness theorem for Cau-
chy problem (2.4), (2.5) in the case  was proved by applying the same methods as in [3, 4, 8].
By Theorem 1, that result implies the assertion of Theorem 2.

4. ENERGY CONSERVATION

On the set  of Sobolev states, we define a functional  that maps each Sobolev state  to the
number

Theorem 3. Suppose that . Assume that the initial state (1.4) is specified by density operator (3.1).
Additionally, suppose that   and . If  is a Sobolev solution of problem
(1.3), (1.4), then  for .

Proof. Note that , where

Here,

where the function  is given by  and .

The conservation of the energy  for vector functions , solving the Cauchy problem
(2.4), (2.5) was established in [1, 18]. Therefore, the assertion of Theorem 3 follows from Theorem 1.

5. GLOBAL SOLUTION

Theorem 4. Suppose that  and . Then the Cauchy problem (1.3), (1.4) has a unique
Sobolev solution on the entire real line .

Proof. By Theorem 1 on the equivalence of Cauchy problems (1.3), (1.4) and (2.4), (2.5), it suffices to
show that the solution of Cauchy problem (2.4), (2.5) is globally extendable. Let . If

, then  and . According to Theorem 2 (see [18]), there exists

 such that the Cauchy problem (2.4), (2.5) has a unique -solution , , on the
interval .

Let  be the supremum of the set of lengths of intervals on which the Cauchy problem (1.3), (1.4) has

a Sobolev solution and, hence, the Cauchy problem (2.4), (2.5) has an -solution. It was established in
[1, 18] that either  and  or  and .

In [1] it was shown that, for the -solution  of the Cauchy problem (1.1), (1.2) with , the
condition  implies that  is bounded. Let us prove that a similar

assertion holds for the -solution of Cauchy problem (2.4), (2.5) and, hence, for the Sobolev solution of
Cauchy problem (1.3), (1.4).

By Theorem 3, for any , it is true that

(5.1)
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The potential energy

where

is estimated from above in terms of the kinetic energy .

Following the approach used in [5, 18], if , then, in view of the Gagliardo–Niren-
berg–Brezis inequality (see [1, 19]), for each , there exists a constant  such that

(5.2)

where .

Note that  . Additionally,

It follows that

so, according to the Cauchy–Schwarz inequality,

Therefore,

Since  , we have   and the estimate

holds for any .
Therefore, according to inequality (5.2),

where  hence, by virtue of (5.1),

Therefore,  (see [3, 18]).

Consequently, the Sobolev solution of Cauchy problem (1.3), (1.4) is extendable to the half-line  and
the set of its values in the space  is bounded.
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6. BLOW-UP OF THE SOLUTION

Theorem 5. Suppose that  and . If , then there exists a number 
such that the Cauchy problem (1.3), (1.4) has a Sobolev solution only on the interval . Moreover, the
Sobolev solution , is unique on the interval  and

(6.1)

Proof. To prove Theorem 5, it suffices to show that there is  such that the Cauchy problem
(2.4), (2.5) with initial data  has an -solution only on the interval . Moreover, the

-solution , , is unique on the interval  and

First, we note that, if , then . Therefore, if  is an -solution of
the Cauchy problem (2.4), (2.5) with initial data , then  Hence, if

then an analysis of the dynamics of , suggests that the solution of the Cauchy problem
exhibits a gradient blow-up and self-focusing at the point  (see [1]).

Following [3, 18], we show that

where  and .

Then, for , on the solution existence interval , it holds that

This inequality implies that the solution existence interval is bounded from above. Following the approach
used in [3], we obtain (6.1).

Remark. The fact that the norm of the -solution to the Cauchy problem (2.4), (2.5) (or, equivalently,
the -norm of the Sobolev solution to problem (1.3), (1.4)) grows unboundedly as  does
not necessarily mean the existence of a mixed-state component ,  whose -norm grows
unboundedly as .

7. CONCLUSIONS
Conditions on the parameters of the nonlinear operator of the nonlinear Liouville–von Neumann

equation were obtained under which the Cauchy problem (1.3), (1.4) defines a one-parameter group of
linear transformations of the space  of Sobolev quantum states. It was shown that the violation of
these conditions leads to the blow-up of the Sobolev solution to Cauchy problem (1.3), (1.4).

In [1] for the Cauchy problem (1.1), (1.2) for the nonlinear Schrödinger equation, a procedure was pro-
posed for extending its -solution beyond the blow-up time  with the help of a mapping of the time
half-line  to a quantum-state space  determined by regularizing the original problem (1.1),
(1.2). Considered in this work, the Liouville–von Neumann equation (1.3) has an advantage over
Schrödinger equation (1.1) in that the solution of Eq. (1.3), its regularization, and the limit points of the
family of regularized solutions are all mappings of the time half-line  to the state space .
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