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Abstract—The fourth-order differential operator with matrix coefficients with the domain determined
by quasi-periodic boundary conditions is considered. For this operator, the asymptotics of the arith-
metic mean of the eigenvalues is found. Moreover, for various special cases, the asymptotics of the
eigenvalues is also obtained. The spectral characteristics in the case of periodic and antiperiodic
boundary conditions are studied separately. The results are better than those known before.
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INTRODUCTION

Consider the Hilbert space  of measurable square integrable complex functions defined on the
interval . Denote by  the space  with the scalar

product

where . Then, the norm induced by this scalar product is defined by

The aim of this paper is to study the spectral characteristics of the fourth-order differential operator
 defined by the differential expression

where  and  are  matrices and the elements of these matrices 
and  belong to the space .

Denote by  the matrix , where , . Below, we assume that

the matrix  is similar to a diagonal matrix, i.e., it is a matrix of simple structure (see [1, Chapter III, § 8]).
The domain  of the operator  is determined by the boundary con-
ditions

where , .
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1164 POLYAKOV
Let us now describe the history of studies of this class of operators. The study of asymptotic formulas
for high-order differential operators with matrix coefficients and integrable elements seems to be started
in [2]. In that paper, regular boundary conditions were defined and theorems about the eigenvalue expan-
sion of functions belonging to the domain of regular operators were proved. In a modified form, these
results were described in [3, Chapter III]. In the class of regular boundary conditions, a class of strongly
regular conditions is distinguished. In the scalar case, it was proved in [4] that the system of eigenfunctions
and associated functions of the regular differential operator form an unconditional basis. It was proved in
[5] that for the regular operators only the basis property with parentheses can be guaranteed. Moreover,
only the terms corresponding to the asymptotically mutually approaching eigenvalues should be parenthe-
sized. General results on the Riesz basis property of ordinary high-order differential operators and more
complicated boundary value problems with a nonlinear occurrence of the spectral parameter in the equa-
tion and the boundary conditions were obtained in [6]. It was also noted in [7] that the method proposed
in [6] makes it possible to prove the unconditional basis property with parentheses for the system of eigen-
functions and associated functions of the regular differential equations also in the matrix case. In addition,
for the strongly regular case, the unconditional basis property is guaranteed. A generalization of these
results was obtained in [8].

Certainly, the most popular object of research in the spectral theory of differential operators is the non-
self-adjoint Sturm–Liouville operator. In the matrix case, quasi-periodic boundary conditions were con-
sidered in [9], and sufficient conditions for the matrix coefficients that guarantee the strong regularity
were found. In that paper, asymptotic formulas for the eigenvalues in the case of nonsmooth (integrable)
matrix coefficients were obtained and the Riesz basis property of the eigenfunctions and associated func-
tions in the space  for strongly regular operators was proved. Later, the results of [9] for the bound
on the remainder term in asymptotic formulas for the eigenvalues were strengthened in [10] for the case of
square integrable matrix coefficients. Further improvements and generalizations of the results concerning
the asymptotics of eigenvalues and the unconditional basis property of eigenfunctions and associated
functions were made in [11–14].

In this paper, we derive asymptotic formulas for the eigenvalues of the differential operator  for
, , and compare these results with the earlier known ones. The case  is of special inter-

est. The main method of investigation used in this paper is a version of the method of similar operators
(see [15–17] and [10]). However, here we develop an adapted scheme of this method that differs from the
schemes used in the works cited above. This modification makes it possible to strengthen earlier results.

Before formulating the main results of this paper, we give some notation. Recall that  and .
Let us represent the operator  in the form , where ,

, and , . The operator  plays the
role of unperturbed operator, and the operator  plays the role of perturbation. The spectrum of  is dis-
crete, and its eigenvalues are , , . The corresponding eigenvectors are

the functions  ( , , ), where the vectors  ( ) form

an orthonormal basis in . In addition, for any , we define the Riesz projection  ( ) by

(0.1)

Definition 1. For every bounded matrix  acting in , the arithmetic mean of its eigenvalues is
defined by

where  are the eigenvalues of .

Note that in some works (e.g., in [10]) it was called the weighted mean of eigenvalues. In this paper,
the more adequate name will be used.
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SPECTRAL ESTIMATES FOR THE FOURTH-ORDER OPERATOR 1165
Theorem 1. There exists a number  for which the spectrum of the operator  can be represented in
the form

(0.2)

where  is a finite set and  contains no more than  points. Moreover, each set  coincides with the spec-

trum of the restriction of the operator  to the subspace , . Then, for  we have the asymptotic
representation

(0.3)

where  ( ) are the eigenvalues of the matrix .

Since the eigenvalues of  may be multiple, here we may speak only about asymptotic formulas for
the arithmetic mean of the eigenvalues.

Theorem 1 describes the most general situation, and below we consider various special cases.

Theorem 2. There exists a number  for which the spectrum of the operator  can be represented in
form (0.2). If the eigenvalues  ( ) of the matrix  are simple, then we have the asymptotics

The asymptotic formulas presented in Theorems 1 and 2 elaborate the results [11, Theorems 1, 2].
Everywhere below we denote by the symbol  various positive constants.

Let the matrices  and  of the operator  be of size , i.e., let each matrix consist of a single ele-
ment. We denote these elements by  and . Each of them belongs to the space ; therefore, we have
the expansions

where  and  are the Fourier coefficients of the functions  and , respectively. Thus,  in this case is
an ordinary fourth-order differential operator with nonsmooth complex coefficients. For this operator,
the following results hold.

Theorem 3. Let the elements  and  belong to the space . Then,  is an operator with a discrete
spectrum, and there exists a number  such that its spectrum can be represented in form (0.2). The eigen-
values  ( ) satisfy the bound

(0.4)

where  is a summable sequence.
Remark 1. The asymptotic term with the summation sign in (0.4) satisfies the bound

where  is a square summable sequence. The exact form of this sequence will be given in the proof of
Theorem 3. Thus, the term of the asymptotics written above is the second-order approximation.
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1166 POLYAKOV
Theorem 4. Let the coefficients  and  be functions of bounded variation. Then  is an operator with a
discrete spectrum, and this spectrum can be represented in form (0.2) for a certain . The eigenval-
ues  ( ) have the asymptotic representation

Finally, consider an important case that was not described above. If we set  or , then 
becomes an operator with periodic or antiperiodic boundary conditions. Since the analysis of the eigen-
value asymptotics in this case presents certain difficulties (see [13]), we here consider only the one-dimen-
sional case. We will use the technique developed in the present paper (with certain modifications). To
simplify the presentation, we continue to use the notation introduced above. Then, the matrices  and 
have the size , and their elements are functions  and  from the space . The operator  is a
fourth-order differential operator with nonsmooth coefficients and periodic or antiperiodic boundary
conditions. The analysis of the spectral properties of this operator is of independent interest due to appli-
cations in mechanics (see [18, Chapter I, § 2.3]), optics and acoustics (see [19]), and in the investigation
of nanotube conductance (see [20]). This operator also describes vibrations of beams, plates, hulls, and
compressed rod on an elastic base (see [21, 22]).

The spectrum of the self-adjoined fourth-order operator with nonsmooth periodic coefficients was
analyzed in a series of papers by Badanin and Korotyaev. In [23] spectral zones and characteristics of the
spectrum were investigated, and the asymptotics of the eigenvalues was obtained. The last result was later
elaborated in [24]. In [25, 26], various spectral characteristics of the operator  ( ) were analyzed,
including the asymptotics of its eigenvalues. In [27], the differential operator of an arbitrary order the
domain of which is determined by periodic or antiperiodic boundary conditions was considered. In that
paper, asymptotic formulas for the eigenvalues were derived, and the conditions under which the eigen-
functions and associated functions form a Riesz basis in  were obtained.

Now, we present the main results of the current paper. The first theorem deals with the asymptotics of
the eigenvalues of , . Compared with [25, Theorem 1], [26, Theorem 1], and [27, Theorems 1
and 2], the result below gives an improved formula for the second-order approximation and the formula
for the remainder term.

Theorem 5. The operator  for  is operator with discrete spectrum, and there exists a number
 such that its spectrum can be represented in form (0.2). Here  is a finite set with the number of

points not exceeding , and the set  has the form . The eigenvalues  ( ) sat-
isfy the asymptotic bound

(0.5)

where  is a summable sequence.
Remark 2. Detailed bounds on the asymptotic terms will be given in the proof of this theorem.
As before, we consider some special cases.
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SPECTRAL ESTIMATES FOR THE FOURTH-ORDER OPERATOR 1167
Corollary 1. Let the elements  and  be real functions. Then

where ( ) is a summable sequence.
Theorem 6. Let the elements  and  be functions of bounded variation. Then, the spectrum  of the

operator  ( ) can be represented in form (0.2), and  ( ) satisfy the relation

The result of Theorem 6 strengthens the corresponding result in [25, Theorem 2] and [26, Theorem 2].
It is known (see [26, Theorem 8]), that  ( ) is a sectorial operator, and it generates an ana-

lytic semigroup of operators. In that paper, an asymptotic representation of this semigroup was also
obtained. However, this representation is extremely cumbersome. On the basis of the improved eigenvalue
asymptotics in Theorem 5 and the form of the semigroup obtained in [28, Chapter 1, § 6], we obtain in
Theorem 14 a better and more compact representation of the semigroup under examination.

The paper is organized as follows. In Section 1, we investigate the abstract operators the spectral char-
acteristics of which are close to the spectral characteristics of the operator . In particular, we prove the
basic theorem for the eigenvalue asymptotics. In Section 2, we preliminary perform the similarity trans-
form of the operator  to an operator with the spectral characteristics studied in Section 1. In Section 3,
we prove the main results of the paper for , . Section 4 is devoted to the proof of results for
the operator  in the one-dimensional case subject to periodic and antiperiodic boundary conditions.

The results of this paper were partly announced in [29].

1. ABSTRACT OPERATORS CLOSE TO THE OPERATOR  AND THEIR PROPERTIES
In this section, we study the spectral properties of an abstract operator the structure of which is similar

to that of the operator . We construct an adaptive scheme of the method and apply it directly to the
operator . However, we first formulate the basic principles.

Let  be a complex separable Hilbert space, and  be the Banach algebra of linear bounded oper-
ators acting in  with the norm .

Definition 2. Two linear operators  ( ) are said to be similar if there exists a
continuously invertible operator  such that  for  and .
The operator  is called the transform operator of  to .

The interest in the study of such operators is due to the fact that some of their spectral properties are
identical (see [17, Lemma 1]). In particular, similar operators have identical spectra.
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1168 POLYAKOV
Consider a closed linear operator . We denote by  and  the spectrum and
the resolvent set of , respectively. Denote by  the Banach space of operators acting in  and sub-
ordinate to the operator . A linear operator  belongs to the space  if

 and the quantity  is finite. This quantity
is considered as the norm in .

Now we examine the operator . Usually the spectral properties of  we are interested in are
well studied for the operator ; however,  and  are not similar. The method of similar operators
suggests the following solution to this problem. Using similarity, the investigation of the spectral proper-
ties of the operator  is reduced to the investigation of the spectral properties of an operator ,
where  has a simple structure and the operator  is sufficiently simple for the investigation of its
spectral properties. Then, by Definition 2, the operator  has the same properties. To perform such a
similarity transformation of operators, we need certain special techniques.

Definition 3 (see [15, 16]). Let  be a linear subspace of the operators in , and let 
and  be transformers (i.e., linear operators in the space of linear operators). The triple

 is said to be an admissible triple for the operator , and  is called the space of admissible per-
turbations if the following conditions hold:

(1)  is a Banach space with its own norm  continuously embedded in ;

(2)  and  are continuous transformers, where  is a projection;
(3)  and  for every , and  is the unique

solution to the equation  satisfying the condition ;
(4)  and  for all , and there exists a constant  such that  and

;

(5) for every  and any , there exists a  such that .
Let us give some explanations for the objects just defined. Usually, we choose a convenient Banach or

Hilbert space as the space . The transformer J is directly related to the form of the operator . The intro-
duction of the operator  is closely related to the construction of the transform operator  in Definition 2. This
is explained in more detail after the formulation of the main similarity theorem. Note that the admissible
triple is not unique. We select it on the basis of the convenience of its use, the presence of certain proper-
ties of the transformers in this triple, and the final results.

Theorem 7 (see [15, 16]). Let  be an admissible triple for the operator  and the operator  belong
to . If it holds that

(1.1)

then the operator  is similar to the operator , where the operator  is a solution of the non-
linear operator equation

(1.2)

Such a solution can be found using the simple iteration method by setting ,  and so on. Here
 is a contraction operator in the ball . The similarity transform of the

operator  to the operator  is done by the invertible operator .
A proof of this theorem can be found in [15, Theorem 1.5] and in [16, Theorem 19.2]. Condition (1.1)

provides the existence condition for the solution of the nonlinear equation (1.2). The form of this equation
is directly related to the transform operator . Conditions (3)–(5) in Definition 3 guarantee the
invertibility of this operator and its invariance under the domain . Thus, all properties of similar oper-
ators in Definition 2 hold true.

Since  is a projection, Theorem 7 can be considered as a theorem on the similarity of the operator
 to the operator  of block diagonal form relative to the “basis” in which the operator  has

diagonal form. Thus, the scheme just described makes it possible to significantly simplify the analysis of
spectral properties of the original operator .

Now we apply the scheme described above to an operator the spectral properties of which are similar
to those of the operator . To the end of this section, we assume that , . As the unperturbed
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SPECTRAL ESTIMATES FOR THE FOURTH-ORDER OPERATOR 1169
operator, we consider the normal linear operator  with a discrete spectrum. Assume
that the eigenvalues of this operator have multiplicity  and have the form

Thus, the spectrum  of  can be written as , where , , ,
and  ( ) are finite sets. Denote the corresponding eigenfunctions by , , .
Assume that they form an orthonormal basis in . Denote by  ( ) the Riesz projection constructed
on the basis of the spectral set . For every , this projection is determined by formula (0.1). There-
fore, , , .

Remark 3. It has already been mentioned above that the operator  has exactly the same spectral prop-
erties as the operator  for , . For the eigenvalues, eigenfunctions, and projections, we will
use the same notation as for the operator .

Denote by  the ideal of the Hilbert–Schmidt operators with the norm  (see [30, Chapter 3,
§9]). Each operator  is assigned the block matrix  composed of the operators

, . Since the projections  ( ) are orthoprojections, the norm in  is given

by the formula .

For an arbitrary , consider the normal operator  defined by

with the domain

Now we have everything we need to construct an admissible triple. According to Definition 3, it con-
sists of the space of admissible perturbations  and two transformers.

The Banach space of admissible perturbations  consists of the operators  that can be rep-
resented as

The norm of the operator  in  is defined as .

Let us proceed to constructing the necessary transformers, which we will denote by  and . To this
end, determine more general transformers  and , which will play an auxiliary role. Let

(1.3)

For , define the operator  on the operator blocks 

. For each  ( ), define the transformer  as , where  is a
solution to the equation  ( ) and  for every . Note that the last equation
can be rewritten as

(1.4)

where  is the restriction of  to the subspace  for any . Since  for ,
each equation in (1.4) has a solution and

The correctness of the definition of the operators  and  and their boundedness are proved as
described in [26, Lemma 1].
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The extensions of the transformers  and  to the space , which will be below denoted by the
same symbols, will be defined for any operator  by

(1.5)

For any , define the family of transformers  and  by

(1.6)

(1.7)

where . Since  belongs to the space , the series in (1.3), (1.6), and (1.7) are convergent
in the uniform operator topology.

Since the transformers  and  are constructed from the transformers  and , then extensions of
 and  to the spaces  and  are also constructed by formulas (1.5).

Remark 4. In essence, the transformers  and  are formed by “cutting” a finite-dimensional block
from the corresponding transformers  and . Thus,  and  differ from  and  by operators of
finite rank. The dependence on  in the transformers  and  is introduced for two purposes. Firstly,
for controlling , which must be sufficiently small. This requirement will be clarified when the pre-
liminary similarity transform is performed in the next section (see Lemma 5). The other purpose is to
remove certain restrictions on the operator . A closer examination of  allows us to prove the bound

. By Theorem 7, similarity is possible only under condition (1.1). Therefore, for further con-
structions, we need  to be small. Hence, by using the transformer  and choosing a sufficiently
large , we can remove this restriction.

Let us discuss some properties of the transforms just constructed. Definitions (1.6) and (1.7) immedi-
ately imply that all operators  for  satisfy the equalities

(1.8)

Thus, the construction of the triple  is completed. To apply Theorem 7 this triple must be
admissible. This result is formulated in the following lemma.

Lemma 1. For every , the triple  is admissible for the operator  and

The proof is similar to the proof of [26, Lemma 4].

Up to the end of this section, we assume that the perturbation  belongs to the space  constructed
above. Then, on the basis of the abstract Theorem 7, we can formulate the main similarity theorem for the
operator .

Theorem 8. Let the number  be such that

(1.9)

Then, the operator  is similar to the operator , where  is a solution of the nonlinear
equation

(1.10)

which can be found by the simple iteration method by setting , , …. The operator  is
a contraction operator in the ball . The similarity transform of the operator  is
the operator .

The proof immediately follows from Lemma 1 and Theorem 7.
Using this theorem, we proceed to the analysis of the spectrum of .
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Theorem 9. Let condition (1.9) holds. Then, the operator  has a discrete spectrum that coincides with
the spectrum of the operator

(1.11)

In addition, the equalities

(1.12)

hold, where  is a restriction of the operator  to the invariant subspace , and  is
the restriction of  to the subspace , .

Proof. Since  has a discrete spectrum and  is a bounded operator, the operator  also
has a discrete spectrum. By Theorem 8,  is similar to . This similarity implies that 
also has a discrete spectrum, and it holds that .

Formula (1.6) immediately implies (1.11). Moreover, Theorem 8 and [17, Lemma 1] imply that the
operator  (1.11) commutes with all projections  and , . Therefore, the subspaces

 and  for  are invariant for the operator . If
, then there exists an eigenvector  such that . Thus, the

form of the operator  implies that

(1.13)

where  is a restriction of  to  and  is a restriction of  to  for .
Since , i.e., the system of projections forms a resolution of identity, it follows

from (1.13) that at least one of the vectors  ( ) and  is nonzero. Therefore,  is an
eigenvalue of the corresponding operator from the family of operators  ( ), . Therefore, we
have the embedding

The reverse embedding is obvious. Therefore, we have proved equality (1.12), which completes the
proof of Theorem 9.

Thus, Theorems 8 and 9 reduce the analysis of the spectral characteristics of the operator  to the
analysis of the spectral characteristics of the operator . The next theorem deals with the algo-
rithm for finding asymptotic formulas for the arithmetic mean of the eigenvalues of .

Theorem 10. Let condition (1.9) be satisfied and the spectrum of the operator  can be represented in
form (1.12). Then, the sets  ( ) contain no more than  points. The arithmetic mean of the eigen-
values of each of these sets coincides with the arithmetic mean of the eigenvalues of the matrix , which can
be represented as

(1.14)

where  is the identity matrix and  is the matrix of size  composed of the elements ,

. Furthermore, for the number , the norm of the
matrices  satisfies the bounds

(1.15)

Proof. In the proof, we will often use equalities (1.8). Apply the projection  to Eq. (1.10) with 
on the left and on the right. Then

(1.16)
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Represent the operator  ( ) in the form

Multiply both sides of the equality by the operator  on the right. Then

(1.17)

Let us estimate the second factor on the right-hand side of (1.17). Using (1.8), we obtain

where

Let us now estimate . Again, we apply to Eq. (1.10) the projection . Then

By estimating both sides of the last equality, we obtain

Therefore, if , then we have . Hence,

(1.18)

Inequalities (1.17) and (1.18) imply the bound

(1.19)

where . Note that the first value in  is responsible for the repre-
sentation of spectrum (1.12), and the second one for the fulfillment of the inequality .

Consider the restrictions of the operators in (1.16) to the subspaces  for . The matrices cor-
responding to these operators are denoted by , , and , respectively. Then, taking into account the
fact that the operator  belongs to the space , formula (1.16) implies representation (1.14). More-
over, for the matrix , which corresponds to the operator , inequality (1.15) holds due
to (1.19).

2. PRELIMINARY SIMILARITY TRANSFORM

Now we return to the analysis of the operator , where  and . Everywhere
below, we use  as the space . To investigate the operator , we use the scheme described in Sec-
tion 1. As the operator , we will use the unperturbed operator . Next, we use the admissible triple con-
structed above. For the scheme described above to be applicable, it is necessary (see Theorem 8) that the
operator  belongs to the space . However, the straightforward calculation shows that this is not the
case— the operator  only belongs to the space . For this reason, we perform a preliminary simi-
larity transformation (see [17, Assumption]). This transformation allows us to reduce the analysis of the
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operator  to the analysis of the operator , where the operator  belongs to the space , and the
operator  is constructed given the operator . The exact form of this operator will be described below.
Then, we will be able to apply the scheme constructed in Section 1 to the operator .

Technically, we will check five properties (see [17, Assumption] and Lemma 5 in this paper) that are in
part similar to the properties of the admissible triple. For this reason, the construction of the transform
operator and the specific form of the operator  actually deal with the same issues of the solvability of
nonlinear equations as before.

Thus, we will use the triple constructed in Section 1 as the basis. Since  is in the space , the
operators  and  are well defined by (1.6) and (1.7) using extensions (1.5). Recall that the spectrum
of the operator  is discrete and its eigenvalues are

The corresponding eigenfunctions are

where the vectors  ( ) form an orthonormal basis in . Therefore, the eigenspace
 is -dimensional. As before, we denote by  the Riesz projection, which for every

 is defined by (0.1).

We begin designing the preliminary similarity transform from examining the properties of the operator .
We represent it in the form

Since the elements  and  ( ) of the matrices  and  are in , we have the expan-
sions

where  and  are the Fourier coefficients of the functions  and , respectively. In addition, due to
Parseval’s identity, we have

Using these expansions, we estimate the elements  and  of the blocks of the matrix representa-
tions of  and , respectively. We have the equalities

Similarly, we obtain the relations for . Hence, we obtain the bounds

(2.1)

Using these inequalities, we proceed to the analysis of the operators involved in the preliminary simi-
larity transform.
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Lemma 2. For every , the operators  belong to the space , and the inequality 
holds for sufficiently large . Moreover, for , we have the bounds

(2.2)

(2.3)

Proof. Since , we obtain due to the linearity of the transformer  that .
Let us prove that the operator  belongs to the space . To this end, we first show that . Let
us use the first inequality in (2.1). Then we have

(2.4)

Therefore, . According to formula (1.7), the operator  differs from  by a finite rank oper-
ator. Therefore, . Taking into account the second inequality in (2.1), we similarly prove that

. Therefore,  belongs to the space of admissible perturbations. Furthermore,

Hence, we can always find a sufficiently large  for which .

Again, use (1.7) and the properties of the operator  to obtain

Using this bound and setting  in inequalities (2.4), we obtain (2.2). Inequality (2.3) is proved using
the same technique by setting  in these inequalities. Thus, the lemma is proved.

The straightforward verification proves the following lemma.
Lemma 3. For every ,  is a bounded operator.
Lemma 4. For every , the operators  belong to the space  and satisfy the bounds
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Proof. The reasoning is the same as in the proof of Lemma 2. First, we prove the lemma assertion for
the operator . Using the first inequality in (2.1), we obtain the inequality

(2.7)

The right-hand side in this inequality is finite. This is proved as in [26, Lemma 7]. Therefore, 
is in the space . Since  is the multiplication operator by the function , then the operators ,

, and  also belong to . Thus, . Since  differs from  by a finite rank
operator,  also belongs to the space of admissible perturbations .

To complete the proof of the lemma, it remains to derive bounds (2.5) and (2.6). In (2.7), set  and
apply the Hölder inequality to obtain
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where , , and  is a square summable sequence. Tak-
ing into account (1.7) and the relations just obtained, we have

(2.9)

This proves the first inequality in (2.5).
Next, set  in inequalities (2.7). Consider the square summable sequence

(2.10)

where , , .

Using the Hölder inequality, we obtain

(2.11)

Reasoning in the same way as in (2.9), we obtain the second bound in (2.5) for the operator .

It remains to prove bound (2.6). Consider the matrix of the restriction of the operator  to the
subspace  in the basis  ( , ). Its elements are

(2.12)

Set  in (2.7). Using the same reasoning as in the derivation of (2.11), we obtain
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Using bound (2.9) for the operator , we obtain the desired bound (2.6), which completes
the proof.

Now, we formulate the final lemma under the conditions of which the preliminary similarity transfor-
mation will be possible.

Lemma 5. There exists a number  such that the operators , , and  satisfy the follow-

ing conditions: (a) , ; (b) ; (c) , ;

(d) , ; (e) for every , there exists a  such that

.

Proof. By Lemma 2 the operator  belongs to , and there exists a  such
that . Therefore, property (a) holds.

Let us prove property (c). The first part of the lemma holds due to Lemma 4. By Lemma 3,  is a
bounded operator. Then, using Lemma 2, we conclude that the operator  belongs to .

Properties (b), (d), and (e) are proved as in [26, Lemma 4]. This completes the proof of Lemma 5.
Based on this lemma and [17, Theorem 9], we can formulate the first similarity theorem.

Theorem 11. Let there exist a number  such that . Then, the operator  is

similar to the operator , and it holds that

where the operator  belongs to the space  and can be represented as

(2.13)

In this theorem, the form of  can be described in more detail. From formula (2.13), we conclude that

(2.14)

The last equality will also be used below.

Theorem 11 reduces the investigation of the operator  to the investigation of , where 
is in the space . Therefore, for this operator we may apply the main scheme described in Section 1. In
particular, we are now able to use Theorem 10. Note that below we will use  as an unper-
turbed operator; this operator is not self-adjoint; however, it is normal (see [31, Chapter 1, § 6]).

We now formulate the main similarity theorem, which immediately follows from Theorems 8 and 11.
In essence, this theorem reduces the analysis of the operator  to the analysis of a block diagonal operator.

Theorem 12. Let there exist a number  such that  and . Then, the

operator  is similar to the operator , where  is a solution to the nonlinear equation
(2.15)

and the operator  is determined by formula (2.14).

− ,
− ,

, = ∈ = ∈ =
≠ ≠

    α   ≤ +   π + θ − π + θ − θ θ −   
   

α
≤ + ≤ .

π + θ θ − π + θ θ − − θ − + θ θ − − θ −

  
� �

2

2 2

2 22
2

4 2 2 4 2 2 2
1 1 1

4 2 2

4 2 2 4 2 2 2 2 2 2

8 (2 )2
(2 ) ( ) (2 ) (2 ) ( 1)

2 8 (2 )

(2 ) ( 1) (2 ) ( 1) (1 1) (2 ) ( 1) (1 1)

k k k
Ls n ij

n s pi
p j s i s i

s n s n

L L

a na
a

n s n n

a a n C
n n n

Γ( )n q nP B B P

+∈ �q B qJ B ΓqB

Γ ∈ EndqB * Γ <∗ 1qB θ θΓ ⊂0 0( ) ( ) ( )qB D L D L ΓqB B Γ ∈( )q qB J B U

θ θΓ − Γ = −0 0( ) ( ) ( )q q qL B x B L x B J B x θ∈ 0( )x D L ε > 0 ε θλ ∈ ρ 0( )L
−

θ ε− λ <∗
0 1( ) 1B L I

ΓqB ⊂ ⊂2( ) EndU S * * +∈ �q
Γ ≤ <∗ 1/2 1qB

qJ B
Γ( )q qB J B U

+∈ �q Γ ≤∗ 1/2qB θ θ= −0L L B
�

θ − −0
qL J B B

θ θ− + Γ = + Γ − − ,�0 0( )( ) ( )( )q q qL B I B I B L J B B
�B U

−= + Γ Γ − Γ .�

1( ) ( ( ) )q q q qB I B B B B J B
�B

∞

=
∞

=
−

 
= − Γ Γ − Γ = Γ − Γ 
 

 
− Γ − Γ Γ − Γ = Γ − Γ 

 

− Γ + Γ Γ − Γ .





�

0

0
1

( 1) ( ) ( ( ) ) ( )

( ) ( 1) ( ) ( ( ) ) ( )

( )( ) ( ( ) )

l l
q q q q q q q

l

l l
q q q q q q q q

l

q q q q q

B B B B B J B B B B J B

B B B B B J B B B B J B

B I B B B B J B

θL θ − − �

0
qL J B B �B

U

θ θ= −�

0 0
qL L J B

θL

+∈ �m ≥ + 1m q < π − + θ∗�
2(2 1 )B m

θL θ − ∗�

0
mL J X ∗X

= + Γ − Γ − Γ Γ� � � �( )( ) ( ) ( ),m m m m m mX B B X X J B X J B X
�B
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 7  2020



1178 POLYAKOV
It has been mentioned above that we can use the scheme described in Section 1 for the further investi-
gation; in particular, we can use Theorem 10. We now obtain the bounds used in this theorem. Let us apply
the projections  to equality (2.14) on the left and on the right. As before, we will take into account (1.8).
Then

Next, we apply the operator  to both sides of these equalities on the right and estimate them.
We have the inequalities

(2.16)

(2.17)

Note that Theorem 11 implies that , and formula (1.6) implies the bound .
Taking these facts into account, we substitute bounds (2.2), (2.3), (2.5), and (2.6) into (2.16) and (2.17).
Then

(2.18)

where  and  are determined by (2.8) and (2.10).

3. PROOFS OF THE MAIN RESULTS FOR , 
In this section, we prove the main results of the paper announced in the Introduction. The proofs are

based on Theorem 12.
Proof of Theorem 1. We assume that the matrix  is similar to a diagonal matrix. Thus, without loss

of generality, we assume that  is diagonal with the eigenvalues , . As the basis, it is conve-
nient to use the normalized eigenvectors , .

By Theorem 12, the operator  is similar to the operator , where  is a solution to
Eq. (2.15). Then, Theorem 9 implies that the spectrum of  can be represented as

where  is the restriction of  to the space , , and  is the restriction of

 to the space , . Since  is a finite dimensional space,  is a finite set.
Therefore, we have representation (0.2).

Let us write the operator  in the form
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 has a finite rank and, therefore, belongs to .
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Using this representation, we can calculate the asymptotics of the arithmetic mean of the eigenvalues of
the operator .

In the finite-dimensional space, the spectral trace coincides with the matrix trace; therefore, the arith-

metic mean of the eigenvalues of the operator  is .

Therefore, bounds (1.15), (2.6), (2.18), and the equality  (see (1.16)) imply
(0.3), which completes the proof of the theorem.

Proof of Theorem 2. Assume that the eigenvalues  ( ) of the matrix  are simple. In this
case, we may speak about the asymptotics of the eigenvalues of . By repeating the proof of Theorem 1,
we obtain the assertion of Theorem 2.

The form of the remainder term obtained in Theorems 1 and 2 is an improvement of the result obtained
in [11, Theorems 1 and 2].

Proof of Theorem 3. Let the matrix coefficients  and  have size . The elements of these matrices
will be denoted by  and , where . In this case, the projections  ( ) have rank one;
therefore, the operators  can be represented as  ( ). By Theorem

12, the operator  is similar to , where  is a solution to Eq. (2.15). In this case, the spectrum
 of  can be written as

where  is the spectrum of the restriction of  to the subspace  and  is the spec-

trum of . Let us calculate the eigenvalues  ( ) of the operator . We have

Next, using (2.14) and Theorem 10, we represent  as

Since the major contribution to the eigenvalue asymptotics is made by the operator , it is sufficient to
consider the last equality for  (the asymptotic terms for the other summands will be included in the
remainder term). Taking into account (2.12), we obtain

(3.2)

We now estimate the quantity . Let us use Theorem 10. Formula (1.15) in Theorem 10 and inequalities
(2.18) imply that

where  and  is a summable sequence (because it is the product of
two square summable sequences).

Inequality (2.6) implies that (3.2) is a second-order approximation in the eigenvalue asymptotics, and
it is not included in the remainder term. Thus, we have bound (0.4), which proves the theorem.
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Proof of Theorem 4. Suppose that, under the conditions of the preceding theorem,  and  are func-
tions of bounded variation. Then, the Fourier coefficients of  and  satisfy the inequalities (see [32,
Chapter 2, Theorem 4.12])

Formulas (2.8) and (2.10) imply that  and  for . Using Theo-
rem 3, we obtain the desired result, which completes the proof.

It is clear that the assertion of Theorem 4 holds also in the case when the functions  and  are smooth
(with any degree of smoothness).

4. ONE-DIMENSIONAL PERIODIC CASE
In this section, we investigate the case . Since the investigation of the multi-dimensional case

is very difficult, we consider only the one-dimensional case. We will use the abstract scheme described in
Section 1 with some modifications. First, we describe the situation under examination. To simplify the
presentation, we will use the same notation for the eigenvalues, eigenfunctions, and projections as above.

Up to the end of this paper,  and  are matrices of size  with the elements  and  from the space
. Consider the differential operator  defined by the differential

expression

The domain  of this operator is determined either by periodic boundary con-
ditions (at ) or by antiperiodic boundary conditions (at ). As before, the operator  can be rep-
resented as . The spectrum of  is discrete, and its eigenvalues are double (except for the sim-
ple eigenvalue ) and have the form , . The corresponding eigen-
functions are , , , which form an orthonormal basis in . Denote by 
the Riesz projection, which is defined for any vector  by

The basic scheme of the investigation in the one-dimensional case coincides with the scheme in Sec-
tions 1 and 2. Some general constructions were made in [26]. Here we briefly comment on the study
in [26].

As the admissible triple, we use the triple  constructed in Section 1. In this case, the trans-
formers  and  are

As before, for a certain , the transformers  and  are determined by formulas (1.6) and (1.7).
Let us formulate the following lemma (see [26, Lemma 4]).

Lemma 6. The triple  for the operator  ( ) is admissible.
Next, we should perform the preliminary similarity transform for the operator ; i.e., we should

obtain an analog of Theorem 11. This was done in [26, Theorem 6]. After that, Theorem 7 can be used.
Thus, we have the following result.

Theorem 13. There exists a number  for which  and the operator  is similar to the

operator , where  is a solution of the nonlinear equation (2.15). In this equation, the oper-
ator  belongs to the space  and is determined by formula (2.14). Moreover, for some square summable
sequences  and , the following bounds hold:

(4.1)

Proof. The first part of this theorem was proved in [26, Theorem 7]. Bounds (4.1) are proved by analogy
with inequalities (2.18).

a b
a b
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Remark 5. The sequences in the preceding theorem have a specific form. The sequence  is in fact
a special case of formula (2.8) for , and the sequence  is determined by

where , .

Now we have all necessary constructs and bounds, and we proceed to the proof of the main theorem
of this section.

Proof of Theorem 5. By Theorem 13, the operator  ( ) is similar to the operator
 with a certain . Since  is a normal operator with a discrete spectrum and

 is a bounded operator,  also has a discrete spectrum. Therefore, the similar oper-
ator  also has a discrete spectrum. Furthermore, Theorem 9 implies that

where  is the restriction of  to the subspace  and  is the restriction of

 to the subspace . Here .

To write the asymptotics of the eigenvalues of , we should describe the sets  for .
By analogy with the reasoning used in the proof of Theorem 1, we conclude that the operator

 can be represented in form (3.1). Consider the restrictions of the operators on the right-
hand side of representation (3.1) to the space , . Then, the operators  can be represented as

where , , and  are the restrictions of the operators , , and  to the space
, respectively. The matrices of these operators satisfy the equality

(4.2)

where

and  is the matrix of the operator . By  ( ) we denote the elements of the matrix 
( ), and for  and  we have

(4.3)

(4.4)

(4.5)

(4.6)

It is clear that .
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Below, we will need the following relations. For the sequences of complex numbers  and  ( )
with , define the matrices

Note that

Now we apply these relations in the case under examination. Set  and
. Multiply both sides of (4.2) by  on the left and by  on the right to obtain

(4.7)

Let us now estimate the last term in (4.7). We will use Theorem 10 for the case . In this case,
straightforward computations show that . We will also use the equality

(4.8)

which immediately follows from (1.16) for the operator . Applying formulas (1.15), (4.1), and (4.8), we
obtain for 

(4.9)

where  and  is the summable sequence (because it is the
product of two square summable sequences).

Next, reasoning as in the proof of formula (2.11) in Lemma 4, we obtain 
, . Recall that the sequence  is square sum-

mable. The elements  and  are estimated similarly. Since the Fourier coefficients  ( ) are also
square summable,  and  have the same order as the elements . Therefore, bound (4.9) implies that

 can be separated as an individual asymptotic term.
Finally, we conclude from formulas (4.2), (4.7), and (4.9) that

where  and . This proves formula (0.5) and com-
pletes the proof of Theorem 5.

Corollary 1 immediately follows from Theorem 5.
Theorem 6 is proved similarly to the proof of Theorem 4.
Now, consider the last result devoted to the asymptotic representation of the semigroup of operators

with the generator , . All the required concepts of the theory of semigroups can be found
in [33].

Theorem 14. The operator  ( ) is sectorial, and it generates an analytic semigropup of oper-
ators . This semigroup is similar to the semigroup  ( )
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that acts in , where  and . Moreover, the semigroup

 admits the asymptotic representation

(4.10)

where , , and 
. In addition,  ( ) are determined by formulas (4.3)–(4.6) and  ( ) are sum-

mable sequences.
Proof. The first part of this theorem was proved in [26, Theorem 8]. Here we prove the asymptotic rep-

resentation (4.10). For this purpose, we will use the following formula for the semigroup generated by the
 matrix (see [28, Chapter 1, § 6]):

where .
Applying this representation to formula (4.7), we obtain the asymptotic representation (4.10). The

proof of the theorem is thus completed.
Remark 6. Theorem 14 is also valid in the case , , and . In this situation, the repre-

sentation of the semigroup  is

where  and the eigenvalues  satisfy bound (0.4).
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