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Abstract—The problem of two-dimensional stationary f low of two immiscible liquids in a plane chan-
nel with rigid walls is studied. On the one of walls a temperature distribution is imposed and the
another wall is heat-insulated. On the common interface the interfacial energy change is taken into
account. The temperature in the liquids is distributed according to a quadratic law. It agrees with
velocities field of the Hiemenz type. The conjugate boundary value problem is nonlinear and inverse
for pressure gradients along the channel. The tau-method is used for the solution of problem. Three
different solutions are obtained in results. It is established numerically that the obtained solutions con-
verge to the solutions of the slowly f low problem with a decrease the Marangoni number. For each of
the solutions the characteristic f low structures are constructed.
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1. INTRODUCTION
In case of the non-stationary motion of liquid media with the interface  in an inhomogeneous tem-

perature field, the difference of the heat f lux is not equal to zero [1, 2]

(1.1)

where , ,  is the surface tension coefficient. In equality (1.1)  are
coefficients of thermal conductivity and  are temperature of liquids, ; , 
are the general values of temperatures and velocity vectors at the interface , n is the normal to  directed
to the second liquid. Condition (1.1) can be called the energy condition at the interface  of two liquids
[3]. It means that the heat f lux jump in the direction of the normal to  is compensated by a change in the
internal energy of this surface. In turn, this change is associated with both a change in temperature and
the area of the interface.

For many liquid media,  is well approximated by the linear function

(1.2)

with positive constants , , . Then energy equality (1.1) is simplified and has the form

(1.3)

The relation order of equation right-hand side (1.3) to the first term of its left-hand side is estimated
by the parameter  (for the second term it is necessary to assume ,  are dynamic vis-
cosities). It determines the influence of interphase energy on the dynamics of liquids motion inside the
layers;  is the characteristic temperature on the interface. These parameters are small for ordinary liq-
uids at room temperature [2, 4, 5]. For example, we have  for the air – ethyl alcohol system at

. Therefore, the right-hand side in (1.1) is often omitted and we have the equalities of the heat
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f lux across the interface. However, for low-viscosity liquids, these terms must be taken into account. In
paper [5], motion of bubbles in various liquids is considered. It is established, that the value  is
achieved at sufficiently high temperatures. It means that the viscosity decreases rapidly with increasing
temperature. This fact is also true for some cryogenic liquids, for example, liquid . The maximum val-
ues of  are reached near the critical points. So, for water we have  at  К;  at

 К;  at  К (critical point for water is  К).
In book [2], simple examples of two-layer systems are considered, when the main state is rest or uni-

directional steady f low. It is established, that the heat absorbed or released during local hanges in the inter-
face area influence on the formation of Marangoni stresses and weakly linear wave regimes at the interface
of liquids with small viscosity. In [6], the condition (1.3) was used for perturbations and the effect of a
change in the interfacial surface energy on the nature and type of instabilities of the basic unidirectional
flow is studied. It is shown, when the right-hand side vanishes in (1.3), the significant difference in the
perturbations behavior is observed in the region of short waves. Namely, in a problem with a full condition,
a f low crisis is caused by a thermal oscillatory mode and is accompanied by the formation of transverse
traveling waves that propagate in the direction opposite to the basic f low. In the problem with the classical
condition the instability manifests itself in the form of transverse standing waves. Taking into account
additional term in the energy condition the result is obtained that agrees qualitatively with the experimen-
tal data for the FC-72 – nitrogen system.

In the problems mentioned above, the basic stationary two-layer f low was independent of the interfa-
cial energy change. In the present paper, we research such dependence for two-dimensional two-layer sta-
tionary f low with the velocities field of the Hiemenz type.

2. THE PROBLEM STATEMENT

We consider a plane two-layer stationary f low of viscous heat-conducting liquids in layers bounded by
rigid walls ,  with a common interface . The gravitational effects are ignored.

Suppose the interface is a f lat. For this it is enough that the capillary number  [7],
 is the coefficient of thermal diffusivity. The velocity and temperature field of the system of a viscous

heat-conducting f luid equations in the layers are sought in the form

(2.1)

where  at ,  at  and . Such representation of the velocity field
corresponds to the well-known Hiemenz solution [8]. The substitution of expression (2.1) into the equa-
tions of motion and heat transfer and their compatibility analysis leads to the fact that the functions ,

,  and  are solutions of the system

(2.2)

where  are the kinematic viscosities,  are the densities,  are the constants. The pressures in
liquids are distributed according to the laws

(2.3)

so the values of  characterize pressure gradients along the  axis.

Suppose the temperature distribution  with constants ,  is set on the rigid wall
. At , the temperature has a minimum value at the point , and at  the temperature

is maximal. The upper wall is thermally insulated, i.e., . Thus, on the rigid walls, the condi-
tions for the unknowns have form

(2.4)
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The relations are satisfied on the interface 

(2.5)

The first four conditions in (2.5) are consequences of the velocity and temperature fields continuity on
the interface and the fifth condition is the dynamic condition. The last two conditions are obtained taking
into account the dependence of the surface tension coefficient (1.2) and the relation (1.3).

Remark 1. This problem is inverse, because, along with the functions , , , , the constants  (the
pressure gradients along the layers) are also unknown. Using known functions  and  pressures gradi-
ents are determined by the formulas (2.3).

The vertical velocities  are excluded from the continuity equations taking into account the no-slip
conditions on the walls (2.4)

(2.6)

Then we obtain inverse conjugate boundary value problem

(2.7)

The boundary conditions follow from expressions (2.4), (2.5) and (2.6)

(2.8)

The problem for the functions  is separated. The function  are found after the solution of the
problem for functions  and it does not affect the velocity field in layers.

The following dimensionless variables and parameters are introduced

(2.9)

where  are the Prandtl numbers,  is the Marangoni number,  is the characteristic tempera-
ture along interface; the parameters ,  can be either positive or negative. Then, the nonlinear conjugate
boundary problem in non-dimensional variables takes the form
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(2.10)

(2.11)

where , , , . To the boundary conditions (2.11) it is necessary to
add the integral redefinition conditions

(2.12)

that allow you to find unknown constants (pressure gradients along the layers) , .

3. SOLUTION OF THE MODEL PROBLEM—CREEPING FLOWS

It is known that for small Reynolds numbers, the momentum and energy equations are simplified by
discarding convective acceleration. Such movements are called creeping. Creeping f lows occur in many
structural elements of machines, mechanisms, equipment and devices, if the transverse dimensions of the
channels or f low rates are small or the viscosity of the f lowing liquid is high. In our case, the role of the
Reynolds number is played by the Marangoni number, which can be small both due to the physical param-
eters of the liquid and the thickness of the channel [9, 10].

Suppose that  and we seek the solution of problem (2.10)–(2.12) in the form

, , , then, for the zeroth approximation, the
solution has the form [11]
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at the same time  is the solution of the quadratic equation

(3.4)
with discriminant

Therefore, when

there are two solutions (it’s always true for ). At  there is one solution and at  solu-
tions does not exist. The last two cases are realized only for , when the temperature on the bottom
wall has a maximum at the point . Expressions for dimensionless vertical velocities are determined
by the formula (2.6) and it has the form

(3.5)

Remark 2. Simple calculations show that for  we obtain the unique solution of the problem (1.10)–
(1.16) for small Marangoni numbers

(3.6)

The obtained solution differs significantly from solution (3.1)–(3.4).

4. NUMERICAL SOLUTION METHOD AND CALCULATION RESULTS
To solve the problem (2.10)–(2.12) the tau-method is used. This method is a modification of the

Galerkin method [12]. We make the change of variables:  for  and  for
. Then problem (2.10)–(2.12) can be rewritten in the form (the primes are omitted)

(4.1)

2C

δ + − =2
1 2 2E ( 1) 0,C k C

γ − γ= + .
γ + μ − γ

22 (1 )E1
[ (1 )]

D
k

γ + μ − γ> − =
γ − γ2

[ (1 )]E E*,
2 (1 )

k

>10 0a =E E* <E E*
<10 0a

= 0x

ξ = ξ − γξ , ≤ ξ ≤ γ,
γ

χξ = ξ + δ ξ − − δ + ξ − − , γ ≤ ξ ≤ .
γ

0
0 3 22

1 2
1

0
0 3 22

2 2
2

( ) ( ) 0
6 P

( ) ( ( 1) (2 3)( 1) 1) 1
6 P

FV

FV

=E 0

δξ = ξ − γξ , ξ = , = − δ ,
γ

0 2 0 01
1 1 1 1 12( ) (3 2 ) ( ) 1 6P

6
W A F

+ γ −ξ = − ξ + ξ + , ≤ ξ ≤ γ,
γγ

δ γξ = ξ + δ ξ − − , ξ = , = ,
− γ ν − γ

0 2
1 102

2 0
0 2 0 01 1

2 2 22 2

2( 1)1( ) 0

( ) (3 2 ( 1) 3) ( ) 1
(1 ) (1 )

kB B
k

FW A F

γ − + γξ = − ξ − ξ + + , γ ≤ ξ ≤
γγ

0 2
2 102

2( 1)( )1( ) ( 2 ) 1.kB B
k

ξ = ξ γ' / = 1j ξ = − ξ − γ' (1 )/(1 )
= 2j

ξ

ξξ ξ

 
, ≡ − − + = , 

  


2
1 1 1 1 1 1 1 1 1

0

( ) P M ( ) 0L W F W W W W z dz F

ξ

ξξ ξ

 
, ≡ − − = , 

  
1 1 1 1 1 1 1 1
0

( ) M 2 ( ) 0N W A A AW A W z dz

ξ

ξξ ξ, , ≡ + + = , < ξ < ,1 1 1 1 1 1 1 1
0

( ) 2 M ( ) 0 0 1K W A B B A B W z dz

ξ

ξξ ξ

 γ, ≡ − − + = , 
χ − γ   


2

22
2 2 2 2 2 2 2 22

0

P( ) M ( ) 0
(1 )

L W F W W W W z dz F
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 5  2020



TWO-DIMENSIONAL STATIONARY THERMOCAPILLARY FLOW 849
(4.2)

(4.3)

(4.4)

An approximate solution of problem (4.1)–(4.4) is sought in the form of sums

(4.5)

where  are shifted Legendre polynomials [13], ,  are usual Legendre poly-
nomials. The orthogonality of the Legendre polynomials  is taken into account on the interval 
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In particular, unknown constants  are defined by known  and , from the equations

, . When obtaining the system (4.7) we also taken into account that

, . Thus, equations (4.6), (4.7) form a closed system of algebraic nonlinear equa-
tions for the coefficients  and constants .

To solve the nonlinear system of equations (4.6), (4.7) the Newton method was used. As a zero approx-
imation for the unknown coefficients , ,  and constants ,  we take values that satisfy the
conditions (4.7) and equalities

(4.8)

Integral equalities (4.8) follow from equations (4.1), (4.2), taking into account the boundary condi-
tions (4.3) and the form of solutions (4.5).
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number). The obtained values at  and at  differ by  and  for  and , respectively.
It means good convergence of the tau-method in solving this boundary value problem. Fig. 1 shows the
profiles of the dimensionless functions  and transverse velocities  for values  and , respec-
tively. Here the functions  and  coincide with the functions  and , , on their
fields of definition. It is also worth noting that with decreasing Marangoni number the obtained solutions

 and  tend to solutions of the model problem ,  and ,

, respectively (see (3.3)). For example, at  we obtain  and

, .

Figures 2, 3 shows velocity and temperature fields in layers for  and , respectively. In both cases,
there are zones of return f low: in the first case, near the interface (Fig. 2), and in the second, near solid
walls (Fig. 3). In addition to the surface tension gradient, there is another movement mechanism that
occurs when the lower wall is heated.This mechanism is the pressure gradient in the layers. Calculations
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Fig. 1. Profiles of dimensionless function  (– – –) and transverse velocity  (– –) for  (a) and (b). 
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Fig. 2. The field of velocities (a) and temperatures (b) in the layers for . 
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show that the pressure gradient in the first layer significantly exceeds the surface tension gradient in abso-
lute value and acts in the opposite direction. Therefore, in both cases, the f low near the interface is
directed in the direction of increasing temperature, that is, in the direction opposite to the direction of
action of thermocapillary forces.

For the case where there is no effect of changes in the internal interfacial energy ( ), there is
one solution , . This solution with decreasing Marangoni number tends to a
unique solution of the model problem (3.6) , , and at  we obtain

, .

It is also worth mentioning about the influence of dimensionless parameters on occurring f lows: as the
dimensionless parameters  and  increase the values of the dimensionless function  and the trans-
verse velocity  decrease. As the thickness of the second layer increases (decrease ) the dimensionless
pressure gradient in the second liquid decreases in absolute value, while in the first one it practically does

=E 0
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Fig. 3. The field of velocities (a) and temperatures (b) in the layers for . 
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not change. So, at  (the thickness of the second layer is 4 times greater than the first) we
obtain , . The dimensionless parameter  does not affect the intensity of f lows.
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