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Abstract—We present results on testing the computation of bounds for polynomial divisors and give
estimates for their heights. There are also given results on the irreducibility of polynomials and some
methods for constructing irreducible polynomials. They are based on properties of Newton’s polygon.

Finally we give applications to the irreducibility of univariate polynomials

 

over a discrete valuation domain. We give applications to bivariate polynomials.
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1. INTRODUCTION
A main problem in polynomial algebra is to decide if a polynomial over a unique factorization domain

is irreducible. There exist many results that give sufficient conditions for the irreducibility, the so called
irreducible polynomials. On the other hand the irreducibility can be decided using algorithms for polyno-
mial factorization.

We shall discuss computational problems concerning irreducible polynomials. We shall first present
results on the computation of sizes of polynomial divisors. In the second part we present irreducible cri-
teria that use properties of Newton’s polygon.

2. POLYNOMIAL DIVISORS
We know that any univariate polynomial over a unique factorization domain can be uniquely decom-

posed in a product of irreducible polynomials. In particular, any univariate polynomial over the integers
is a product of irreducible polynomials.

The classical methods invented by Newton and Kronecker give algorithmic methods for the factoriza-
tion of univariate polynomials over the integers. They implicitely give also criteria for establishing if a
polynomial is irreducible. Modern and more efficient methods were developed at the end of the 20th cen-
tury, using reduction to the factorization over finite fields and suitable lifting methods.

I. Newton described in Arithmetica Universalis a device for computing the polynomial divisors of uni-
variate divisors over the integers, see the section De inventione divisorum. His method is based on proper-
ties of finite differences and polynomial interpolation through finite differences. The method of Newton
was improved by N. Bernoulli and F.T. Schubert (see [13]).

We consider a nonconstant reducible univariate polynomial  with integer coefficients and a divisor 
over the integers. We obtain new bounds for the coefficients of  in function of the degree and of the coef-
ficients of . These bounds are obtained using an inequality of Beauzamy and the multiplication by a suit-
able linear factor.

Let  be a nonconstant univariate polynomial with integer coefficients. If  is a nontrivial divisor of
 over  we are interested to give bounds for the absolute values of its coefficients in function of the coef-

ficients and the degree of P. Such bounds are relevant in polynomial factorization and are expressed in
function of the measure, the quadratic norm, the Bombieri norm and other polynomial sizes.

We refine an inequality of Beauzamy using the multiplication of the polynomial  by a suitable linear
factor.
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3. APPLICATIONS TO POLYNOMIAL FACTORIZATION
We obtain upper bounds for the size of polynomial factors of an univariate polynomial with integer

coefficients.

Let  By a result of B. Beauzamy [2], if  is a nontrivial divisor of  in
 one has

(1)
where

Note that  is the Bombieri’s norm of the polynomial P.
We first need an inequality similar to (1). Our inequality depends on a real parameter  and suitable

choices of it allows us to deduce refinements for the height of polynomial divisors of integer polynomials.
Theorem 1. Let  be a nontrivial divisor of  in , . We have

for all .
Proof. Suppose  is a nontrivial factorization of  in . This gives the factorization

(2)

of  in . We put .
Let us remind a useful inequality of B. Beauzamy, E. Bombieri, P. Enflo and H. Montgomery [1]:
If  and  are nonconstant polynomials over  of degrees  and  respectively we have

By (2) this gives

Since the coefficients of  are integers we have, as in the proof of (1), . It follows that

Let . We observe that

so

On the other hand
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and . Therefore, as in [1],

which gives

(3)
By the inequality of M. Mignotte [10] we have

So (3) gives

Remark. It is not possible to obtain the previous result applying directly the inequality (1) because the
polynomial  has no integer coefficients, an essential condition in the theorem of B. Beau-
zamy [2].

3.1. Some Examples
We consider first the polynomials studied in [1] and [11]:

The polynomial  was considered by P.S. Wang [17] and M. Mignotte–P. Glesser [11]. Let 
where

We denote by  the bound of Beauzamy (1) and by  our bound in Theorem 1.   
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Table 1

P F1 F2 F3 F4 F5

B1(P) 155.2 5145.1 16531988.3 13962915.8 3.8 × 102992

B2(P) 97.9 3832.4 15948685.5 8730 942.5 5.8 × 102990
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Note that, for convenient values of the parameter , we have .

However, as in [2], we have the bad polynomials  and . If we take, for example,
, we obtain

4. NEWTON’S POLYGON AND IRREDUCIBILITY CRITERIA
The Newton polygon was initially defined for bivariate polynomials. Another approach is to associate

a Newton polygon to a univariate polynomial with the coefficients in a discrete valuation domain.

Let , where  is a discrete valuation domain.

The Newton polygon  of the polynomial  is the lower convex hull of the set .

The slope of the line joining the points  and  is .

The Newton index  of the polynomial  is the largest slope  of these lines. More precisely,

G. Dumas [8] has studied the relationship between the Newton indices of two polynomials and the
index of their product in the case of univariate integer polynomials with the valuation defined by powers
of a prime .

If  and  are such polynomials, he established that the Newton polygon of the product  can be
obtained by translating the edges of the polygons  and  in such a way that they compose a con-
vex polygonal path with the slopes of the edges ordered increasingly.

Proposition 2. If  then 

4.1. Irreducibility Tests

We consider polynomials  for which the Newton index could be attained
for an index  and for which  could be nonzero. We have given in [16] the following results:

Theorem 3. Let  be a discrete valuation domain, and let 
, with  and . We assume that there exists an index  such that

(a)  for ,

(b) ,

(c) .
Then the polynomial  is either irreducible in , or has a factor whose degree is a multiple of .

Theorem 4. Let  be a discrete valuation domain, and let 
, with  and . We assume that there exists an index  such that

(a)  for ;

(b) , with ;

(c) . Then one of the following conditions is satisfied:
(i) The polynomial  is irreducible in .
(ii) The polynomial  has a divisor whose degree is a multiple of .
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(iii) The polynomial  admits a factorization  and  divides , for some
, where , .

One of the oldest irreducibility criterion for univariate polynomials with coefficients in a valuation
domain was given by G. Dumas [8] as a valuation approach to Schönemann–Eisenstein’s criterion for
polynomials with integer coefficients ([15] and [9]).

Theorem 5 (G. Dumas). Let  be a polynomial over a discrete valuation domain ,
with valued field . If the following conditions are fulfilled

(i) ,

(ii)  for all ,

(iii) ,
then the polynomial  is irreducible in .

Remark. We observe that Theorems 3 and 4 consider conditions that are not satisfied by Theorem 5 of
G. Dumas.

With the notations in Theorem 3, one has the following result.
Corollary 6. If  and , then the polynomial  is either irreducible, or has a divisor of degree .
Proof. If  would have a factor of degree , with , then we would obtain

a contradiction.

4.2. Examples

(1) Let , with  and  a prime number, and let
us consider the usual -adic value on , denoted by . Since

and

we may take , and since , we conclude by Theorem 3 that
 is either irreducible, or has a factor of degree , and hence also a linear factor. On the other hand,

one may easily check that  has no integer solutions, and hence is an irreducible polynomial.

(2) Let , where  with . Using
now the discrete valuation on  given by  for , we see that

so with the notation in Theorem 3 we have . On the other hand, using the same notation we
observe that

It follows that  is either irreducible in , or has a linear factor with respect to Y.
(3) Let  be a field of characteristic zero,  an integer, and let

We represent the polynomial  as
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with ,  and . Using now the discrete
valuation on  given by  for , we observe that

Therefore  and , so we may take , and since , we

conclude by Theorem 3 that  is either irreducible in , or has a factor whose degree with respect
to  is a multiple of , that is  is either irreducible, or has a linear factor in Y.

CONCLUSIONS
We have obtained a refinement of a theorem of B. Beauzamy about the size of polynomial divisors.

We have also obtained new irreducibility criteria based on the study of Newton’s polygon.
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