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Abstract—Computer algebra and numerical methods were used to investigate the properties of a non-
linear algebraic system determining the equilibrium orientations of a system of two bodies connected
by a spherical hinge that move in a circular orbit under the action of a gravitational torque. Primary
attention was given to equilibrium orientations of the two-body system in the special cases when one
of the principal axes of inertia of both the first and second body coincides with the normal to the
orbital plane, the radius vector, or the tangent to the orbit. To determine the equilibrium orientations
of the two-body system, the set of stationary algebraic equations of motion was decomposed into nine
subsystems. The system of algebraic equations was solved by applying algorithms for constructing
Grébner bases. The equilibrium positions were determined by numerically analyzing the roots of the
algebraic equations from the constructed Grobner basis.
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INTRODUCTION

The study of equilibrium orientations of a system of bodies moving in a central Newtonian field on a
circular orbit is of considerable practical interest as applied to the development of composite schemes of
gravitational orientation systems for satellites that can sustain operations in their orbit for a long time with-
out consumption of power and (or) working mass. The operation principle of gravitational orientation sys-
tems is based on the fact that, in a central Newtonian field, a satellite with different principal central
moments of inertia moving in a circular orbit has 24 equilibrium positions, of which four are stable (see
[1=3]). The dynamics of composite schemes of various types for gravitational orientation systems was
considered in detail in [4].

This paper is devoted to the investigation of stationary motions of a system of two bodies (satellite—
stabilizer) connected by a spherical hinge that move in a circular orbit. The scheme for a gravitational ori-
entation system according to which the second body (stabilizer), which plays the role of a damping device,
is hinge-connected to the satellite was proposed by D.E. Okhotsimskii in 1956. The general ideas of
Okhotsimskii’s gravitational system of satellite orientation with use of a composite satellite—stabilizer
scheme having triaxial suspension were described in [4, 5]. The theory of the dynamics of a satellite—sta-
bilizer gravitational system was studied in a series of works (see [6—13]). In [6], general nonlinear equa-
tions of motion of a satellite—stabilizer system were derived, necessary and sufficient conditions for the
asymptotic stability of the trivial solution of the system in the case of a circular orbit were obtained, the
amplitudes of eccentricity oscillations of the two-body system caused by the ellipticity of the orbit were
determined, and transient processes were studied. The dynamics of a satellite—stabilizer system with a
simplified one-degree-of-freedom suspension scheme was analyzed in [7]. The dynamics of two bodies
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connected by a hinge that move in the plane of a circular orbit was investigated in [8—11]. The problem of
finding all spatial equilibrium positions of two bodies connected by a spherical hinge moving in a circular
orbit has not been solved in the general form. For a system of two axisymmetric bodies, the problem of
spatial equilibria was studied in detail in [12]. In [14], a broad class of equilibrium spatial solutions for a
system of two bodies connected by a spherical hinge moving in a circular orbit was obtained by applying a
combination of computer and linear algebra methods under certain constraints imposed on the parame-
ters of the problem.

In this investigation, primary attention is given to equilibrium orientations of a two-body system in the
special cases when one of the principal axes of inertia of both the first and second body coincides with the
normal to the orbital plane, the radius vector, or the tangent to the orbit. To determine the equilibrium
orientations of the two-body system, the set of stationary algebraic equations of motion is decomposed
into nine subsystems. The system of algebraic equations is solved by applying algorithms for constructing
Grobner bases. The equilibrium positions are determined by numerically analyzing the roots of the alge-
braic equations from the constructed Grobner basis.

1. EQUATIONS OF MOTION

We consider the problem of two bodies connected by a spherical hinge that move in a circular orbit. To
write the equations of motion of the satellite—stabilizer system, we introduce the following right-handed
coordinate systems (Fig. 1): OXYZ is an orbital coordinate system, the OZ axis is directed along the radius
vector connecting the Earth’s center of mass C and the center of mass O of the two-body system, the OX
axis is directed along the linear velocity vector of the center of mass O, and the OY axis coincides with the
normal to the orbital plane. The axes of coordinate systems O,x,),z; and O,x,y,z, are directed along the
principal central axes of inertia of the satellite and the stabilizer, respectively (Fig. 1). The orientation of
the coordinate system O,x;y,z; with respect to the orbital coordinate system is determined by the aircraft
angles o; (pitch), B; (yaw), and v, (roll) (see [4]) in the form

0 _
a)] =cosa,cosf;,
a,(Q = sin o, siny; — cos o, sin f3; cosy;,
a) = sina, cos Y, + cosa, sin B, sin v;,

(i) .
ay, = sinf;,
a§2 = cosf, cosy,, (1.1)
ag; = —cosf}; sinvy;,
0 _ o
ay; = —sino, cosf;,

ag'z) = coso, siny; +sina; sin 3, cosY,,

al) = cos o, cosy, —sina, sinp, sin y,.
The indices i = 1 and i = 2 refer to body 1 (satellite) and body 2 (stabilizer), respectively. Consider the
case when the hinge is located at the intersection point of the Ox; and Ox, axes. Then the coordinates of
the spherical hinge in the coordinate systems connected to body 1 and body 2 are (g;, 0, 0) and (a,, 0, 0).

In this case, the kinetic energy and the force function of the two-body system are expressed as follows
(see [4]):

T = J1Ap + (Bt Mad)g) +(Co+ Ma)1+1Aps + (By+ Mads +(Co+ MaDT

— Maa,)[(ra), — q1a13) (Kb — @abi3) + (hay — q1ay3) (Bbyy — ¢aby3) + (Hay, — qias3) (Kb, — gabs5)],

U= %mé[(cl — A + Ma))a;, + (C, — B)as,] + %wé[(cz — Ay + Ma})b;, + (C, — By)bs] (03

+ Malazﬂ)(z)(anbn + ay by — 2a5,by)).
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Fig. 1. Basic coordinate systems.

By using the kinetic energy expression (1.2) and expression (1.3) for the force function, which deter-
mines the action of the Earth’s gravitational field on the two-body system, and applying symbolical dif-

ferentiation in Maple [16], the equations of motion of this system can be written as Lagrange equations of
the second kind in the form

Ap +(C = B)giri = 30(C, — B)asas;,
(B, + Ma)g, — Mayay(ay3b;5 + ay3hy; + assbs3)g, + Mayay(aysh; + aysby, + assbsy)is
+ Maay{a;|r(pbis — 1by) — 4(@:b1 — Pabio)] + ausl i (Pabos — Bbyy) — 43 (4ahyy — pobyy)]
+ ag3[n(pabs; — 1bs)) — o (@obs — Prby) 1} + (A — C) — Ma?)]’ipl = 30)3(/11 — C)aszaz

2
= Mayoylay(a3by, + aysbyy + assbs) + 3as5(aay; — ayby)) ],

(C, + Ma} )i, + Maa,[ by + aybyy + ayby)d, — (@b + anby, + absy) Vs
— Mayay{aylr(pbis — b)) — (42011 — Prbi) 1+ anli(pbys — 1by) — 43(426y — Prby,)]
+ anln(pbss — 1bsy) — 42 (gbs — b))} + (B — A) + Maf)]l’l‘]l = 300(2)(31 — Aas a3,
+ Malw(z)[az(ambll + ayby + agbs)) + 3ayn(aay — aby)],

Ay py +(Cy = By)gyr, = 300(C, — By)bybys, (1.4)

(B, + Ma})g, — Maay| (aishys + Gysbyy + assbsy)dy — @bz + anbsy + @by )i
+ Maay{bsln(pas — nan) — a(qan — pan) 1+ bulr(pay — ray) — ¢(qax — piax)]
+ bylr(pass — hasy) — qi(qas — pasy)1t + (A, — C) — Ma;]rzpz
= 305(A, — Cy)bysby — Manasla(ay by + by + ay,byy) + 3bys(arbs — aayy)],

(C + Ma))is + Maay|(ashy, + aysbyy + 3y — (@b + anbsy + @by )i
+[(B, —4) + Mazzlpzqz — Maa,){b,ln(pais — ray) — a(qia — papn) 1+ byln(pay; — ray)
— qi(q1ay — Pan) 1+ byln(pass — nay) — qi(qias, — pan)1} = 3(0(2)(32 — Ay)bs1b3
+ Maxasla(ay b, + ay by, + a;by,) + 3byy(rby, — aas)].
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Here,

po= (04 + @y)ay + Y,
g = (G + 0y)ay, + B, siny,
1 = (04 + @y)ay; +PBeosy,

Py = (0 + @y)by + Vs,

(1.5)

Gr = (O + )by, + Bz siny,,
B = (0, + )by + Bz COSY,.

In (1.2)—(1.5), M, are the masses of the bodies; M = MIMQ/(M1 + M,); A, B;, C; are the principal
central moments of inertia of the bodies; (a;, 0, 0) are the coordinates of the hinge in the coordinate sys-
tem O,x;y,z; (Fig. 1); p;, g;, r; are the projections of the absolute angular velocity of the ith body onto the
coordinate axes Ox;, Oy;, Oz; a;, bij are the direction cosines determining the orientation of the first and

second body, respectively, in the orbital coordinate system; and @, is the angular velocity of the center of
mass of the two-body system in a circular orbit. Dotted letters denote derivatives with respect to time 7.

2. EQUILIBRIUM POSITIONS
We introduce the following notation:

m = Maa,[I(4 - C) - Mall, m, = Maa,/[(4, - C,) — Md}],
m = Malaz/[(Bl —A)+ Md], n, = Ma1a2/[(B2 - 4,) + Ma;].

Setting o, = o, = const, B, = B,, = const, and ¥, = y,, = const in (1.4) and (1.5) and using the nota-
tion introduced above, we obtain the equations
Aylys — 3aza33 = 0, (aray — 3a33a5)) + my(by1ay3 — 3b3,a53) = 0,
(@105, — 3a3,a3,) — m(byay, — 3b5105,) = 0,
byybys = 3bsyby; =0, (bysby — 3bs3byy) + my(ay by3 — 3az bs3) = 0,
(by1byy = 3bs51bs,) — my(ay by, — 3a3,b,) = 0,

(2.1)

from which we can determine the equilibrium positions of the satellite—stabilizer system in the orbital
coordinate system. In view of (1.1), system (2.1) can be treated as a system of six equations with unknowns

g, Bios Yio (1 =1, 2).
Another method for closing Egs. (2.1), which is more convenient for our study, consists of adding six
conditions for the orthogonality of the direction cosines:

2 2 2 2 2 2
@ t+ayt+ay =1, by +by+by =1,
2 2 2 2 2 2
ay +ayn tay; =1, by +by+ by =1, (2.2)
Q313 + Ay + ay3a33 =0, bybyy + byyby, + bysbs; = 0.

Equations (2.1) and (2.2) form a closed algebraic system of equations for 12 direction cosines
determining the equilibrium positions of the two-body system. The following problem is set up

for this system of equations: given m,, m,, n,, n,, determine all 12 direction cosines, i.e., all equilib-
rium positions of the two-body system in the orbital coordinate system. After finding the direction
cosines a,y, ay, A3, A31, 3y, Q33 and by, by, by, bsy, b3y, b33, the remaining direction cosines
a, 4, 413, byy, byo, b3 can be obtained from the orthogonality conditions.

In[14] system (2.1), (2.2) was decomposed into homogeneous subsystems, whose solutions were found
using algorithms for constructing Grobner bases [15]. Solving the system of 12 algebraic equations (2.1)
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and (2.2) with coefficients depending on four parameters by applying methods for constructing Grobner
bases is a very complicated algorithmic problem. Experiments on the construction of a Grobner basis for
the system of polynomials (2.1), (2.2) by applying the Groebner|[Basis] package implemented in Maple
[16] were performed on a personal computer with 8 GB random-access memory and a 2.4 GHz Intel Core
i7 processor. The computation of a Grobner basis with the lexicographic ordering option took more than
10 h of CPU time, after which the run was terminated because of exceeding the admissible memory size
available in Maple. A Grobner basis for the system of polynomials (2.1), (2.2) was constructed only in the

simplest special cases when m; =m, m, =n, =n =1 and when all parameters were identical:

my = m, = n, = = m. In the first case, the computation of a Grobner basis required more than 4 h of
CPU time on a personal computer, while, in the second case, the computation of a Grobner basis required
more than 24 h of CPU time on a server with 16 Intel Xeon processors with the use of Maple 18. In the
general case, we failed to construct a Grobner basis for this system.

3. INVESTIGATION OF EQUILIBRIUM POSITIONS

The solutions of the system of algebraic equations (2.1), (2.2) were examined in detail for nine special
cases when one of the principal axes of inertia of both the first and second body coincides with the normal
to the orbital plane, the radius vector, or the tangent to the orbit.

Case 1: a5, = 1, b}, = 1. Then system (2.1), (2.2) with ay, = %1, a, = a5, = a4, = ay; = 0 and b,, = £1,
b12 = b32 = b21 = b23 = (0 becomes
az3(ay; +mby) =0, byy(byy + myay) = 0,
@ +an—1=0, b +by-1=0.

Equations (3.1) determine the equilibrium orientations of the system of two connected bodies in the
orbital plane. System (3.1) has solutions of the following four types:

3.1

1.1. 6133 = O, a3l = il, 022 = il, 6121 = 6123 = 0, all = a12 = 6132 = O,
by =0, by ==xL, by==%l, by =b;=0, b, =b,=b,=0;

1.2. a3 =0, ay ==, ayp=%x1l, a,=a3=0, a,=a,=a,=0,
by =Fmy, by =H1- mzz, by =%l by =b;=0, by =5b,=0,
by = bybss, by =—bpby, |mf<1;
1.3. a3y =Fm, ay==%1- mlz, ay =1, a,=a3;=0, a,=a=0,

@, = apaz;, G = —ayay,  |m| <1,
by; =0, by ==%x1, by==%l, by=b3=0, b,=b,=>b,=0;

3.2)

1.4. a31 = a32 = 0, 6133 = il, 6122 = il, a21 = 6123 = O, a“ = alz = O,
b31 = b32 = O, b33 = il, b22 = il, bz] = b23 = 0, bll = blz = 0, mlm2 * 1.
Depending on the signs of the parameters, these solutions (3.2) with |my| < 1, |m,| < 1, mym, # 1 determine
16 different equilibrium positions of the two-body system in each case. All equilibrium positions deter-
mined by Eqgs. (3.1) in aircraft angles (1.1) were determined in [8]. Sufficient conditions for the stability
of the equilibrium positions were obtained with the energy integral used as a Lyapunov function. The pos-

sibility of ensuring the asymptotic stability of the equilibrium positions was explored in the case of dissi-
pation.

Case 2: ¢1223 =1, b223 = 1. In this case, the Oz, axis of the satellite and the Oz, axis of the stabilizer coin-
cide with the normal to the orbital plane. System (2.1), (2.2) with a223 =1,a;=a; =a, =a, =0 and
by, =1, b = byy = by, = by, = 0 becomes

ayy(ay —mby) =0, byy(by —may)) =0,

3.3
ay+an,-1=0, by+b,—-1=0. 3
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The solutions of system (3.3) in Case 2 have the form
2.1. ayp =0, a3==x1, ay==xl, a=a,=0, a,=a;=a;=0,
by, =0, by=2x1, by=%xl, b,=b,=0, b,=b;=b5;=0
22. a5, =0, a3 ==, ay==xl, a, =a,=0, a,=a;=a;=0,
by =tm, by=tll—nl, by=%l, by =by=0 by=by=0,
by, = —byby,, b, =byby, || <1

o (3.4)
23 az = ii’ll, ayy = 1 - n, ay; = il, ay = Gy, = 0, a3 = 433 = 0,

Q) = —ypay, 4, = apay, || <,
by =0, by ==xl, by==x1, by=by=0, b, =b;=b;=0

24, a3 =0a;53=0, ap =%, ay==%I, a=a,=0, a,=a;=0,
by =by3 =0, by==x1, by=%1, by=b,=0, b,=b;=0, nmn #1.
Depending on the signs of the parameters, solutions (3.4) with |n| <1, |n,| < 1, mn, # 1 determine 16
different equilibrium positions of the system of two connected bodies in each case.

Case 3: a322 =1, b322 =1 and Case 4: a323 =1, b323 =1 are similar to Cases 1 and 2.
Consider the following case in detail.
Case 5: ), =1, b5 = 1. Then system (2.1), (2.2) with a, =1, @, = a3 = ay, = a5, =0 and b, =1,

b, =b; =by =b;, =0whena,, = b, =1ora, = b, =—1becomes

4ay1ay; + my(ayb,y + 3by3ay) =0,  4by by + my(ay by; + 3ay3b,) = 0, (3.5)
G +as—1=0, by +bs—1=0. '

The solutions of system (3.5) are obtained using the algorithm for constructing a Grébner basis [15].
A Grobner basis of the system of polynomials representing the left-hand sides of Egs. (3.5) was computed
by applying the Groebner[Basis] package with the lexicographic ordering option for the plex variables
implemented in Maple 18 (see [16]). The resulting Grobner basis contained nine polynomials. In the

Grobner basis constructed for system (3.5), we consider a polynomial depending on only one variable a5 ;
it is written as
P(ay;) Py(my,my,ay3) = 0, (3.6)

where

B(ay) = ayy(ay; — 1), P(my,my,a55) = pyays + piax + p,
py = 64(mm, —4)(mm, —1), p = _32(’7112 +2)(mym, — 4)(mm, — 1), (3.7)
P2 = 9 (Q2mymy = 4) = (my + my)").
To determine equilibrium solutions, the following three cases have to be considered separately:
ay =0, ay=1, and P(m,m,ay)=0.

In the case a,; = 0, system (3.5) has the solutions

2 2 2
ap, =1, a =1, a3=1 a,=a;=a,=a; =ay,=0,

b122 =1, b221 =1, b323 =1, by=bs=0by=0b;=0b;=b;=0.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol.60 No.1 2020
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In the case a223 =1, we obtain the solutions

ab =1, a-=1, da =1, a,=a.=a,=a,=ap, =a;; =0
12 =L 3 =1, 31 =1 11 =413 =0y =0y =03 =433 = U,

b122 =1, b223 =1, b321 =1, b, = b13 =by =by = b32 = b33 =0.

Consider the third case, when the equilibria of the satellite are determined by the real roots of the
biquadratic equation P (m,, m,,a,;) = 0. The number of real roots of this equation is even and at most four.
For each solution a,;, from the third equation in (3.5), we can obtain two values of a,, and, next, b,,, b,;.

For each set of values a,,, ay;, b,;, b,;, the corresponding values of the direction cosines a;,, a;; and
by, by are uniquely determined by the original system (2.1), (2.2). Thus, each real root of the biquadratic

equation from (3.6) is associated with two sets of values a;, b, (two equilibrium orientations). Since the
number of real roots of the biquadratic equation from (3.6) is at most four, the number of equilibrium
positions of the satellite—stabilizer system in the third case in Case 5 is at most eight. The solutions of the

biquadratic equation from (3.6)

A = m12 +2 + (2m13m2 — Smy(my + m,) + 8)\/(m1m2 —)(mm, — 4)

3.8
P4 8(mymy — 1)(mym, — 4) G:9

exist if mm, <1, mm, > 4 and if the right-hand side of (3.8) is nonnegative and does not exceed 1.

The solutions a]2 3 =1, bf3 =1 in Case 6 are similar to Case 5 if the parameters m,, m, in the latter case
are replaced by the parameters n, n,.

In Case 7: (al2 =1 bl2 , = 1), from system (2.1), (2.2) we obtain simple equations independent of the
parameters of the two-body system:

yay; =0,  bpby =0, (3.9)

a222 +a223 =1, b222 +b223 :1
Case 8: (a5, =1, b;, = 1) and Case 9: (a;, = 1, b;, = 1) are considered in a similar manner to Case 7.

CONCLUSIONS
The motion of a system of two bodies connected by a spherical hinge that move in a circular orbit under
the action of a gravitational torque was investigated.

Primary attention was given to the equilibrium orientations of the two-body system. An algebraic
method (based on the construction of a Grobner basis) for determining the equilibrium positions of the
two-body system in the orbital coordinate system with given parameter values was proposed in the special
cases when one of the principal axes of inertia of both the first and second body coincides with the normal
to the orbital plane, the radius vector, or the tangent to the orbit.

The results obtained in this paper can be used at the stage of preliminary design of gravitational orien-
tation control systems for artificial satellites orbiting the Earth.
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