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Abstract—A mathematical model of the development of a tropical cyclone is considered. It consists of
a family of equations obtained by transforming the equation of inviscid non-heat conductive gas (air)
motion to the form of equations on wind trajectories in an axially symmetric cylindrical domain. The
numerical solution of these equations shows the increase of the wind velocity in accordance with the
steam condensation and air warming; later, the velocity becomes stable as the liquid or small pieces of
ice accumulate in the air and the friction of water against air decelerates the air updraft.
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1. INTRODUCTION
Mathematical modeling of a tropical cyclone has attracted attention of many researchers for a long

time, and various models have been proposed (e.g., see [1–9]). Recall that it is known (e.g., see the refer-
ences mentioned above) that the growth and maintenance of a tropical cyclone mainly depend on the air
updraft caused by the latent heat of steam condensation. This mechanism accompanied by the Coriolis
force, which causes the circular air motion, and by the friction of water drops (or ice pieces) against air,
which decelerates the air updraft.

The aim of this paper is to reveal this mechanism by numerical computations. To this end, using the
fundamental equations of f luid dynamics (see [10]) and neglecting viscosity and heat conductivity, we
consider the system of equations in an axially symmetric cylindrical domain (see Eqs. (3)–(7)). Since the
model under study is reduced to a system of first-order partial differential equations, it is transformed into
a family of equations on trajectories (characteristics), which allows us to efficiently compute the desired
solution. This idea was partially described in [11].

We solve the equations of the model using a finite difference scheme and partially use the methods
developed [12, 13]. However, in these papers the computations were performed only for the vertical air
f low. In the present paper, we propose techniques for computing the radial and tangential components of
the velocity.

Within the adopted approximation (invariant radius of the cyclone, fixed wind trajectories, zero vis-
cosity and thermal conductivity), the numerical results clearly demonstrate the main features of the trop-
ical cyclone evolution caused by steam condensation, which creates air updraft, and its stabilization due
to the friction of water drops against air.

2. MODELING PRINCIPLES AND TRANSFORMATION OF EQUATIONS
Consider the motion of the air inside the tropical cyclone using its approximation in a fixed axially

symmetric cylindrical domain. More precisely, consider the motion in the domain

(1)+Ω = ϑ ∈ × π × ∈ Γ ≤ ϑ < π� � ,{( , , ) [0.2 |( , ) , 0 2 },r zr z r z
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(2)

Here,  are the cylindrical coordinates, and the axis  coincides with the axis of the circular air
motion. The domain  corresponds to the cyclone eye—the central part of the
cyclone with very low pressure. Since the air motion in the eye is different from the motion in the other
part of the cyclone, we do not consider it in this paper.

If we assume that all the functions appearing in the equations are independent of  and neglect viscos-
ity and thermal conductivity, then we can write the equations of air motion (see [10]) in the coordinates

 as

(3)

(4)

(5)

(6)

(7)

Here, , , , , and  are, respectively, the density, temperature, radial, tangential, and vertical com-
ponents of velocity, and the pressure is  (where  is a constant). In addition,  is the specific heat
capacity of air, and  is the coefficient of the Coriolis force determined by the angular veloc-
ity of Earth rotation  and the latitude of the cyclone center . In this system of equations, we use for the
Coriolis force the approximation that neglects its vertical component and terms related to the vertical
component of velocity. On the other hand, the effect of friction between air and the sea surface is repre-
sented by the term  in Eqs. (4) and (5), where  is a function that is strictly posi-
tive in a neighborhood of  and vanishes for sufficiently large .  is the mass of the steam that
passes to a liquid or solid phase state in the air updraft,  is the amount of liquid or solid phase state in the
air, and  is the latent heat of  transition from the gaseous state to a liquid or solid state.

Note that, since

we have, in each of Eqs. (3)–(7), the differential transport operator

This operator determines the wind trajectories on the plane , which can be calculated. To stress the
influence of the processes of condensation, warming, and updraft of the air, which determine the cyclone
evolution, we assume that the trajectories on the plane  thus defined are smooth and relatively stable.
By properly selecting the trajectories on the plane  (this is described in the next section), we transform
the system of equations (3)–(7) to a single family of equations on the trajectories.

Assuming that , we set

(8)

Define the family of functions  determined by the relations

(9)
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It is clear that, under the assumption of regularity of , the family of functions , which pass
through each point  in  and satisfy Eqs. (9), fills the domain .

Assume that the family of functions  is defined and is independent of . Then, using the relation

with , we can write Eqs. (3) and (5) in the form

(10)

(11)

moreover, using the equality , which is equivalent to Eq. (3),

Eq. (7) can be written as

(12)

On the other hand, we multiply Eq. (4) by , Eq. (6) by , and use the equality

to obtain

(13)

To solve this system of equations numerically, we consider the approximate problem obtained by sep-
arating the time evolution and spatial structure for , , and  (as has been done in [12, 13]). More
precisely, put

(14)

on each trajectory  (then, ) and assume that

(15)

On the other hand, consider  for each  as a function of ; i.e., we do not use the sep-
aration of time evolution and spatial structure for . Indeed, the evolution of this function is not a
direct consequence of the process of steam condensation and air updraft.

To transform Eqs. (10)–(13) to an approximate problem, we use the separation of time evolution and
spatial structure introduced in (14)–(15) and define

(16)

(17)

Finally, we will use the following expression for :
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(  denotes the positive part); this expression was justified, e.g., in [12]. Therefore, assuming that ,

, , and replacing , , and  with , , and , we consider on each trajectory  the
following system of equations instead of Eqs. (10)–(13):

(19)

(20)

(21)

(22)

Since the trajectories of drops of water or small pieces of ice differ from the air f low trajectories , we
introduce in Section 4 the amount of liquid or solid water on each air trajectory to be used in practical
computations. This will be done after justifying the selection of air trajectories. In Section 4, we also
explain the role of the term  in Eq. (22) and set boundary conditions for the air entry and exit in
Eqs. (19)–(22).

3. SELECTION OF TRAJECTORIES
We have already seen above that, if we fix the trajectories , then the system of equations (3)–(7) for

the unknowns , , , , and  can be reduced to a system of equations for four unknowns , , ,
and . This allows us to propose an efficient computation technique. However, the trajectories are not
actually known. Therefore, for the numerical result to give a valid representation of the processes in the
tropical cyclone, the selected trajectories must be good approximations of the actual trajectories. Recall
that the literature on the physics of tropical cyclones conventionally assumes that the air moves to the cen-
ter in the lower part of the cyclone, it moves upwards in the central part, and it moves to the periphery of
the cyclone in its upper part. We will also adopt this general scheme of the air f low.

To ensure the validity of the numerical results, the trajectories must be thoroughly selected. In partic-
ular, they must be selected such that the family of trajectories does not violate the mass conservation law.
That is, if  is a -independent function such that the density  is close to  and the trajectories are deter-
mined by the velocity field  (we will call  the basic density and  the basic field of velocity), then the
quantity  must be sufficiently small. Even if the density  is not known, the basic density  can be
determined using the hydrostatic principle, and the basic field velocity  can be found from the relation

, which is in accordance with numerous observations of tropical cyclones.
For the numerical computations, we should select a certain number  of trajectories. We denote them

by , . According to the assumption made above, each trajectory  consists of three parts: the

lower part , in which the air moves almost horizontally to the center; the updraft part ; and the upper

part , in which the air moves almost horizontally to the periphery. In this paper, we approximate the

basic velocity  on  and  by a horizontal f low, so that the behavior of the function  satisfies

 on  and  on  (  and  are constants). Then, the f lows on  and  are
parallel to the axis  on the plane .

Set
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In this structure, the trajectory  forms an angle at the point  at which  joins  and at

the point  at which  joins , and the angles on trajectories do not look natural. However, we
believe that these angles do not significantly affect the numerical results.

To select the functions  appearing in the definition of , we use as the basic density  the density
distribution of the hydrostatic state of humid air and adopt the empirical value of the ratio between the
maximum value of the vertical component  and the maximum value of the radial component  of the
basic velocity . We also assume that  is not affected by . This assumption is similar to the

assumption adopted for the parts  and  of the trajectories.

To find the basic density , we consider the system of equations for the hydrostatic state of air, which
may be humid:

(24)

(25)

where  (on the existence and uniqueness of solutions to this system of equations see [13]). The
case  corresponds to the completely dry air, and the case  corresponds to the saturated
humid air. In the latter case, the temperature is distributed such that the condensation process is perma-
nent. As , we select the solution to this system of equations with .

As for the ratio between the maximum value of the vertical component and the maximum value of the
radial component of the basic wind velocity, it is different in models of different authors. In this paper, we
follow the main trend described in [7] and use

(26)

We begin the selection of trajectories by determining the function , which describes the outer bound-
ary of the cyclone eye (see (2)). We set

(27)

Indeed, in the eye region  with  defined in (27), if the air moves at the
velocity  with the vertical component independent of , then we have ; i.e., the choice of

 does not affect the possible motion of air in the eye.
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By assumption (15), we have , and  is relatively small; therefore, by substituting 

and  into (3) and assuming that  is independent of  and  in the domain represented by the
trajectories , we have

(30)

Thus, by substituting  and  into (30), we obtain

Since , this equality implies

(31)

Rewrite (31) as

(32)

Expression (29) implies
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which follow from (29), we finally obtain
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To this end, we use the approximation
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4. OTHER CONDITIONS AND DEFINITIONS FOR NUMERICAL SIMULATION

After the trajectories  ( ) have been selected, we can specify the val-
ues of the unknown functions , , , and  at the beginning (entry point) of each trajectory :

. In addition, the unknown  in Eq. (22) allows us to specify a condition at the exit point

of each trajectory: . Thus, we specify four entry conditions

and one exit condition

Here  is the density  at the time  at the point  ( ); and similar notation is used for
, , and .

From the viewpoint of the physical model, the conditions at the entry point  and the exit

point  must coincide with the conditions outside the tropical cyclone; therefore, we
assume that the density  and temperature  outside the cyclone, which are functions of , are
known, and write

As for , in order to make the evolution of  independent of the arbitrary choice of the boundary value

at the trajectory entry point,we select a small value for . On the other hand, since is the normalized

velocity (see (14)), we select for  a constant independent of . Thus, we have the following conditions:

(38)

(39)

(40)

(41)

(42)

As for the amount of water in a liquid and solid states  in Eq. (22), we note that it is significant only in
the part , in which the air moves upwards. Therefore, taking into account that the trajectories  are
inclined and lie one on another, we use the approximation

(43)

where

 is the probability that a drop (or a piece of ice) remains in air after time  elapsed from the time when
this drop (or piece of ice) was created, and  is the coefficient representing the amount of liquid or solid
water passing from the trajectory  to the trajectory .

We solve the system of equations by the finite difference method. Denote by  the discrete time
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Here the coordinates  are arranged in the direction of the air f low so that  and  corre-
spond to the coordinates of the entry and exit points of the air on the trajectory . We use a uniform time
step,  with a constant . For the positions , it is convenient to use steps that depend on

, i.e., . This allows us to better describe the structure of trajectories , while the
dependence of the spatial step on  does not significantly affect the results.

We construct the numerical solution using an explicit finite difference scheme. If we have the solution
 for  on all trajectories, then we can compute  for  as follows.

At the first step, by solving Eq. (20) written in the form

or

(44)

we find  for  on each trajectory . Indeed, the condition  (see (39))
and Eqs. (44) for  determine  for .

Next, we should find  for  and  on each tra-

jectory . If , , and  are given and we assign a preliminary value  to , then
Eqs. (19), (21), and (22) form a system of ordinary differential equations for the unknown functions , ,
and  on each trajectory . This system subject to initial conditions (38), (40), and (41) can be solved in
the conventional way by a finite difference method. Since this solution depends on the preliminary value

 specified for , the product , which we

denote by , also depends on . However, since there is strong correlation between

 and , which is confirmed by physical considerations and by numerical simula-

tion, we can construct a sequence  that rapidly converges to  such that  sat-
isfies condition (42) with the required accuracy.

At the third (last) step, we find  using the simple relation

(45)

Recall that if we replace  by the derivative  (see (16)), then (14)–(15) imply that .

This allows us to interpret the term  in Eq. (22) as the effect due to the equality of the inside and
outside pressures at the entry point  and at the exit point  for the air warmed by the latent steam
condensation heat. This effect is similar to the action of the force that pushes the air upward possibly
counteracting the friction of the water drops (or ice pieces), which counteracts such an updraft.

5. THE CHOICE OF PHYSICAL PARAMETERS OF THE MODEL

In this section, we give an example of the numerical solution of the proposed model of the tropical
cyclone evolution consisting of Eqs. (16), (19)–(22) and conditions (38)–(42). To perform computations
according to the known laws of physics, (e.g., see [14, 15]), we must specify the physical parameters
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(here  and  are, respectively, the gas constant and the air molar mass) and define the density function
of the saturated steam

(46)

and the latent heat

(47)

Since the difference between the densities of the saturated steam near the surface of liquid water and near
the ice surface is small and the latent heat of transition of water from the liquid to the solid state is also
small, we neglect these differences in our model and use the values specified in (46) and (47), which cor-
respond to the phase transition of  from the gaseous to the liquid state (and conversely).

As the parameter of the Coriolis force, we use the fixed value  s–1, which corresponds to its value
at the latitude 12° N.

To specify the domain  (or ) used in (1) (or (2)), we set  km and  km. We also
choose  km, and thus define the function  by formula (27). This corresponds to the model
of a tropical cyclone of medium strength.

Here we present the results of computations for eight trajectories  ( ). It is clear that such a
small number of trajectories is insufficient for detailed computations in the domain  and construction
of the family of trajectories . However, we believe that this number is sufficient for illustrating the
behavior of the air f low along these trajectories, and the main stages of the air f low evolution and the entire
tropical cyclone can be demonstrated.

For selecting the trajectories  ( ), we assume that the humidity of the air entering the
cyclone domain  is 50%, and the air humidity at the exit of  is 100%. Then, we find the distribution of
density  by solving Eqs. (24), (25) with

(48)

where  is chosen such that  is the inflow boundary  and
 is the outflow boundary . The formal computation of  is not so straight-

forward, but its numerical approximation can be constructed. Using this function , we set

(49)

and determine  and  (see (23)) using the relations

(50)

(51)

(52)

(53)

The values of  and  thus found are shown in Table 1.
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Table 1

γ j
− (km)jz + (km)jz

γ1
− = .1 0 23z + = .1 11 71z

γ2
− = .2 0 70z + = .2 10 77z

γ3
− = .3 1 20z + = .3 9 01z

γ4
− = .4 1 72z + = .4 7 91z

γ5
− = .5 2 28z + = .5 6 94z

γ6
− = .6 2 86z + = .6 6 05z

γ7
− = .7 3 48z + = .7 5 25z

γ8
− = .8 4 25z + = .8 4 50z
The trajectories constructed using Eq. (36) with these  and  are shown in Fig. 1.

Under conditions (38), (40), and (42), we use the density  and temperature  outside the
cyclone zone. As the functions  and , we use the solution to the system of equations (24), (25)
with

(54)

Note that condition (48) corresponds to an intermediate humidity between condition (54) and the total
humidity  corresponding to .

As the function  in expression for  (see (43)), we use the function

(55)

with
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Fig. 1. The family of trajectories on the plane  (up to 50 km from the center).
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Fig. 2. Evolution of the intensity coefficients  during 24 h.
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Fig. 3. Evolution of the amount of the liquid or solid water  during 24 h.
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Recall that

i.e.,  is the mean time during which a drop (little piece of ice) remains in air after its formation. On the
other hand, for the coefficients , which are also used in the expression for  (see (43)), use the condi-
tion

(57)

For the function , which represents the effect of friction between the air and the sea surface, we set

(58)
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Fig. 4. The component  of the wind velocity in the direction of  in the lower part of  and  after 24 h.
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Fig. 5. The tangential component  of the wind velocity in the lower part of  and  after 24 h.
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6. NUMERICAL RESULTS

In this section, we describe the numerical results obtained during simulation. Figure 2 illustrates the
evolution of the intensity coefficients  on the trajectories  ( ). The computations were per-
formed with the time step 50 s.

The evolution of air f low velocity on the trajectories  is accompanied by the increase of the mass of
water in the liquid or solid state  as shown in Fig. 3. It is seen that there is strong correlation between

 and .

In addition, note that in the proposed model the cyclone evolves fairly quickly: it achieves its mature
structure in less than 24 hours. Figure 4 shows the profile of the component  of the wind velocity in the
direction of trajectories, and Fig. 5 shows the profile of the tangential component  of the wind velocity
in the lower part of the trajectories  and  after 24 hours. The velocity is measured in m/s. Note that the
tangential velocity on  is greater than on .

This suggests that the friction against the ocean surface, which decelerates the air f low near the ocean–
atmosphere boundary, has a significant effect. Figure 6 shows that the tangential component of the wind
velocity in the upper part of  has the same direction as in its lower part, and the tangential component
on  in the peripheral part of the cyclone has the opposite direction. We believe that this difference is
explained by the fact that the influence of friction against the sea surface on the trajectory  is very small;
therefore, the Coriolis force has the same effect in the lower part as in the upper part of the trajectory.
On the other hand, the friction against the sea surface in the lower part of  also slows down , while
there is no friction in the upper part; for this reason, in the upper part of ,  is pushed in the opposite
direction by the Coriolis force. The fact that the friction effect is less pronounced in the numerical result
for the component in the direction of trajectory can be explained as a consequence of using fixed trajec-
tories for the simulation.
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Fig. 6. The tangential component  of the wind velocity in the upper part  and  after 24 h.

200180160140

22

11

120100

50
vϑ on γ[2] ∪ γ[3] 

vϑ on γ[2] ∪ γ[3]

r, km
806040

v
ϑ,

 m
/s

40

30

20

0

0

10

−10
20

ϑv γ1 γ2

Fig. 7. The pressure  in the lower part of  after 24 h.
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Fig. 8. Evolution of the intensity coefficients  during five days.
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The profile of the pressure  in the lower part of  (230 m above the sea level) after 24 hours
is shown in Fig. 7.

Figures 4–7 show that the model proposed in this paper gives a reasonably good description of the
structure of the tropical cyclone.

Let us also illustrate the evolution of the intensity coefficients  and of the amount of water in the
liquid or solid state  during five days. It is seen in Figs. 8 and 9, that  and  become approx-

= 1p R T� γ1

α ( )j t
Σ ( )j t α ( )j t Σ ( )j t
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Fig. 9. Evolution of the amount of the liquid or solid water  during five days.
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imately stable. However, we also note that the stabilization is fast on the trajectories on which the amount
of liquid or solid water is large, while the stabilization is slow on the trajectories on which  is small.
We did not show the evolution of  and  in Figs. 8 and 9 on the trajectory  because the numerical
solution  and  becomes negative at certain points in time, which has no physical meaning.

The proposed model of the tropical cyclone also has a steady-state solution. The values of the intensity
coefficients  and the amount of liquid or solid water  in the steady-state solution are shown in Table 2. It is
seen that when  is large,  and  rapidly converge to the corresponding values of the of steady-
state solution. Also note that the amount of liquid or solid water on  is very low compared with the other
values of  for . In our opinion, this is the cause of the relative instability of the solution on .

7. CONCLUSIONS AND PROSPECTS

A system of equations for describing the motion of air along a family of trajectories under the assump-
tion of axial symmetry was proposed. The numerical results reveal the main aspects of the air motion evo-
lution caused by moisture condensation with account for the latent heat of steam generation and friction
of water drops and little pieces of ice against air, which slows down the updraft. The distribution of wind
velocity and pressure after 24 hours after the initial time obtained by the numerical computations coin-
cides with the overall characteristics of a tropical cyclone of medium strength. We interpret the obtained
rate of the cyclone evolution, which significantly exceeds the observation data, as a consequence of the
difference between the model problem statement from reality, in which other factors, in addition to the
basic cyclone development mechanism, are involved.

Σ ( )j t
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Table 2

γ j α j Σ j

γ1 15.3434 .0 0131
γ2 .13 4317 .0 0153
γ3 .12 1234 .0 0160
γ4 .10 8862 .0 0143
γ5 .9 3652 .0 0115
γ6 .8 0594 .0 0080
γ7 .6 2224 .0 0037
γ8 .0 4936 .0 000457
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The proposed model is based on the description of fixed trajectories (on the plane ), which facil-
itates the numerical solution. However, it is clear that these trajectories must be determined by the self-
consistent air motion. In particular, the following important factors must be taken into account for the
cyclone description.

1. The effect of growth of the velocity tangential component, which creates the centrifugal force and
thus pushes the air upwards in the lower part of the trajectories.

2. Expansion of the cyclone zone in the process of evolution.
3. The effect of turbulent air motion.
In our future research, we are going to improve the model by taking into account these factors. The

displacement of the cyclone as a whole should also be taken into account. However, the simulation of this
phenomenon in the statement proposed in this paper requires the development of new techniques.
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