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Abstract—A two-point boundary value problem is considered for the Emden–Fowler equation, which
is a singular nonlinear ordinary differential equation of the second order. Assuming that the exponent
in the coefficient of the nonlinear term is rational, new parametric representations are obtained for the
solution of the boundary value problem on the half-line and on the interval. For the problem on the
half-line, a new efficient formula is given for the first term of the well-known Coulson–March expan-
sion of the solution in a neighborhood of infinity, and generalizations of this representation and its
analogues for the inverse of the solution are obtained. For the Thomas–Fermi model of a multielec-
tron atom and a positively charged ion, highly efficient computational algorithms are constructed that
solve the problem for an atom (that is, the boundary value problem on the half-line) and find the
derivative of this solution with any prescribed accuracy at an arbitrary point of the half-line. The
results are based on an analytic property of a special Abel equation of the second kind to which the
original Emden–Fowler equation reduces, to be precise, the property of partially passing a modified
Painlevé test at a nodal singular point.
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1. INTRODUCTION
1.1. Thomas–Fermi Model

According to the Thomas–Fermi model of a multielectron atom or an ion at the absolute zero tem-
perature (see [1; 2; 3, Section 70]), the dimensionless spatial charge density obeys the nonlinear equation

(1.1)

where  is the Laplace operator in в . In the spherically symmetric case, with allowance for the natural
requirements for the behavior of  at infinity and near a point nucleus (that is, as ), model (1.1)
leads to the following boundary value problem for a singular second-order ordinary differential equation:

(1.2)

(1.3)

where  is the dimensionless distance to the nucleus with charge ,  is the ion
radius (  for an atom), and the screening coefficient  specifies the intra-atomic electro-
static potential by the formula . The total ion charge , , can be found within this
model using the formula

(1.4)

Figure 1 shows plots of solutions of problem (1.2), (1.3) with  and various values of .
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Fig. 1. Plots of solutions of problem (1.2), (1.3) with  simulating the Thomas–Fermi atom ( ) and a positively
charged ion ( ).
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Note that the basic principles of the Thomas–Fermi model are used in simulating an inhomogeneous
electron gas within the so-called density functional method (see [4]).

1.2. Emden–Fowler Equation and Some Properties of Its Solutions

We consider the following two-point boundary value problem for the Emden–Fowler equation (see [5,
Ch. VIII]):

(1.5)

(1.6)

(1.7)

where  and  are some given numbers. Note that (1.2), (1.3) is a particular case of problem (1.5)–(1.7)
with parameter values of  and .

It is well known (see [5, 6]) that with  and , problem (1.5)–(1.7) has a unique
classical solution being a monotonically decreasing positive analytic function on the interval .
It is also well known (see [5, Ch. VII, Section 7]) that each positive solution  of Eq. (1.5) with 
defined on the half-line  has the asymptotic form

(1.8)

where

(1.9)

In addition, Eq. (1.5) is invariant with respect to the change of variables

(1.10)

In the particular case of Thomas–Fermi problem (1.2), (1.3), parameters (1.9) assume values of 
and ; scaling formula (1.10) makes it possible (see [2, 7]) to express the solution  of this prob-
lem in terms of the solution  of the same problem with  in the form

In connection with this,  is said to be the standard solution of the Thomas–Fermi problem for a
neutral atom (see [8, Section 172]). Note that the solution of general problem (1.5)–(1.7) is given by a sim-
ilar formula

(1.11)

With negative values of , the left-hand endpoint  of the interval  considered in
problem (1.5)–(1.7) is a singular point of the equation, since the coefficient of the nonlinear term is
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1294 PIKULIN
infinite. Regarding problem (1.2), (1.3), it is well known (see [9]) that for any , its solution can
be represented in a neighborhood of  by a convergent Puiseux series in powers of :

(1.12)

solutions with a fixed  and distinct  have distinct values of the slope of the plot at zero
, where  is some negative number. The coefficients , , are uniquely

determined by  and  from Eq. (1.2) (see [10]). The solution of problem (1.2), (1.3) on the semi-infinite
interval ( ) is associated with the critical value  in expansion (1.12), which is

(1.13)

at . Note that the quantity  in the Thomas–Fermi model has the following physical meaning: up
to a factor, this is the energy of the Coulomb interaction of the electron cloud with the nucleus (see [8,
Section 174]).

It is well known that the solution of problem (1.2), (1.3) with  can be approximately obtained
in a neighborhood of infinity using the formula (the so-called Coulson–March expansion, see [11, 12]):

(1.14)

where each of the coefficients , , can be explicitly expressed in terms of  by recurrence-
type formulas.

An extensive literature is devoted to finding numerical values of critical slope (1.13) in expansion (1.12)
and the constant  in expansion (1.14), as well as to developing methods to solve problem (1.2), (1.3) (see
[1, 2, 7, 10–45]).

1.3. Description of the Results

To formulate the results of this study, we introduce constants  and  depending only on the param-
eters  and  of Eq. (1.5) by the formulas

(1.15)

(1.16)

where the numbers  and  are defined in (1.9). If  in Eq. (1.5) is a rational number, then we represent
it as an irreducible fraction

(1.17)

The main result (Theorem 1) consists in the following parametric representation of the solution of
problem (1.5)–(1.7), (1.17) with :

(1.18)

where  and  are given by (1.9) and (1.16), respectively, , and the function  is pos-
itive and analytic on the whole of the interval , including its endpoints. Note that a parameter value
of  corresponds to the limit as , , while  corresponds to , . We have
derived recurrence-type formulas for coefficients of the Taylor series of the function  in a neighbor-
hood of  and proposed a method to calculate the Taylor series expansion at interior points of the
interval .

Representation (1.18) develops the well-known approach (see [38–45]) to constructing the solution of
the Thomas–Fermi problem in a parametric form. We also note an analytical numerical method con-
structed in [46, Sections 4 and 5] to solve a singular boundary value problem for a nonlinear singularly
perturbed equation similar to Eq. (1.5). The novelty of the approach of this work lies in using a previously
established analytic property (see [47]) of a special second-kind Abel equation to which the original
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Emden–Fowler equation reduces, to be precise, the property of partially passing a modified Painlevé test
(see [48]) at a nodal singular point.

The method of solving problem (1.2), (1.3) based on representation (1.18) (with , ,
, and ) combines a high accuracy of results and a relatively small computational com-

plexity, which is difficult to achieve within previously proposed methods. This combination is based on
the fact that the Taylor series of the function  at  has an exponentially fast convergence rate for
the whole of the interval  (the empirical value of the convergence radius is ≈1.2; a theoretical lower
bound for this radius is also given in this study), which makes it possible to efficiently find the solution

 and its derivative  at an arbitrary point of the half-line  with almost any predeter-
mined accuracy.

In this work, we have also obtained (see Theorem 5) a representation of type (1.18) for the solution of
two-point boundary value problem (1.5)–(1.7) on the finite interval  with  and

. This problem statement within the Thomas–Fermi model corresponds to the case of a pos-
itively charged ion.

A consequence of the parametric formulas derived by us (see Theorem 6) is the representability of the
solution of problem (1.5)–(1.7) with , , and a rational  as a convergent series

(1.19)

in powers of , where  is defined by (1.17), in a neighborhood of . Note that when condition (1.17)
is violated and also when , the analytic structure of the solution  in a neighborhood of 
can be more complicated than representation (1.19) (see [49, Section 12.4]).

Like in the case of expansion (1.12), which is generalized by (1.19), the value of  parame-
trizes the solution of problem (1.5)–(1.7) with a given  and distinct ; here,  is
the slope of the plot at zero for the solution of the problem on the semi-infinite interval, that is, with

. It follows from (1.11) that

In this work, we have derived a formula (see (2.15)) for the critical value  of the derivative of
the solution at zero with , which generalizes the well-known Majorana formula (see [40]) for quan-
tity (1.13). In connection with this, we note an analytical numerical method constructed in [50, 51] to find
the Blasius constant, which arises in boundary layer theory.

Theorem 2 of this work gives the following representation of the solution of problem (1.5)–(1.7),
, in a neighborhood of , which generalizes expansion (1.14) and improves asymptotics

(1.8):

(1.20)

where the coefficients  do not depend on  and  and  are given by (1.9) and (1.16), respectively.
A formula is obtained for  (see (2.43)), which makes it possible to find the constant  in (1.14) with
any predetermined accuracy (see (3.5)).

It is well known (see [52]) that expansion (1.14) converges only for sufficiently large . Theorems 3 and
4 give new representations similar to (1.20) and (1.14) for the inverse  of the solution :
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the series in  on the right-hand side of the first equality in (1.22) in the case of problem (1.2), (1.3) has
an exponentially fast convergence rate for the whole of the interval , that is, with , which
makes this formula suitable to calculate the solution on the whole of its domain. By approximating the sum
of this series by a quadratic function on a unit interval (see Section 3.1), we arrive at
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1296 PIKULIN
The analyticity of the function  in representation (1.18) at  is due to some property of a nodal
singular point of the second-kind Abel equation, being an auxiliary first-order equation to which original
equation (1.5) is reduced by an order decreasing procedure. This property lies in that the family of solu-
tions of the equation passing through its nodal point at the origin can be specified by a general formula
including a series in fractional powers of the variable with one of the coefficients of the series being a
parameter of this family. As has been shown in [47], this analytic structure of solutions of the second-kind
Abel equation near its nodal singular point is associated with partially passing a modification of the Pain-
levé test for this equation. Note that new representations of quasi-stationary solutions of nonlinear para-
bolic Kolmogorov–Petrovskii–Piskunov-type equations were obtained in [53–55] using the above-men-
tioned property of the second-kind Abel equation.

1.4. Transition to an Autonomous Second-Order Equation
We set

(1.24)

where  by definition. Using notation (1.9), we switch in problem (1.5)–(1.7) to new variables

(1.25)
with respect to which original equation (1.5), in view of definition (1.15), takes the autonomous form

(1.26)

Thus, there is a one-to-one correspondence between solutions  of problem (1.5)–(1.7) and solu-
tions  of Eq. (1.26) defined on an interval  of form (1.24). By inversing (1.25), we arrive at

(1.27)

We fix a solution  of problem (1.5)–(1.7) with some  and  and consider the
behavior of the corresponding solution  of Eq. (1.26). Substitution formula (1.25) and condition (1.6)
yield the asymptotics
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while condition (1.7) and relation (1.8) imply the equality

(1.29)

Due to the autonomy of Eq. (1.26), its solution  becomes a solution of the same equation under a
shift
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along the  axis. It can be seen from (1.25) and (1.27) that translation (1.30) corresponds to scale transfor-
mation (1.10) of Eq. (1.5). In addition, translation (1.30) preserves the quantity
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which is thus an invariant of (1.10).
Relying on (1.6) and (1.7), we prove the inclusion
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by contradiction. Indeed, the assumption  and asymptotics (1.28) and (1.29) imply that the function

 has a local maximum at some point , . Then the conditions

must be satisfied at this point, which collectively contradict Eq. (1.26). Therefore, the assumption 
is not valid, and inclusion (1.32) holds.
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The following proposition follows directly from Proposition 5 in [47].
Proposition 1. For each  from half-open interval (1.32), there is a solution  of problem (1.26)–

(1.29) on an interval  of form (1.24) with some  such that relation (1.31) holds for . The func-
tion  is uniquely defined up to translation (1.30);  if and only if .

The above reasoning and Proposition 1 yield the following proposition.
Proposition 2. The set of solutions  of problem (1.5)–(1.7), , , is in a one-to-

one correspondence with the set of solutions of problem (1.26)–(1.29), (1.31), (1.32) with . This cor-
respondence, given by (1.25) and (1.27), is consistent with transformations (1.10) and (1.31) so that interval
(1.32) parametrizes equivalence classes of solutions  with respect to scaling (1.10).

In what follows, it is convenient to specify a solution  of problem (1.5)–(1.7) not by a pair ,
where  and , but by a pair , where  and .

1.5. Decreasing the Equation Order and a Condition for Passing the Painlevé Test
We define a new variable  as

(1.33)

then problem (1.26), (1.28), (1.29), (1.31) with  reduces to the following (singular) Cauchy prob-
lem with respect to :

(1.34)

We define the Fuchs index for the nodal point ,  of Eq. (1.34), in view of (1.9) and (1.15),
as follows:

(1.35)

If condition (1.17) is satisfied and thus , then, according to [47, Section 2.3], Eq. (1.34)
partially passes a modified Painlevé test. In this case, let  denote the denominator of the fraction repre-
senting :

(1.36)

We introduce variables  and  related to  and  as follows:

(1.37)

then problem (1.34) with respect to  assumes the form
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(1.39)

According to Proposition 1 in [47], all trajectories representing solutions of problem (1.34) on the
 plane arrive at the origin ,  with the slope  to the horizontal and the corresponding

solutions of problem (1.38), (1.39) have the property . We apply Theorem 1 from [47] to deduce
the following proposition.

Proposition 3. Each solution  of Eq. (1.38) with the condition  is an analytic function at 
of the form

(1.40)

where the function  is also analytic at . Solutions (1.40) form a family parametrized by ,
that is, for each  there is a unique solution  of form (1.40). Coefficients of the Taylor series of 
at  can be rationally expressed in terms of , , , and .
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1298 PIKULIN
Solutions  of problem (1.38), (1.39) with  belong to this family, and formula (1.40) defines
the function  for each . The mapping

is monotonic and bijective.
Thus, Proposition 3 asserts that when condition (1.17) is satisfied, changing to variables ,  in Abel

equation (1.34) eliminates in a certain sense the irregularity of this equation at the nodal point ,
.

2. PARAMETRIC REPRESENTATION OF THE SOLUTION
OF THE EMDEN–FOWLER EQUATION

2.1. Solution of the Problem on the Semi-Infinite Interval

We consider problem (1.5)–(1.7), , with some . Due to Propositions 1 and 2, its solution
 can be expressed by formulas (1.27) in terms of the solution  of problem (1.26), (1.28),

(1.29), (1.31) with .
2.1.1. Parametric representation of the solution and its derivative. Assume that  in Eq. (1.5) satisfies

rationality condition (1.17). Then Theorem 2 in [47] asserts that the function  has the parametric
representation

(2.1)

where  is defined by (1.36);  is an analytic function on the interval  and can be expressed
using the formulas
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substituting  into (1.18), and equating the resulting expression for  at  to , we write con-
dition (1.6) in the form

In view of (2.9), this yields

(2.11)

where  is specified by (1.35).
Based on (2.2), (2.8), and (2.5), we find the derivatives of the functions  and  in parametric rep-

resentations (1.18) in the form

(2.12)

(2.13)

Using (2.12) and (2.13), we calculate the derivative of the solution  as a function of the parameter
:

(2.14)

where the constants  and  are specified by (2.11). In particular, relation (2.14) with , in view of
(2.10) and (2.11), yields an expression for the critical slope of the plot of  at  of the form

(2.15)

Note that, due to (2.12), (2.13), and (1.18), both derivatives  and  have zeros of order 
at  and are nonzero at other points of the unit interval.

2.1.2. Calculating Taylor coefficients and estimating the convergence radius. For the functions  and
 introduced above in (2.2)–(2.4), (2.8), we calculate coefficients of the expansions in powers of .

Using notation (2.5), we rewrite Eq. (2.3) in the form

(2.16)

and substitute the formal expansions

(2.17)

(2.18)

into system (2.5), (2.16).

Upon equating the coefficients of , , on both sides of (2.16), we arrive at

We rewrite the last equality in the form
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where the right-hand side

(2.20)

depends only on , , , and does not depend on . We find the factor of  on the
left-hand side of (2.19):

(2.21)

We solve (2.19) as a linear equation with respect to  successively with  and, in view of
(2.21), obtain

(2.22)

Formulas (2.18), (2.20), and (2.22) make it possible to calculate each of the coefficients of Taylor series
expansion (2.17) of  in a finite number of arithmetic operations.

We find coefficients of the Taylor series

(2.23)

of  based on (2.2), (2.5), and (2.7):

(2.24)

Upon substituting expansions (2.17) and (2.18) into (2.24), we arrive at

where  is the coefficient of  in the numerator of fraction (2.24):
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To obtain the Taylor series for (2.8), we expand brackets and combine like terms on the right-hand side
of the formula

(2.29)

where the coefficient of  is a polynomial of .
To estimate the convergence radius for series (2.17), (2.18), and (2.23), we additionally assume that the

parameter  in (1.5) is in the range
(2.30)

We first show that the solution  of problem (1.34), , is an analytic function in the disc
. Due to Proposition 4 in [47], it suffices to show that the free term 

of this equation has the following properties: first,  is a holomorphic function inside that is nonzero
everywhere in the disc except for its center ; second, coefficients of the expansion of the function

 at  in powers of the variable  form a decreasing sequence of positive numbers.
The first condition is obviously satisfied. We verify the second condition:

which yields the required result in view of condition (2.30).
When the variable  is replaced by t using substitutions (1.37) and (2.6), the disc of convergence for

the function  is conformly mapped onto a convex drop-shaped domain of analyticity  of the func-
tions , , , , and . The domain  has an angular point with the angle opening 
at . The distance from the origin  to the boundary  is

(2.31)
Thus, we have obtained the following result.
Proposition 4. When condition (2.30) is satisfied, the functions , , , , and  are holo-

morphic in the domain  and quantity (2.31) is a lower bound for the convergence radius for series (2.17),
(2.18), and (2.23).

When the value of  at some interior point of the unit interval  is obtained, we can find the
Taylor series expansions for  and  at this point by the method of undetermined coefficients from
Eqs. (2.5) and (2.16) and then calculate the corresponding expansion for , , and  using (2.24),
(2.27)–(2.29).

We summarize the results obtained in Sections 2.1.1 and 2.1.2 in the following theorem.
Theorem 1. Consider problem (1.5)–(1.7), , with  and condition (1.17). Then the solu-

tion  of this problem and its first derivative  has parametric representations (1.18), (2.11), and (2.14),
that is,

(2.32)

(2.33)

(2.34)

where the constants , , , , , and  depend only on  and  and are specified by (1.9), (1.15), (1.16),
(1.35), and (2.10);  is a positive analytic function on the interval  and can be expressed in terms of
the solution  of problem (2.3), (2.4) using (2.24), (2.27), and (2.29). Taylor series expansions (2.17) and
(2.29) for  and  at  can be obtained using (2.18), (2.20), (2.22), (2.25)–(2.29). If , then
the convergence radius of these series is bounded from below by (2.31).

2.1.3. Elimination of the parameter t. We consider the solution  of problem (1.5)–(1.7), (1.17),
, with  in form (2.32), (2.33) and eliminate  from this representation. We raise both
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sides of the equality , that is, of the first formula in (1.25), to the power  and write the
result, in view of (2.1) and (2.7), in the form

(2.35)

We express  in terms of  using (2.32). We divide both sides of (2.32) by  and raise them to the power
; let  and  denote the transformed left- and right-hand sides, respectively:

(2.36)

where  is an analytic function with respect to  on the unit half-open interval.
We verify that  for . Indeed, due to (2.13), in view of (2.5), we have

Therefore, the correspondence  specified by (2.36) monotonically and bijectively maps
the interval  onto the ray . Then there exists the inverse  of , being an
increasing positive analytic function mapping the half-line  onto the interval ; thus, the
parameter  in (2.32), in view of relation (2.36) between  and , can be expressed in terms of  in the form

(2.37)

We calculate the expansion of  in powers of . In a neighborhood of , the formulas

(2.38)

are valid; multiplying these, we arrive at

(2.39)

(2.40)

where the coefficients  and  polynomially depend on the known quantities , , , , .
Substituting expression (2.37) for  into (2.35), we derive the following representations of the function

:

(2.41)

in view of (2.40), representation (2.41) in a neighborhood of  takes form (1.20):

(2.42)

(2.43)

We have thus deduced the following theorem.
Theorem 2. Under the assumptions of Theorem 1, the parameter  can be expressed in terms of  in

form (2.37). The solution  of problem (1.5)–(1.7), , has representation (2.41), which takes form
(2.42), (2.43) in a neighborhood of .
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We now express  in terms of  from (2.33). Raising both sides of this equality to the power  and
introducing, by analogy with (2.36), the notation  and , we obtain

(2.44)

Due to (2.44), (2.12), (2.5), and (1.18), for  we have

therefore, the derivative  is positive for  and has a zero of order  at . Thus, the
mapping  defined by (2.44) is a one-to-one correspondence (due to monotonicity) between
the intervals  and ; consequently, there exists the inverse  of , being an
increasing analytic function on the interval  and having (as a function of the complex variable ) an

-sheeted branching at . Using , we express  in terms of  in the form

(2.45)

The function  has expansion (2.38) in a neighborhood of , which yields a Taylor series expan-
sion of the inverse function at :
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Upon substituting  in form (2.45) into formula (2.35) and solving it with respect to , we derive

(2.47)

which implies, in view of (2.46), representation (1.21) in a neighborhood of , that is,

(2.48)

Thus, the following theorem is true.
Theorem 3. Under the assumptions of Theorem 1, the parameter  can be expressed in terms of  in

form (2.45); the function  has an -sheeted branching at  in the complex plane. The inverse
 of the solution has representation (2.44), (2.47) taking form (2.48) in a neighborhood of .

The convergence disc for the series on the right-hand side of (2.48) obviously does not cover the branch
point  of analytic (with respect to y) function (2.45), which corresponds to the -sheeted branch
point  of . To eliminate this singular point, we introduce, first, a variable  by the for-
mulas
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and, second, an analytic function on the unit interval of the form
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which bijectively maps the interval  onto the parameter variation interval . Then inversion
formula (2.45), in view of (2.49) and (2.50), can be written as follows:
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Note that, due to (2.46) and (2.50), the expansion of  in a neighborhood of  has the form
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Upon substituting (2.50) into (2.47), we obtain the dependence of  on  in the form

(2.53)

We raise both sides of (2.54) to the power  and substitute expansion (2.52); upon expanding brack-
ets, we derive the following representation in a neighborhood of , which coincides with (1.22), for
the inverse of the solution:

(2.54)

Thus, we have deduced the following theorem.
Theorem 4. Under the assumptions of Theorem 1, the parameter  can be expressed in terms of  in

form (2.51), (2.49), where  is an analytic function on the closed interval . The inverse 
of the solution  has representation (2.53), which takes form (2.54) in a neighborhood of .

2.2. Solution of the Problem on the Interval
We derive the solution of problem (1.5)–(1.7), (1.17) with  under the assumption that the

corresponding value (see Proposition 2) of the parameter  is known.
Theorem 3 in [47] asserts that the solution  of problem (1.26)–(1.29), (1.31) with a given 

admits the parametric representation

(2.55)

where  is an analytic function on the interval  and can be expressed in the form

(2.56)

in terms of the solution  of the Cauchy problem

(2.57)

(2.58)

It is also shown in [47] that  for  and that the denominator on the right-hand side of
Eq. (2.57) is nonzero for .

Note that if the inclusion

(2.59)

holds, then Eq. (2.57) satisfies the assumption of the Cauchy theorem (see [56, Section 3]) at
; therefore, in this case,  is also an analytic function on the whole of the interval

, including its left-hand endpoint.
Upon substituting (2.55) into (1.27) and setting
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in view of (2.7), we arrive at
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We find the value of the constant  by using (2.62) and boundary condition (1.6), that is,  at :

(2.63)

where  is given by (1.35).
We calculate the derivative  as a function of the parameter . In view of (2.7), formulas (2.56),

(2.60)–(2.62) yield

(2.64)

(2.65)

which implies the following expression for the derivative:

Thus, we have proved the following theorem.
Theorem 5. The solution  of problem (1.5)–(1.7), (1.17) with  admits the parametric

representation

(2.66)

(2.67)

(2.68)

where the numbers , , and  are given by (1.35), ,  is an analytic function on the inter-
val , , and  can be represented in terms of the solution  of problem (2.57), (2.58)
in form (2.56), (2.60). The value of the parameter  entering Eq. (2.57) is related to the solution 
by formulas (1.31) and (1.25).

If condition (2.59) is satisfied, then  and  are analytic functions on the whole of the interval
, including its left-hand endpoint .

Formula (2.68) with  yields the slope of the plot of the solution  at the endpoint  in the
following form similar to (2.15):

(2.69)

It follows from (2.64), (2.65), (2.61), and (2.62) that each of the derivatives  and  can be rep-
resented as the product of the factor , specifying the multiplicity of zeros at the end-
points of the parametrization interval , and some function being nonzero everywhere on this
interval.

The Taylor series expansions for , , and  at  and other points of the interval 
can be calculated from Eq. (2.57) using the scheme described in Section 2.1.2.

2.3. Behavior of the Solution near the Origin
We show that the solution  of Eq. (1.5), (1.17), , with condition (1.6) has an expansion

of form (1.19) in a neighborhood of . For this purpose, we use a parametric representation of this
solution with a parameter  defined by (1.37).

1U =y Z = 1u
/β

− /β
=

μ= , := ,+�

1
10

1 1( )( 1)
K

K
e u

e

fU Z uN 6 6
6

K
/dy dr u

( )
−

/σ

−β + −
= − β = ,

σ + + + + −

�

�

�
� �

1

1

( 1) (1 )ln ( ) ( )
( 1) ( 1) ( 1) (1 ) ( )

M

M

M N u ud y N s u u
du Nu Nu Nu u u

3
3

( )
/σ−

/σ

− + +
= − + = ,

− − + + −

� �

�

1 1

1

( 1) ( 1)ln ( )
1 (1 ) ( 1) (1 ) ( )M

M N u Nud r M s u
du u u Nu u u3

( )−
− β+ /σ − β+= = < , = β μβ .

1
( 1) 1 ( 1)2

3 3 0 1
1

ln ln ( ) ( ) 0 Udy y d y d r U u u U f U
dudr r du U

6 3

( )y r , ∈ , +∞(0 )Z R

/β
− /βμ= − , = , ∈ , ,+�

1
10

1 1 1(1 ) ( ) ( 1]( 1)
K

KM

e

fr U u u U Z u uN6
6

β
/σ −β

/σ= , = ,+
+

�

�

1
2 2 1( )( 1)

( 1)
ey U u U ZNu

N

6
6

β+
− β+ β+ /β

β+/β
β= , = β = ,

μ +�

1
( 1) ( 1)2

3 3 ( 1)1
1 0

( ) ( )
( 1)

e
KK

Udy U u u U Z
dr U f N

6
6 3

K M �N = − �

1 ( 1/ )u N ( )u6

∈ ,1( 1]u u = (1)e6 6 ( )u6 ( )u3

μ ∈ ,(0 1) ( )y r

( )u3 ( )u6

∈ ,1[ 1]u u = 1u u
= 1u ( )y r = 0r

β+ /β

=β+/β
β= , := .

μ +�

( 1)

1( 1)1
0

(0) ( )
( 1)

e e uKK
Zdy u

dr f N
3 3 3

/dr du /dy du
− /σ−− +�

1 1 1(1 ) ( 1)Mu Nu
∈ ,1[ 1]u u

( )u3 ( )s u ( )u6 = 0u ∈ ,1( 1]u u

( )y r ∈ , +∞(0 )Z
= 0r

z

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 8  2019



1306 PIKULIN
The second formula in (1.25), substitutions (1.33) and (1.37), and equality (2.7) yield

(2.70)

where the function , which, in view of (1.40), has the form

(2.71)

is analytic at  and is defined up to an additive constant. Equalities (2.70), (1.37), and (2.7) and the
first formula in (1.25) implies the required parametrization

(2.72)

in a neighborhood of  ( , ), which covers representations (2.32), (2.33) and (2.66), (2.67).
Note that parametric representation (2.72) in the particular case of problem (1.2), (1.3) was deduced
in [40].

Using the notation  (see Proposition 3), we calculate the initial terms of the Taylor series
expansions of , , , and  in powers of  relying on (2.71) and (2.72):

(2.73)

(2.74)

(2.75)

where the Kronecker delta  is equal to one at  and zero otherwise. Due to Proposition 3, coeffi-
cients of the series inside brackets on the right-hand side of (2.73)–(2.75) can be rationally expressed in
terms of , , , and C. Using equality (2.75) and condition (1.6), we arrive at

(2.76)
By expressing  in terms of  from (2.74), we derive the following expansions in a neighborhood of

:

(2.77)

(2.78)

where coefficients of the series on the right-hand sides are also rational functions of , , , and C.
Upon substituting (2.77) and (2.78) into (2.75), in view of (2.76), we deduce representation (1.19) in a
neighborhood of :

(2.79)

according to Proposition 3, a solution  of form (2.79) corresponds to each .
By the Carathéodory theorem (see [57, Ch. 2, Section 1]), a solution of the singular Cauchy problem

for Eq. (1.5) with condition (1.6) and a prescribed derivative at  exists and is unique. We deduce the
following improvement of this result.
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Theorem 6. For any , the Cauchy problem for Eq. (1.5), (1.17) with conditions (1.6) and
 is uniquely solvable on some interval , . Its solution  can be represented in a neigh-

borhood of  by convergent series (2.79), where .
Coefficients  of expansion 2.79) with a given  can be found using the method of undeter-

mined coefficients by substituting it into Eq. (1.5). In addition, due to (2.76) and the above-indicated
properties of coefficients of expansions (2.77) and (2.78), for each , the quantity 
can be rationally expressed in terms of , , , and .

3. THOMAS–FERMI PROBLEM
The exponent  = –1/2 in the Thomas–Fermi equation (1.2) satisfies rationality condition (1.17);

therefore, Theorems 1–6 proved in Section 2 are applicable to problem (1.2), (1.3). The numerical param-
eters introduced above (in particular, (1.9), (1.15)–(1.17), (1.36)) have the following values:

3.1. Solution of the Thomas–Fermi Problem on the Half-Line

Representation (2.32)–(2.34) of the solution  of problem (1.2), (1.3) with  has the form

(3.1)

where  and  are analytic functions on the interval ;  is a solution of problem (2.3),
(2.4), that is,

(3.2)

and  can be expressed in terms of  by formulas (2.2) and (2.8). Note that Eq. (3.2) was derived by
E. Majorana (see [40]) directly from Eq. (1.2).

The Taylor series expansions of  and  in a neighborhood of  can be calculated using for-
mulas (2.17), (2.18), (2.20), (2.22) and (2.25)–(2.29), respectively, that is,

(3.3)

the radius of convergence of these series is bounded from below by quantity (2.31): . The
empirical radius of the convergence disc is ≈1.2, that is, this disc completely covers the domain of variation
of the parameter .

Representation (2.54) of the inverse of the solution takes the form

(3.4)

where the series on the right-hand side of (3.4) converge even faster that the Taylor series expansions for
 and  with an empirical convergence radius of ≈1.8 (see Table 1 and Fig. 2). Using values of the
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Fig. 2. Behavior of the absolute values of Taylor coefficients of the functions (a) , (b) , and (c) ; see (3.3) and (3.4).
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Fig. 3. Plot of the function ; see (3.3).
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coefficients  given in Table 1, we can find the value of  up to 12 decimal places. Figures 3 and 4 show
plots of the functions , , and .

Representation (2.42) assumes form (1.14) with a constant  given by (2.43):

(3.5)

where, due to recurrence relations (3.3), we have

(3.6)

We now formulate the result.
Theorem 7. The solution  of problem (1.2), (1.3) with  admits parametric representation (3.1).

Taylor coefficients for the functions  and  entering it can be calculated using (3.3) and (2.8). The
inverse  of the solution admits representation (3.4), where the series on the right-hand side converge
in a neighborhood of . Formula (3.5) is valid for the constant  in (1.14).

We underline that formulas (3.5) and (3.6), based on summing an exponentially convergent numerical
series each term of which can be explicitly calculated in a finite number of operations from recurrence-
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Table 1. Coefficients of the Taylor series at  for the functions , , and ; see (3.3) and (3.4)

n

0 –1 0 0
1 0.4559963 0.37541199 1.231293471269155
2 –0.3044551 0.11680513 –1.762572651223578E–01
3 –0.2221798 0.05301555 –3.586264513410257E–02
4 –0.1682126 0.02866072 –1.188294019140811E–02
5 –0.1298041 0.01715679 –4.527629495209355E–03
6 –0.1013002 0.01096849 –1.786511681720532E–03
7 –0.0796352 0.00733582 –6.888630288626336E–04
8 –0.0629230 0.00506758 –2.446296099146174E–04
9 –0.0499053 0.00358590 –7.102100665478879E–05

10 –0.0396962 0.00258466 –9.114850026654934E–06
11 –0.0316498 0.00189023 8.628385118260053E–06
12 –0.0252839 0.00139865 1.055443881972420E–05
13 –0.0202322 0.00104492 7.992270000062715E–06
14 –0.0162136 0.00078697 5.020985928867133E–06
15 –0.0130101 0.00059677 2.790922739565175E–06
16 –0.0104518 0.00045523 1.390873927946046E–06
17 –0.0084056 0.00034904 6.107369113157270E–07
18 –0.0067666 0.00026885 2.202119071036909E–07
19 –0.0054522 0.00020791 4.755499195027076E–08
20 –0.0043968 0.00016137 –1.546319759284382E–08
21 –0.0035485 0.00012565 –2.963705543713770E–08
22 –0.0028660 0.00009813 –2.574541382040214E–08
23 –0.0023164 0.00007684 –1.761541125892188E–08
24 –0.0018734 0.00006032 –1.043404093568663E–08
25 –0.0015161 0.00004746 –5.471632131286884E–09
26 –0.0012277 0.00003742 –2.507170177006865E–09
27 –0.0009947 0.00002956 –9.383306761822078E–10
28 –0.0008064 0.00002339 –2.107653561459858E–10
29 –0.0006540 0.00001854 6.735556420063704E–11
30 –0.0005307 0.00001472 1.344897961831818E–10
31 –0.0004309 0.00001170 1.192816857741852E–10
32 –0.0003500 0.00000932 8.286855224853180E–11
33 –0.0002844 0.00000743 4.959995317512788E–11
34 –0.0002312 0.00000593 2.612434022331377E–11
35 –0.0001880 0.00000474 1.189884390936907E–11
36 –0.0001530 0.00000379 4.309774068847392E–12
37 –0.0001245 0.00000304 7.936738883378811E–13
38 –0.0001014 0.00000243 –5.214790707757887E–13
39 –0.0000825 0.00000195 –7.998120745465573E–13
40 –0.0000673 0.00000157 –6.785731610539916E–13

= 0t ( )t4 =( ) ln ( )H t t* Ψ�( )e

n4 nH ne
type relations (3.3), differ from a similar formula (see [42, Section 2.12]) based on a parametrization of
form (2.72) and requiring a numerical resolution of an indeterminacy of the form , where the
infinitely large factor is a result of numerical integration of an unboundedly increasing function.

⋅ ∞(0 )
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Fig. 4. Plots of the functions  and ; see (3.3) and (3.4).
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Note that the expression for constant (1.13) given by (2.15) with , to be precise,

was derived by E. Majorana (see [40; 42, Section 2.12]).

We can calculate the solution  and its derivative  at a given point  using (3.1) by
finding the corresponding parameter value  and substituting it into the formula . To
inverse the function  by the Newton method, we should take into account that, due to (2.13), this
function has a multiple zero of order  at  and its derivative is nonzero everywhere on the interval

 except for this point. Thus, the efficiency of the Newton method for the inversion problem is guar-
anteed not for the very function  but for  (or for  in the general case of representation (2.32));
the initial approximation for  can be arbitrarily chosen on .

Taking the approximation  in (3.4), we arrive at (1.23). By approximating , , and
 using some method, we can derive other efficient formulas from representations (3.1) and (3.4) to

approximately solve the problem in an explicit analytic form.

3.2. Solution of the Thomas–Fermi Problem on the Interval

Representation (2.66)–(2.68) of the solution  of problem (1.2), (1.3) with  has the
form

(3.7)

where  is a solution of problem (2.57), (2.58), that is,
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Table 2. Numerical characteristics (normalized by Z) of solutions of Thomas–Fermi problem (1.2), (1.3) with var-
ious values of the parameter : (1) derivative at zero, see (1.12) and (2.69); (2) ion size,  in (3.7); (3) ion-
ization degree, see (1.4)

μ

0.0001 –2.5864080 0.53 9.30E–01
0.02 –1.5938269 4.17 3.68E–01
0.1 –1.5881541 10.84 1.02E–01
0.2 –1.5880743 19.49 3.42E–02
0.3 –1.5880712 30.74 1.28E–02
0.4 B – 1.39E–08 46.65 4.81E–03
0.5 B – 8.16E–10 70.85 1.68E–03
0.6 B – 3.42E–11 111.14 5.14E–04
0.7 B – 7.67E–13 187.62 1.22E–04
0.8 B – 4.98E–15 369.34 1.79E–05
0.9 B – 1.41E–18 1082.77 7.83E–07
0.999 B – 6.59E–41 824236.00 1.91E–15
0.9999 B – 5.62E–52 21893653.21 1.02E–19
1.0 B +∞ 0

μ = 1( )R r u

− / Ψ4 3 (0)'rZ − /1 3Z R −1 '/Z Z
and  is an analytic function for  that can be expressed in terms of  in form (2.56), that is,

(3.9)

The numerical solution  of problem (1.2), (1.3) with  can be obtained using representa-
tion (3.7) in a fashion similar to the case  considered in Section 3.1. The disc of convergence of the
Taylor series of  centered at  may not cover the whole of the parameter variation interval

: in this case, we can construct Taylor series expansions for the functions  and  at sev-
eral other points of this interval using Eq. (3.8).

The value of  corresponding to given  can be approximately obtained by interpolation
using Table 2 (the calculations are based on (3.7)–(3.9), (2.69)).
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