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Abstract—A periodic boundary value problem for a nonlinear evolution equation that takes the form
of such well-known equations of mathematical physics as the Cahn–Hilliard, Kuramoto–Sivashin-
sky, and Kawahara equations for specific values of its coefficients is studied. Three bifurcation prob-
lems arising when the stability of the spatially homogeneous equilibrium states changes are studied.
The analysis of these problems is based on the method of invariant manifolds, the normal form tech-
niques for dynamic systems with an infinite-dimensional space of initial conditions, and asymptotic
methods of analysis. Asymptotic formulas for the bifurcation solutions are found, and stability of these
solutions is analyzed. For the Kuramoto–Sivashinsky and Kawahara equations, it is proved that a two-
dimensional local attractor exists such that all solutions on it are unstable in Lyapunov’s sense.
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INTRODUCTION
We consider the nonlinear partial differential equation

(0.1)

where  are nonnegative constants and 
For various combinations of coefficients, Eq. (0.1) occurs in many branches of mechanics and math-

ematical physics. For example, in the case , we obtain the Korteweg–de
Vries equation. If  and  then Eq. (0.1) is called the Kuramoto–Sivashinsky
equation [1–3]. In [2], the corresponding equation was obtained in the analysis of the two-dimensional
Navier–Stokes system of equations in Kolmogorov’s modification after introducing the stream function
and some additional assumptions about the parameters of the problem. In [4–8], the version of Eq. (0.1)
with   and  was studied. This version is called the Kawahara (or Kawa-
hara–Benney–Lin) equation. The Kawahara equation describes the evolution of long waves in hydrody-
namics.

In applications to hydrodynamics, Eq. (0.1) was considered for  and 
When  and , this version is known as the Cahn–Hilliard equation [9].

In many practical cases, the equation derived in [10] for describing the formation of relief on the sur-
face of plates under the action of a f low of ions and as a result of laser or electrochemical processing
(see [11]) can be reduced to Eq. (0.1). A number of mathematical problems for the Bradley–Harper equa-
tions and equations derived from it were studied in [12–14].

In many studies mentioned above, Eq. (0.1) is considered subject to periodic boundary conditions
(e.g., see [2, 3, 10, 11]). In this paper, we consider Eq. (0.1) subject to boundary conditions

(0.2)

and we assume that  (if  then we can make  by the normalization with respect to time).
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We supplement the boundary value problem (0.1), (0.2) with the initial condition

(0.3)

Let  where  if  and  if  Here  denotes the Sobolev space [15] con-
sisting of  periodic functions with square integrable derivatives up to the order on an interval of the
period length. For such functions , the results obtained in [16, 17] imply that the mixed problem (0.1),
(0.2), (0.3) is locally well resolvable and its solutions in the phase space (the space of initial conditions )
generate a local semiflow [18]

These remarks provide reasons to assume that the boundary value problem can be analyzed using
dynamical systems theory techniques with an infinite-dimensional phase state (e.g., see [18]).

1. LINEARIZED BOUNDARY VALUE PROBLEM

Let us analyze the stability of the trivial equilibrium state of the boundary value problem (0.1), (0.2);
for this purpose, we consider the auxiliary linear boundary value problem

(1.1)

(1.2)

Here, the linear differential operator (LDO)  is defined by

where  is a smooth  periodic function. The LDO  has a countable set of eigenvalues

The corresponding eigenfunctions  form a complete orthogonal system of functions in the
space  Therefore, the solutions to the linear boundary value problem (1.1), (1.2) are asymptoti-
cally stable if  for all  (in the case under examination, , and these solutions are unsta-

ble if  for a certain . In turn, the zero solution to the nonlinear boundary value problem (0.1), (0.2)
is asymptotically (exponentially) stable if  for all , and it is unstable if there exists an integer  such
that  For the boundary value problem (0.1), (0.2), there is a critical case if  and  at cer-
tain integer .

Let us identify all possible critical cases in the stability problem of the zero solution of the boundary
value problem (0.1), (0.2). First, let  Then, the inequality  and the corresponding
equality  at integer  imply that there are two critical cases in the case 

The first critical case. There exists a natural  such that  for  and  for
. This case occurs if   and  which follows

from Viète's formulas. For such a choice of  and , the linear boundary value problem (1.1), (1.2) has two
linearly independent  periodic solutions

The second critical case. There exists a natural  such that  occurs when  and
 For other  and , it holds that  This critical case occurs when

 and  Then, the boundary value problem (1.1), (1.2) has the
 periodic solutions

, = .(0 ) ( )u x f x

∈ 2( ) sf x H = 5s γ ≠3 0 = 4s γ = .3 0 2
sH

π2 s
( )f x

2
sH

→ = , .( ) ( ) ( )tf x f x u t x

= ,tu Au

, + π = , .( 2 ) ( )u t x u t x

A

= − − β − α − γ − γ − γ ,v v v v v v v
( ) ( )

1 2 3'' ' '''IV VA

=v v( )x π2 A

λ = τ + σ , τ = − + β − α, σ = −γ + γ − γ , = , ± , ± ,4 2 3 5
1 2 3 0 1 2n n n n ni n n n n n n …

exp( )inx
−π, π .2( )L

τ < 0n n
| |→∞

τ = −∞lim )nn

τ > 0k k
τ < 0n n k

τ > .0k τ ≤ 0n τ = 0k
k

α > .0 − β + α >4 2 0n n
− β + α =4 2 0n n n α ≠ .0

m −τ = τ = 0m m = ±n m τ < 0n

≠ ±n m β = β = + + δ ,2 2
1 ( )m m α = α = + δ ,2 2

1 ( )m m δ ∈ − , ,( 1 1)
α β

t

− −= + σ , = , σ = γ − γ − γ , σ = −σ .3 5
2 1 3exp( )m m m m m m mq imx i t q q m m m

m τ = 0n = ±n m
= ± + .( 1)n m ≠ ±n m ≠ ± +( 1)n m τ < .0n

α = α = +2 2
2 ( 1)m m β = β = + + .2 2

2 ( 1)m m
t

− + + − + +

+

= + σ , = , = + + σ , = ,
σ = γ − γ − γ , σ = γ + − γ + − γ + .

1 1 ( 1) 1
3 5 3 5

2 1 3 1 2 1 3

exp( ) exp( ( 1) )

( 1) ( 1) ( 1)
m m m m m m mm

m m

q imx i t q q i m x i t q qq

m m m m m m
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 4  2019



632 A. N. KULIKOV, D. A. KULIKOV
A special critical case in the analysis of stability occurs when  Then, the LDO  has a zero eigen-
value ( ), and the corresponding eigenfunction is  For , the LDO

 has the eigenvalues  where  If  then 
In the following sections of the paper, we analyze the bifurcation problems arising in the cases that are

close to the three critical cases listed above. This allows us to find the solutions that branch from the equi-
librium state 

2. BIFURCATION PROBLEM IN THE CLOSE TO CRITICAL CASE
WITH A SINGLE PAIR OF PURELY IMAGINARY EIGENVALUES

In Eq. (0.1), set  where   and  Rewrite the
boundary value problem (0.1), (0.2) in the form

(2.1)

(2.2)
Here

The assumptions made in Section 1 imply that the LDO  has the eigenvalues

This pair of eigenvalues is associated with the eigenfunctions  For the other eigenvalues of
, we have the inequality  where  is a sufficiently small positive constant indepen-

dent of  if  is sufficiently small.
These properties allow us to conclude that the boundary value problem (2.1), (2.2) satisfies the

Andronov–Hopf bifurcation theorem (e.g., see [18]). According to this theorem, the analysis of the
dynamics of solutions with sufficiently small in the norm of the phase space can be reduced to the analysis
of dynamics of an auxiliary two-dimensional system on a two-dimensional central manifold  [18–
20]. The other solutions with sufficiently small initial conditions  approach  at an
exponential rate. Such an auxiliary system is called normal form (NF). In complex form, the normal form
can be written as a single differential equation for an auxiliary complex-valued function 

(2.3)

if the first Poincaré–Lyapunov constant  and  This is the “principal” part of the NF, and the
omitted terms have an order 

In applications to partial differential equations, the algorithm used to construct the NF (i.e., the algo-
rithm for calculating the NF coefficients) is important. Below in this section, we describe such an algo-
rithm, which can be interpreted as a modification of the well-known Krylov–Bogolyubov method.

We will seek the solutions of the boundary value problem (2.1), (2.2) lying in the central manifold
 in the form

(2.4)

Here  is the solution to the differential equation (2.3) and

The functions  smoothly depend on their arguments. At fixed , these functions

considered as the functions of  lie in  and have period  in the variable . Finally,

The class of such functions will be denoted by 
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We can substitute sum (2.4) into the boundary value problem (2.1), (2.2) and equate the coefficients of
the terms  and  to obtain inhomogeneous boundary value problems for determining the functions

 For , we obtain the boundary value problem

(2.5)

(2.6)

where  The boundary value problem (2.5), (2.6) has a unique solution in
the class of functions , which can be written as

where

For , we have the similar inhomogeneous boundary value problem

(2.7)

(2.8)

When writing the right-hand side of Eq. (2.7), we should take into account that the derivative of 
with respect to  is calculated along the solutions to Eq. (2.3). The solvability conditions of problem (2.7),
(2.8) in the class of functions  imply that

which once more confirms the supercriticality of 
Lemma 2.1. The NF (2.3) has a periodic solution 

which exists if  The solution  is stable if  and unstable if 
Lemma 2.1 is easy to verify in the standard way. For example, the existence of the exact solution is ver-

ified by the straightforward substitution.
Lemma 2.1 and formula (2.4) for the solutions on the invariant (central) manifold  imply the fol-

lowing result.
Theorem 2.1. There exists an  such that, for all , the periodic solution  of the NF (2.3) is

associated with the family of periodic solutions  of the boundary value problem (2.1), (2.2)

(2.9)

where  and  is an arbitrary real constant. Each solution (2.9) is sta-
ble if  and unstable if 

In other terms, the family of periodic solutions in the phase space  generates the cycle  which is
orbitally asymptotically stable if  (and unstable if ).
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Note that the solutions  have the structure of the travelling wave  where

From the physical point of view, the case when the cycle  is stable is more meaningful because the
corresponding solutions are physically realizable. This situation occurs when the version of the Kura-
moto–Sivashinsky equation with  is considered. In this case,

(2.10)

independently of the natural  and 
If we consider the generalized Cahn–Hilliard equation [9]  then

 In this case, we obtain a family of equilibrium states  rather than a family of periodic solu-
tions. This family of equilibrium states generates a one-dimensional invariant set, which is asymptotically
stable if   and unstable if  

Here we examined the version with  The conventional version of the Cahn–Hilliard equations
assumes that  This version should be analyzed separately.

3. THE CASE OF TWO PAIRS OF PURELY IMAGINARY EIGENVALUES
THAT IS CLOSE TO THE CRITICAL CASE

In Eq. (0.1), set

where  and the constants  were chosen in Section 1. Consider the resulting boundary
value problem

(3.1)

(3.2)

Here  and  (see the definition of  in Section 2).
The nonlinear operator  was also defined in Section 2. The LDO  has the eigenvalues

These eigenvalues are associated with the eigenfunctions , respectively.
For the other , it holds that  where   and  is a positive constant,
which is independent of 

In this case, the boundary value problem (3.1), (3.2) has a four-dimensional smooth invariant (central)
manifold  [18–20], on which the dynamics of solutions to the boundary value problem is deter-
mined by the solutions to the auxiliary system of four ordinary differential equations (or the system of two
such equations written in complex form).

In this section, we first consider the situation of generic position. We assume that either  or
 if  Otherwise, in addition to the “resonance” of modes, the resonance of eigenfrequencies

1 : 2 in the linearized at  boundary value problem (3.1), (3.2) is realized. The assumption that 
and  gives the NF of a different structure.

We will seek the solutions belonging to  in the form that is similar to sum (2.4):
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The functions  and  on the right-hand side of (3.3) are solutions to a system of differential
equations that is called the NF. This system is written below. In addition,

Finally, the smooth functions   considered as functions of  belong to 
they are trigonometric polynomials of  and satisfy the identities

In the nonresonance case (we assume that ), the principal part of the NF is

(3.4)

Here   The other coefficients   are determined when the
algorithm for constructing the NF is implemented.

Substitute sum (3.3) into the boundary value problem (3.1), (3.2) and equate the coefficients of the
identical powers of  As a result, we obtain inhomogeneous boundary value problems for determining
the functions  When making up these problems, it must be taken into account that the derivatives
of the functions  and  with respect to  are calculated along the solutions to the system of differ-
ential equations (3.4). As a result, we obtain the following two problems:

(3.5)

(3.6)

(3.7)

(3.8)

Here

The solutions to the boundary value problems (3.5), (3.6) and (3.7), (3.8) should be sought in the form
of trigonometric polynomials of the variables  and  that are orthogonal to the functions

 in the sense of the scalar product in the space  at all . The cor-
responding solution to the boundary value problem (3.5), (3.6) has the form

(3.9)
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By substituting sum (3.9) into the boundary value problem (3.5), (3.6), we find that

The coefficients of the NF (3.4) are found from the solvability conditions of the boundary value prob-
lem (3.7), (3.8) in the class of trigonometric polynomials. To this end, the coefficients on the right-hand
side of Eq. (3.7) must vanish for  Hence, we find that

In the system of differential equations (3.4), we set

− + −η = , η = ,
+ + + +

+ + − −η = , η = , = − − ,
+ +

2 2 2 2
1 2

1 1 2 2

22 2 2 2
3 4 1

3 3 4 4

2(2 ) 2(2 ( 1) )
3 ( 2 ) 3( 1)( 2 ( 1) )

2(2 1)( (2 1) ) 2( ) 3 2 1
( ) ( )

b m a i b m a i
m c imd m c i m d

m b m ia b ia c m m
m c id m c id

= + + , = + + + ,
= − + , = γ − γ , = + γ − γ ,

2 2
2 3

2 2 2
4 1 3 2 2 3 2

3 8 4 ( 1)(9 9 2)

( 1)( 2) 5 5( 1)

c m m c m m m

c m m d m d m

= γ + + + + − γ + + ,
= γ + − γ + + + .

4 3 2 2
3 3 2

3 2
4 2 3

5 (6 15 14 6 1) 3 (2 3 1)

3 ( 1) 5 ( 2 2 1)

d m m m m m m

d m m m m

+ +, , , .1 1and m m m mq q q q

− −= + ,
+

2 2 2 2
2 1 2 2 2 2 1

11 3 2 2 2
1 1

4( (2 ) 6 )3
3( 4 )

c b m a a b d ml b m
c m d

− += − − ,
+

2 2 2
1 2 2 2 2 1

11 3 2 2 2
1 1

4 (2 (2 ) 3 )3
3( 4 )

m d b m a b a cg a m
c m d

+ − − += + + ,
+ +

2 2 2 2
2 2 2 2 2 2 2

22 3 2 2 2
2 2

4( (2 ( 1) ) 6 ( 1) )3 ( 1)
3( 4( 1) )

c b m a a b d ml b m
c m d

+ + − += − + − ,
+ +

2 2 2
2 2 2 2 2 2

22 3 2 2 2
2 2

4( 1)(2 (2 ( 1) ) 3 )3 ( 1)
3( 4( 1) )

m d b m a b a cg a m
c m d

 + − −+= + + − − + + , + + 

2 2
2 2 2 4 2 2 2 2 4

12 3 3 2 2 2 2 32 2 2 2
3 3 4 4

( ) ( 1)4(2 1)6 [ ( (2 1) ) (3 1) ] 4 c b m a m a b dml b m c b m m a m a b d
c d c d

 + − + += − − +  + 

+ + −+ ,
+

2 2
3 2 2 3 2 2

12 3 2 2
3 3

2 2
4 2 2 2 2 4

2 2
4 4

( (2 1) ) (3 1)6 4(2 1)

( ) ( 1)4

d b m m a m c b ag a m m
c d

d b m a m a b c
c d

 + − − ++= + +  + 

 + + − − ++ ++ , + 

2 2
2 4 2 2 4 2 2

21 3 2 2
4 4

2 2
3 2 2 2 2 3

2 2
3 3

( ( 1) ) ( 2)16( 1) 4

( (2 1)( 1) ) (3 2)( 1)(2 1)4

c b m a m d a bml m b
m c d

c b m m a a b d mm m
m c d

 + − + ++= − + −  + 

 + + − + ++ +− . + 

2 2
4 2 2 2 2 4

21 3 2 2
4 4

2 2
3 2 2 3 2 2

2 2
3 3

( ( 1) ) ( 2)16 ( 1) 4

( (2 1)( 1) ) (3 2)( 1)(2 1)4

d b m a m a b cmg a m
m c d

d b m m a m c b am m
m c d

= ρ ϕ , = ρ ϕ1 1 1 2 2 2exp( ) exp( );z i z i
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 4  2019



LOCAL BIFURCATIONS IN THE CAHN–HILLIARD 637
then, we obtain the following system of ordinary differential equations (NF) for the real functions
:

(3.10)

(3.11)

In system (3.10), (3.11), the key role is played by the closed subsystem (3.10) for the amplitude variables
 It certainly has the zero equilibrium state  corresponding to the equilibrium state

 of the boundary value problem (3.1), (3.2); however, it also can have nonzero equilibrium states.
Lemma 3.1. System (3.10) has the following nonzero equilibrium states:

In the last two formulas,

The equilibrium state  is asymptotically stable if  and , and it is unstable if at least one of the
numbers  is positive. The equilibrium state  is asymptotically stable if  and , and it is
unstable if at least one of the numbers  is positive.

Finally,  is asymptotically stable if

If  or  then  is unstable.
The coordinates of  are found by solving the algebraic system of equations

The stability conditions of these equilibrium states are checked in the standard fashion. For this pur-
pose, the system of differential equations (3.10) should be linearized at the corresponding equilibrium
state.

The results obtained in [21–24] imply the following theorem.
Theorem 3.1.There exists a positive constant  such that, for all , the nonzero equilibrium state

 is associated with the cycle  of the nonlinear boundary value problem (3.1), (3.2). The
corresponding cycle  is orbitally asymptotically stable (unstable) if the corresponding equilib-
rium state is asymptotically stable (unstable).

The cycle  is generated by the family of periodic solutions

where  
For the periodic solutions generating the cycle  we have the asymptotic formulas

where 
At the same , the equilibrium state  is associated with the two-dimensional invariant torus  which

is asymptotically stable if  is asymptotically stable. The torus  is a saddle one if the equilibrium state 
is unstable.
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The torus is filled with solutions each of which satisfies the asymptotic formula

Here   

 and  The letters c.c. in the second pair of square brackets denote
the terms that are complex conjugate to the explicitly written terms. The corrections to the frequencies

 are found by analyzing the system of differential equations (3.11).
Theorem 3.1 is formulated for the generic position. If  then the family of

solutions  is independent of  and the two-dimensional invariant set  is filled with the family of
inhomogeneous equilibrium states. The equilibrium states  are associated with one-dimensional
invariant manifolds filled with inhomogeneous equilibrium states. This fact can be confirmed if we con-
sider the Cahn–Hilliard equation (i.e., Eq. (0.1) with , and ) if

If Eq. (0.1) is considered with    and , then the situation
is different. At such a choice of the coefficients, we obtain a version of the Kuramoto–Sivashinsky equa-
tion (see [2]). Let, in addition,   , and  The check of the conditions of
Theorem 3.1 shows that there are two cycles , and the torus  The torus is stable and the
cycles are saddles. Therefore, from the physical point of view, two-frequency oscillations are realized,
which fill the two-dimensional invariant torus (in the situation of generic position).

Now, let  and  In this case and at , there is the resonance of “eigenfrequencies” 1 : 2,
i.e.,  in the bifurcation problem. Below, we restrict ourselves to a special case of the bifurcation
problem. In its more general version,  where  and  is a small parameter.

In this case, the normal form techniques is applied in a different form. The solutions belonging to
 should be sought in the form (see [25, 26])

(3.12)
where

Note that  and  Finally, the complex-valued functions  satisfy
the system of ordinary differential equations (NF)

(3.13)

The right-hand sides of the NF (3.13) will be determined later. By substituting sum (3.12) into the
boundary value problem (3.1), (3.2) and collecting the terms proportional to , we obtain an inhomoge-
neous boundary value problem for determining the functions  The boundary value
problem is

(3.14)

(3.15)

The conditions of its solvability in the class of  periodic functions in the variable  imply that

In the case under examination,

Below in this and in the next section, we consider only the equations with  If, additionally,
 then we obtain a version of the Kawahara equation; and in the case 
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and , we obtain a version of the Kuramoto–Sivashinsky equation. Under such additional assump-
tions, the truncated normal form  takes the form

The changes   reduce this system of differential equations to the system

(3.16)

In (3.16), we set

As a result, it can be rewritten in the real form

In turn, we can separate the following closed subsystem of three equations from the last system of dif-
ferential equations:

it has the coarse equilibrium states

The equilibrium state  exists if  and  exists if  The first of these equilib-
rium states is asymptotically stable, and the other one is unstable.

Let in Eq. (0.1)      and  The reasoning
above and the results obtained in [25, 26] imply the following theorem.

Theorem 3.2. There exists an  such that, for all , the boundary value problem (0.1), (0.2)
has a limit cycle if  This cycle is stable if  and  The solutions forming this cycle sat-
isfy the asymptotic formula

Recall that  and 

4. A SPECIAL VERSION OF THE BIFURCATION PROBLEM
In this section, we consider the boundary value problem (0.1), (0.2) for  We additionally assume

that  Under these assumptions, we obtain the Kawahara (Kawahara–Benney–Lin equa-
tion) [4, 5]. If additionally  then we have the Kuramoto–Sivashinsky equation.

Let us also set   and  Then, we obtain a special version of the critical case
in which the stability spectrum includes  and   (see Section 1). Rewrite
the boundary value problem (0.1), (0.2) in the form similar to that used in Sections 2 and 3:
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Any solution to the boundary value problem (4.1), (4.2) can be represented by the sum

It is clear that  Note that the right-hand side of Eq. (4.1) has a zero spatial mean. Therefore,
the boundary value problem (4.1), (4.2) may be replaced by the equation

where  is an arbitrary real constant, and the boundary value problem for 

(4.3)

(4.4)

where  Therefore, the LDO  has the eigenvalues

and the other  satisfy the inequality  Moreover  is independent of  The
phase space of the nonlinear boundary value problem (4.3), (4.4) is the space  which consisting

of the functions  satisfying the equality 
The bifurcations of the nonlinear boundary value problem (4.3), (4.4) can be analyzed using the tech-

niques described in Section 2 of this paper. Recall that the analysis of the neighborhood of the boundary
value problem (4.3), (4.4) can be reduced to the analysis of the NF:

(4.5)
In this case,

The differential equation (4.5) has a stable periodic solution

which is associated with the family of periodic solutions having the travelling wave structure

where  is an arbitrary constant. In this section, we have written out only the principal term of the asymp-
totics in real form. It is clear that formula for  can be refined using the calculations described in
Section 2. The periodic solutions  form a cycle  in the phase space of the solutions of the aux-
iliary boundary value problem (4.3), (4.4). All its solutions with sufficiently small (in the norm) initial val-
ues lying in a neighborhood  approach this cycle at an exponential rate with an exponent 
that is independent of 

Now, return to the boundary value problem (4.1), (4.2). It has the family of periodic solutions

(4.6)

which depends on two arbitrary parameters  and  Moreover, this family of solutions forms a two-
dimensional invariant set  for the solutions of the boundary value problem (4.1), (4.2) (the local
attractor of its solutions). This invariant set may be called a cylinder because geometrically it is the Carte-
sian product of the closed trajectory  and a straight line.

Note that all solutions to (4.6) are periodic functions of t with the period depending on the choice of 
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The proof of the fact that all solutions of the two-parameter family of periodic solutions (4.6) are
unstable in Lyapunov’s sense in the norm of the phase space of solutions is fairly standard. Select two solu-
tions of this family

Denote the “principal” parts of these formulas by  i.e.,

Then, trigonometric calculations give

where

The elementary computations show that

The above reasoning implies three remarks:

(1)  if  where  is the solution to the equation

where  i.e.,  A proper choice of  ensures the validity of the inequality 

In addition, 

(2) Therefore, we have

if  or 5 and 
(3) Finally, for  we obtain the inequality  if   In this case,

 if 
Similar remarks hold for the solutions  and not only for their “principal” parts if  is a suffi-

ciently small positive constant and 
A similar result was obtained in [27], where a different boundary value problem was studied.

 CONCLUSIONS
The boundary value problem for Eq. (0.1) was studied. For various sets of coefficient values, this equa-

tion includes such well-known equations as the Kuramoto–Sivashinsky, Cahn–Hilliard, and Kawahara
equation. For the boundary value problem (0.1), (0.2), we studied the local bifurcations in the cases when
the stability of homogeneous equilibrium states changes at small variations of the parameters of the prob-
lem. Note that the local bifurcation problem for the boundary value problem (0.1), (0.2) was earlier stud-
ied for certain specific cases and often under additional conditions imposed on the class of solutions.
In most cases, the local bifurcations for the simple Kuramoto–Sivashinsky equation subject to periodic
boundary conditions and additional assumptions about solutions of the boundary value problem were
considered. For example, these were assumptions of evenness (oddity) with respect to the spatial vari-
able  (see [28, 29]). The boundary value problem was reduced to a finite-dimensional system of ordinary
differential equations using the Galerkin method with a small number (e.g., four) of basis functions.
Often, the detailed analysis of bifurcations used the computer analysis of the corresponding bifurcation
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problems. Note that many studies use the seminal paper [30], in which a theorem on the existence of a
global attractor for the mixed problem

or

was proved; these are the periodic boundary value problems for the basic version of the Kuramoto–Siv-
ashinsky equation with additional conditions about the evenness or oddity of solutions. In a number of
studies in situations similar to studies [28, 29], the analysis of the basic version of the Kuramoto–Sivash-
insky equation was based on the Lyapunov–Schmidt technique (e.g., see [31]).
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