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Abstract—A method for the quantitative comparison of the spatial geometric structure of two mole-
cules is proposed. It is based on the minimization of a comparison function using the rotation of mol-
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the Rosenbrock method.
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1. INTRODUCTION

This paper is devoted to the theoretical and numerical investigation of the mathematical model of com-
paring two molecules in a problem of structural chemistry. This model is reduced to comparing two
objects consisting of  ordered points of fixed geometry that behave as rigid bodies in . The compari-
son principle in this model is based on optimizing the superposition of these two objects by translations
and rotations. The optimal superposition is achieved by finding the translations and rotations minimizing
a function that compares the geometry of two objects. This function is the sum of distances between the
points of the two objects with identical indexes. To minimize the comparison function (see [1, 2]), the
zero-order Rosenbrock method is used (see [3, 4]). The results are used to compare the geometry of real-
life molecules.

The molecules of many substances can exist in the form of conformers (conformation is the spatial
arrangement of atoms in a molecule; there are various manifestations of this phenomenon in chem-
istry [5])—the conformers have the same structural formula but different spatial configuration. Hence,
the problem of comparing the geometry of conformers in space arises because the conventional charac-
teristics, such as bond lengths (interatomic distances) and valence angles, do not always show the differ-
ences of the molecular geometry. Moreover, there is need in comparing fragments of chemically different
molecules, the close neighborhood of atoms (coordination polyhedra), or other large or small complexes
of atoms. For this purpose, a method for the quantitative comparison of molecular geometry based on the
minimization of a comparison functions by translating and rotating molecules is proposed. It is proved
that the minimum with respect to translations is achieved by bringing certain characteristic points, which
are arbitrary called the molecular centers of mass, into coincidence. Minimization with respect to rotation
angles is performed using the zero-order Rosenbrock method.

2. DESCRIPTION OF THE MATHEMATICAL MODEL

In this section and in the next one, we present some definitions and theorems.

Definition 1. The geometric structure (or briefly structure) is a rigid geometric construct consisting of
 ordered points in  with the coordinates  ( ) that moves in  as a rigid body.
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We assume that each th point of this structure is assigned a weighting coefficient  such that

. Let , , be the indexes of nonzero weighting coefficients . Then,

(1)

Let two geometric structures consisting of  points each with the coordinates  and
 ( ) be given. For each fixed index , the point with the coordinates  of

the first structure corresponds to the point  of the second structure.
Let the geometries of both structures be identical. Consider two arbitrary points specified by the vec-

tors  and  that are identically positioned relative to the corresponding geometric structure (in partic-
ular, we may choose two points of these structures with the same indexes as  and ). Then, by rotating
one structure relative to the other, we can bring all points with identical indexes into coincidence thus
achieving the complete coincidence of the two structures. If the two structures have different geometries,
then it is natural to pose the problem of bringing them into optimal “coincidence” by various translations
and rotations of one structure relative to the other considered as rigid bodies.

The optimality criterion of coincidence of two geometric structures is formulated in terms of the min-
imum of the comparison function

(2)

with respect to translations and rotation (Euler) angles (see [6]), where the vectors  and  determine
the position of points in the first and the second structures, respectively; the vectors  and  determine
the displacement of the first and the second structures to the corresponding points; and  are
the rotation matrices through the Euler angles (  is the precession angle,  is the nutation angle, and  is
the intrinsic rotation angle):

(3)

Thus, the function  defined by (2) is the sum of distances between the corresponding points of two
geometric structures with the weights  after bringing the points determined by the vectors  and  into
coincidence and rotating the second structure relative to the first one. Let us examine problems emerging
in the process of minimizing the comparison function (2).

3. MINIMIZING THE COMPARISON FUNCTION OF TWO GEOMETRIC STRUCTURES
We show that, by bringing certain characteristic points of two geometric structures into coincidence,

the comparison function minimization problem with respect to the entire set of variables can be reduced
to the minimization of the function  with respect to the rotation angles , , and .

In this paper, we give more complete and rigorous formulation and proof of the idea proposed in [7].
Theorem 1. The minimum of the function  is attained at the point corresponding to the “center of mass”

of the two geometric structures determined by the vectors

(4)

Proof. In function (2), we fix the angles , , and  and, therefore, the matrix . Hence, we will con-
sider (2) as a function of the variables  and . This function is convex and quadratic with respect to
these two variables; therefore, its minimum with respect to  and  is attained at the points at which
the derivative with respect to these variables vanishes. Thus, we obtain the equations

(5)
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By differentiating, we obtain

(6)

(7)

Since the matrix  is nonsingular, Eq. (7) is equivalent to Eq. (6). By solving Eq. (6) for , we obtain

(8)

To make the expression in parentheses in (8) equal to zero, we choose  from the condition

(9)

Then, (8) implies

(10)

We have already mentioned above that Eqs. (6) and (7) are equivalent; therefore, points (9) and (10)
satisfy Eqs. (5). Hence, the vectors  and  provide the minimum to function (2) at fixed rotation angles ,

, and . This completes the proof of Theorem 1.
Thus, the minimum of function (2) corresponds to translating the centers of mass of the geometric

structures determined by formulas (10) and (9) to the origin. Now, function (2) can be considered as a
function of the rotation angles:

(11)

where  are the given coordinates of the geometric structures and the centers of mass  and 
are found by formulas (10) and (9). Function (11) is minimized with respect to the angles , , and .

Suppose that the minimum of the function  defined by (11) is attained at the point
. The proximity measure between two geometric structures is defined by

(12)

This quantity can be considered as a quantitative characteristic of the proximity measure between two geo-
metric structures because it is the averaged distance between the points with identical indexes in the two
structures after they have been brought into “coincidence.”

Two structures are said to be approximately equal if

(13)

where  is a given quantity (in applications, it is determined by the specific practical situations). The
inequality  is called the proximity criterion of two structures. In numerical computations,  can have
a computational error.

Note that if the minimizer is not unique and there exists a point  such that
, then the quantity  remains unchanged and the nonuniqueness of the mini-

mizer does not affect the proximity criterion of geometric structures.
Now, the test for comparing the geometry of two geometric structures can be subdivided into three

phases: (1) translate the center of mass of each geometric structure to the origin; (2) minimize function (11)
with respect to the Euler angles; (3) calculate the quantity  by formula (13) and draw a conclusion on the
proximity of these structures.
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Two geometric structures are called equal if their points with identical indexes can be brought into
coincidence by moving this structures as rigid bodies. It is well known (see [8]) that such a movement can
be made by a translation and orthogonal rotation.

Test (1)–(3) for comparing two geometric structures is valid if two equal structures with different coor-
dinates  and  are brought into coincidence at the minimizer of function (11), i.e., if the proximity
measure between two equal structures is .

Theorem 2. The minimum of the nonnegative function (11) is zero if and only if two geometric structures are
equal.

Proof. Let two equal structures be given. This means that they can be brought into coincidence at the
points with identical indexes and their centers of mass can be moved to the origin. In this case, the points
of these structures with identical indexes have identical coordinates determined by the vectors ,

. Equal structures in which the points with identical indexes have different coordinates can be
obtained by moving these structures apart, i.e., by rotating the second structure relative to the first one
and displacing each structure. More precisely, rotate the second structure relative to the first one through
the angles , , and ; and then move the center of mass of the first structure to the point determined by
the vector  and the center of mass of the second structure to the point determined by the vector .
Then, the coordinates of the points of the first and the second structures will be

(14)

where  is a matrix of form (3). It is clear that the coordinates ,  in (14) can specify an arbi-

trary position of two equal structures in .
Now assume that the coordinates of two equal structures with, generally, different coordinates (14) of points

with identical indexes are given, i.e., . Taking into account that the coordinates of two
equal structures can be represented in form (14), we apply to these two structures algorithm (1)–(3).

(1) Calculate the centers of mass of two equal structures. According to (10) and (14), we have for the
center of mass of the first structure

(15)

because  are the coordinates of the structure points relative to the center of mass and, therefore,

. Similarly, for the center of mass of the second structure, we obtain from (9) and (14) that

(16)

(2) Taking into account (14), (15), and (16), the comparison function (11) takes the form

(17)

It is clear that the minimum of the function  which is equal to zero, is attained, according to (1), at

This implies that  and . Since the rotation matrix  is orthogonal, its inverse matrix
coincides with the transpose matrix ; hence, we obtain the rotation matrix  that minimizes the
minimum of the function  of form . Since the matrices  and  can be repre-
sented in form (3), it is easy to verify that  and, therefore,

(18)
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Fig. 1. Positions of the atoms С and О in the lactide molecule .
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This implies that, for two equal structures, the minimum of the function , which equals zero, is attained
at the point . These structures can be brought into coincidence using transla-
tions (15), (16), and rotation (18).

The converse assertion of the theorem is obvious because  implies that the coordinates of each
point  of the first structure with the weight  in (11) coincide with the coordinates of the second
structure; i.e., the points and the structures as a whole are brought into coincidence by displacing the first
structure by , the second structure by , and the rotation of the second structure through the angles

 determined by the matrix . This completes the proof of Theorem 2.

Thus, according to Theorem 2, the comparison algorithm (1)–(3), which minimizes the comparison
function, identifies equal structures and, therefore, provides an objective estimate of the difference of
geometry of two “close” structures.

While applying algorithm (1)–(3) for comparing two structures, we will numerically minimize the
comparison function  with respect to the Euler angles after bringing the centers of mass into
coincidence.

4. NUMERICAL SOLUTION OF THE OPTIMIZATION PROBLEM

In this section, we present numerical results of comparing geometric structures by minimizing the
comparison function (11). Since (11) is not a convex function, we used the zero-order Rosenbrock method
[3, 4], which proved to be effective in structural chemistry [7]. In the computer program implementing
algorithm (1)–(3) designed for the minimization of the comparison function (11) using the Rosenbrock
method, we used the optimization library [9].

We demonstrate the effectiveness of algorithm (1)–(3) described and justified above using structural
chemistry applications as examples. We will consider molecules with ordered arrangement of the point
atoms as geometric structures. When comparing molecules with the same structural formula, we are inter-
ested in the difference in their spatial structure.

In the examples discussed below, we present the results of comparing lactide molecules C6H8O4 stud-
ied in [10]; these molecules consist of  main atoms (four oxygen atoms and six carbon atoms). The
coordinates of the hydrogen atoms were not involved in the computations because the accuracy of their
determination is lower than that of other atoms, and they are irrelevant for the problem under examina-
tion. The geometry of these molecules is shown in Fig. 1. The coordinates of the molecules were obtained
by X-ray structural analysis. In our experiments, the atoms to be brought into coincidence were assigned
the weights .

Example 1. To check the validity of the comparison algorithm (1)–(3) and the effectiveness of the pro-
gram, we consider the example of bringing two identical lactide molecules into coincidence. The initial
coordinates ,   of the atoms of two molecules were obtained using formulas (14) and (3).
The coordinates of the first molecule atoms were obtained by displacing the coordinates of the original
molecule atoms; the coordinates of the second molecule atoms were obtained from the coordinates of the
original molecule atoms by displacing them and rotating through the angles .
Table 1 shows the values of coordinates of the first and the second molecules in ångströms. The minimizer
of the function  is found by the Rosenbrock method to be , which
agrees with (18). The measure of proximity (which is called proximity characteristic in chemistry) calcu-
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Table 1. Coordinates of atoms (in Å) of two identical lactide molecules

i x1, i y1, i z1, i x2, i y2, i z2, i wi

1 0.31077 0.90281 –0.76944 –0.25873 –0.12647 –0.73910 1
2 1.49955 –0.96244 0.84211 0.46314 2.08327 0.70499 1
3 1.41879 0.44535 2.51758 0.75186 0.82371 2.47297 1
4 0.06663 –0.60437 –2.34230 –0.20942 1.05671 –2.58374 1
5 0.61125 –0.28306 –1.31952 –0.24562 1.05076 –1.38183 1
6 1.63476 –1.11629 –0.59785 –0.29163 2.28412 –0.52197 1
7 1.36152 0.26291 1.32995 0.27999 0.95307 1.37404 1
8 1.13991 1.37253 0.32736 –0.53558 –0.11869 0.68722 1
9 0.43472 2.55976 0.89930 –0.23480 –1.49946 1.17398 1

10 1.52208 –2.57718 –0.88719 0.28080 3.49294 –1.18656 1

Table 2. Coordinates of atoms (in Å) of three lactide molecules C6H8O4

i x1, i y1, i z1, i x2, i y2, i z2, i x3, i y3, i z3, i

1 O1 1.7662 4.2832 0.3852 0.2009 –0.5132 –2.1717 6.8162 1.8230 4.0036
2 O2 2.9550 2.9550 1.9967 2.4489 –2.0531 –2.1448 9.0275 3.2430 3.2601
3 O3 2.8742 3.8258 3.6722 3.3503 –0.6698 –3.5931 9.1045 2.0885 1.3878
4 O4 1.5221 2.7761 –1.1876 –0.4000 –1.4894 –0.2977 6.4668 3.2853 5.6067
5 C1 2.0667 3.0974 –0.1648 0.2544 –1.5276 –1.3087 7.2331 2.8019 4.8144
6 C2 3.0902 2.2641 0.5568 1.1859 –2.6453 –1.6872 8.6829 3.2022 4.6782
7 C3 2.8170 3.6433 2.4846 2.3522 –1.1069 –3.0902 8.6970 2.1824 2.5132
8 C4 2.5954 4.7530 1.4820 0.9474 –0.6508 –3.4148 7.8199 1.1668 3.1793
9 C5 1.8902 5.9402 2.0539 0.9258 0.6793 –4.0860 7.0875 0.2831 2.2070

10 C6 2.9775 0.8032 0.2674 1.5108 –3.5712 –0.5484 9.0453 4.5161 5.2636
lated by formula (12) was  Å. The ratio to the minimum distance  between the atoms in
the molecules

is , which is practically equal to zero. Thus, algorithm (1)–(3) perfectly brings iden-
tical molecules into coincidence.

Example 2. Comparison of three lactide molecules. Table 2 shows the coordinates of the oxygen ,
 and carbon ,  atoms in ångströms in three symmetrically independent (within the

same crystal) lactide molecules C6H8O4, one of which is shown in Fig. 1.
Application of algorithm (1)–(3) for comparing molecules 1 and 2, 1 and 3, and 2 and 3 gives the

results presented in Table 3. The minimizing angles produced by these computations are also presented in
Table 3. Practical experience of examining conformation of molecules based on results of comparing a
large number of structures [11] yielded the following arbitrary classification:  Å indicates that
the molecules are almost identical,  Å indicates that the molecules are close to each other,
and  Å indicates that the molecules are different.

The analysis of residuals , i.e., the distances between the atoms with identi-
cal indexes after the molecules are brought into coincidence (at the minimizer of ) and of the quantity

 for  Å suggests that the first and the third molecules, as well as the second and the third mole-
cules have almost identical geometries because in both cases . The greatest differences are observed
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Table 3. The residuals Δri, the characteristic s, and the Euler angles ϕ, θ, ψ for the minimizer of the comparison
function

Atom
 for molecules 1

and 2, all 

 when the rings
of molecules 1 and 2 

are brought into 
coincidence

 for molecules 1
and 3, all 

 for molecules 2
and 3, all 

1 O1 0.020 0.009 0.011 0.015

2 O2 0.040 0.021 0.044 0.004

3 O3 0.156 0.138 w = 0 0.076 0.081

4 O4 0.188 0.210 w = 0 0.098 0.090

5 C1 0.040 0.051 0.039 0.011

6 C2 0.056 0.064 0.016 0.043

7 C3 0.046 0.036 0.038 0.009

8 C4 0.059 0.049 0.029 0.038

9 C5 0.149 0.127 w = 0 0.113 0.041

10 C6 0.176 0.196 w = 0 0.139 0.049

s 0.111 0.043 0.073 0.047

ϕ, θ, ψ
at the minimizer

ϕ = 73.9°
θ = 111.0°
ψ = –42.0°

ϕ = 253.6°
θ = 249.4°
ψ = 138.6°

ϕ = 80.4°
θ = 157.5°
ψ = 59.0°

ϕ = 27.8°
θ = 74.8°
ψ = –51.0°

Δ ir
= 1iw

Δ ir
Δ ir

= 1iw
Δ ir

= 1iw
between the first and the second molecules ; these molecules can be considered close to
each other. It is seen from Table 3 that the maximum residuals are characteristic of substituent atoms
(atoms outside the ring). To demonstrate these differences more clearly, we performed an additional com-
putation by assigning the zero weight  to the substituents. In this case, we obtained  Å. This
indicates that the rings in the molecules are practically identical. The detected differences in the position
of the atoms in the first and the second molecules when the rings are brought into coincidence are seen in
Fig. 2, which was produced using the coordinates of molecules at the minimizer of the comparison func-
tion .

Example 3. Checking the intrinsic symmetry of a molecule.
Using the comparison algorithm (1)–(3), we checked the intrinsic symmetry of the lactide molecule

depicted in Fig. 1. The assumed second-order symmetry axis passes vertically through the ring center.
To apply algorithm (1)–(3), we formed the “second” molecule by changing the indexing of the atoms.
It is seen in Fig. 1 that, due to the assumed symmetry, atom 1 in the second molecule must correspond to

= . > 0( 0 11 Å )s s

= 0iw < .0 04s

U
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Fig. 2. The result of bringing the rings of molecules 1 and 2 into coincidence corresponding to the minimizer of the com-
parison function.
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Table 4. The residuals Δri, the characteristic s, and the Euler angles ϕ, θ, ψ for the minimizer of the comparison
function when checking the intrinsic symmetry of molecule 1

Atoms Permutation of atoms  for molecule 1 and for 
molecule 1 with pernutation

1 O1 2 O2 0.008
2 O2 1 O3 0.008
3 O3 4 O4 0.012
4 O4 3 O3 0.012
5 C1 7 C3 0.011
6 C2 8 C4 0.008
7 C3 5 C1 0.011
8 C4 6 C2 0.008
9 C5 10 C6 0.006

10 C6 9 C5 0.006
s 0.009

, ,  at the minimizer ϕ = 71.6°
θ = 216.8°
ψ = 108.4°

Δ ir

ϕ θ ψ
atom 2 in the first molecule, atom 5 must correspond to atom 7, and so on. The reindexing of atoms in the
second molecule is shown in Table 4. The results of comparing the “two” molecules are also shown in
Table 4. The comparison characteristic in this case is  Å; hence, the molecules can
be considered identical and, therefore, the original molecule has second-order symmetry with a high
degree of accuracy.

The computations described above were performed using the computer program  that
was written in C#, for which we are grateful to the author of this program N.V. Bakhtadze.
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