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Abstract—Extension of the mirror descent method developed for convex stochastic optimization prob-
lems to constrained convex stochastic optimization problems (subject to functional inequality con-
straints) is studied. A method that performs an ordinary mirror descent step if the constraints are insig-
nificantly violated and performs a mirror descent step with respect to the violated constraint if this
constraint is significantly violated is proposed. If the method parameters are chosen appropriately, a
bound on the convergence rate (that is optimal for the given class of problems) is obtained and sharp
bounds on the probability of large deviations are proved. For the deterministic case, the primal–dual
property of the proposed method is proved. In other words, it is proved that, given the sequence of
points (vectors) generated by the method, the solution of the dual method can be reconstructed up to
the same accuracy with which the primal problem is solved. The efficiency of the method as applied
for problems subject to a huge number of constraints is discussed. Note that the bound on the duality
gap obtained in this paper does not include the unknown size of the solution to the dual problem.

Keywords: Mirror descent method, convex stochastic optimization, constrained optimization, proba-
bility of large deviations, randomization.
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1. INTRODUCTION
In [1], a theory of lower (oracle) bounds on the complexity of solving constrained and stochastic con-

vex optimization problems on sets of a simple structure was developed. In [1], methods that converge
according to these lower bounds (up to logarithmic factors) were also proposed. In particular, a class of
nonsmooth (stochastic) convex optimization was considered. For this class, a special method called the
mirror descent method was proposed, which is optimal for this class of problems. It was known that the
mirror descent method can be extended to constrained optimization problems (with the loss of a logarith-
mic factor compared with lower bounds). The subsequent development of numerical methods for convex
optimization showed that the mirror descent method is in many respects convenient for various problems,
including huge-scale optimization problems (problems in huge-dimensional spaces or with a huge num-
ber of constraints). In particular, such problems arise in truss topology design (see Example 1 in Section
4). There are various simplifications and generalizations of this method. In this paper, we follow [2] to
extend the modern version of the mirror descent method to constrained stochastic optimization problems.
In distinction from [1, 2], we obtain sharp bounds on the probability of large deviations and prove the pri-
mal–dual property of the method in the deterministic case. The bounds on the convergence rate of the
1728
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method correspond to the lower bounds obtained in [1]; i.e., the logarithmic gap mentioned above is
eliminated. An important feature of the proposed method is its simplicity, which helps use the sparseness
of the problem.

In Section 2, we describe the method and prove a theorem establishing a bound on the convergence
rate of the method. Note that we consider the oracle that produces not only stochastic (sub)gradients of
the objective functional and functional constraint but also the value (but not realization) of the functional
constraint at the point of interest. Using the theory of fast automatic differentiation (see [3]), we may con-
clude that such an oracle can also produce the gradient of the functional constraint (rather than the sto-
chastic gradient). However, the fast automatic differentiation technique is developed for smooth problems
(while lexicographic differentiation is used for nonsmooth problems [4]) and, secondly, certain applica-
tions require the use of the sparse stochastic (sub)gradient rather than the nonsparse full (sub)gradient.
Some examples of such problems are discussed in Section 4.

In Section 3, we prove (in the deterministic case) the primal–dual property of the method. This prop-
erty is useful, for instance, in the application of the proposed method to truss topology design, in which
the primal and the dual problems must be solved simultaneously.

In the concluding Section 4, we discuss possible generalizations and applications. A more detailed
comparative analysis with other available results is also performed.

2. MIRROR DESCENT METHOD FOR CONVEX CONSTRAINED
OPTIMIZATION PROBLEMS

Consider the convex constrained optimization problem

(1)

By an -solution of this problem, we mean an  such that the inequality

(2)

holds with a probability , where  is the optimal value of the objective functional in prob-
lem (1) and  is the solution of problem (1).

Define a norm  in the primal space (the adjoint norm will be denoted by ) and a proximity func-
tion  that is strongly convex with respect to this norm with a strong convexity constant . Choose an
initial point

where we assume that

Define the Bregman “distance”

The “size” of the solution is defined by

and the size of the set  (for clarity, we assume that this set is bounded, but in the general case the reason-
ing below can be conducted accurately under certain additional assumptions, see [5]) is defined by

We assume that there is a sequence of independent random variables  and sequences ,
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(4)

or

(4')

At each iteration step , we have a stochastic (sub)gradient  or  at a
point  chosen by the method.

Let us describe the stochastic version of the mirror descent method for problems with functional con-
straints (this method dates to [1]).

Define the “projection” operator associated with the Bregman distance by

The mirror descent method for problem (1) has the form (e.g., see [2])

(5)

where , , . Denote by  the set of indexes  for which .
We also introduce the notation

In the theorems formulated below, it is assumed that the sequence  is generated by method (5).

Theorem 1. Let conditions (3) and (4') hold. Then, for

it holds that  (with a probability ) and

Let conditions (3) and (4) hold. Then, for

(6)

it holds that  and

with a probability ; i.e., inequalities (2) are satisfied.
Proof. The first part of this theorem was proved in [2]. Here we prove the second part. According to [6],
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Put  and define

Then

(7)

The Azuma–Hoeffding inequality [7] implies that

i.e.,

with a probability . We assume that (the constant 81 can be decreased to ):

Then, with a probability , the expression in parentheses in (7) is strictly less than zero; therefore,
we have the inequalities

The last inequality follows from the fact that  for  and from the convexity of the func-
tion .

3. THE PROMAL–DUAL PROPERTY OF THE METHOD

Let . Consider the dual problem

(8)

We have the inequality (weak duality)

Denote the solution to problem (8) by . Assume that Slater’s conditions hold, i.e., there exists an 
such that . Then

In this case, the “quality” of the pair  is naturally assessed by the size of the duality gap .
The less the gap, the higher is the quality.

Let (we restrict ourselves to the deterministic case)
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Set

Theorem 2. Let

Then, for

it holds that  and

Proof. According to [6], we have

The subsequent reasoning repeats the reasoning in the proof of Theorem 1 (see formula (7) and the text
following it).

4. CONCLUDING REMARKS
In Remarks 1 and 2, the results obtained in Sections 2 and 3 are compared with other known results.
Remark 1. The results of Theorems 1 and 2 can be found in [8, 9] for the deterministic case; however,

they were proved for other methods that are close to (5) but still different from it. As in [8, 9] the main
advantage of method (5) is that the bounds on its convergence rate do not include the size of the dual solu-
tion, which is involved in the bounds of other primal–dual methods and approaches (e.g., see [10]).

Remark 2. In [11, 12], another method for deriving results close to those obtained in this paper in the
deterministic case is proposed. The approach used in those papers is based on the ellipsoid method instead
of the mirror descent method (5). Note that in Section 5 of [11], it is shown how the violation of the con-
straint  can be avoided. In the approach described in that paper, which follows the series of
works [2, 8, 9], the constraint was perturbed to ensure proper bounds on the rate of the duality gap
decrease. In [11, 12], the ellipsoid method was used that guaranteed the desired bounds on the conver-
gence rate of the accuracy certificate, which majorizes the duality gap, without constraint relaxation.

The results of Sections 2 and 3 can be further elaborated. This will be briefly described in Remarks 3–7.
A more detailed presentation will be made in a future paper.

Remark 3. Using the constructs described in [13] (also see [14]), the results obtained above can be
extended for the case of small nonrandom noise.

Remark 4. The method described in Section 3 can be extended for the case of arbitrary  and  not
satisfying the relation . In Sections 2 and 3, this relation was assumed only to simplify the
calculations.
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Remark 5. Similarly to [5, 13, 15], we can propose an adaptive version of the method described in Sec-
tion 3 that does not require the bounds  and  to be known a priori. Furthermore, in the case of a
bounded set , an adaptive version of the method described in Section 2 for stochastic optimization prob-
lems can be proposed (see [15]), as well as the corresponding generalization of the method AdaGrad [15].
Moreover, using the results obtained in [16] and a special choice of steps in the adaptive method, one can
obtain (in the deterministic case) sharper bounds on the convergence rate that admit, e.g., the unbound-
edness of the Lipschitz constant of the functional on an unbounded set .

Remark 6. The method described in Section 3 can be extended for composite optimization problems
[17] in the case when the function and the functional have a common composite.

Remark 7. Using restarts as in [18], the method described in Section 3 can be extended to strongly con-
vex problem statements (when both the functional and the constraints are strongly convex). The key
observation is as follows. If  and  are -strongly convex functions with respect to the norm 
on the convex set  and  for , then  and  imply that

Examples 1 and 2 discussed below demonstrate the possible fields of application of the proposed ver-
sion of the mirror descent method. Pay attention to how the number of constraints  appears in these
bounds. In the sparse case, formulas (9) and (10) seem to be very optimistic.

Example 1. The main field of application of the proposed approach is convex problems of the form
(see [2, 8])

, where  and  are convex functions (of a scalar argument) with the Lipschitz constant uni-
formly bounded by a known number M and the (sub)gradient of each such function can be computed in
an amount of time . As applied to truss topology design, these functions may be assumed to be
linear [8]. Define the matrix

and assume that each column of the matrix  contains not more than  nonzero elements and each
row contains not more than  such elements (the vector  has no more than  nonzero elements as
well). The results obtained in Sections 2 and 3 imply that the proposed version of the mirror descent
method (with the choice of , ) requires (Theorem 2)

iteration steps, where  is the Euclidean distance from the start point to the solution squared and each
iteration step (except for the first one) requires (see [2, 19] and the reasoning in Example 2 below)

operations. This requires  operations for additional preprocessing (to prepare the memory in a
proper way). Thus, the total number of arithmetic operations is

(9)
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Example 2. Assume that the matrix  and the vector  in Example 1 are not sparse. We try to introduce
randomization into the approach described in Example 1. To this end, we perform some additional pre-
processing to construct a probability distribution vector from nonsparse vectors . Represent these vec-
tors by

where each vector  and  has nonnegative components. According to this representation, we prepare
the memory in such a way that the time needed to generate random variables based on the probability dis-
tributions  and  takes a time . This can always be done as was proved in [19].
However, this requires a fairly large number of the corresponding “trees” to be stored in fast memory. The
time taken by the preprocessing procedure and the amount of required memory are proportional to the
number of nonzero elements in the matrix , which is too large in the case of huge-scale problems. Nev-
ertheless, we below assume that such a preprocessing can be performed and (which is the main thing) such
an amount of memory is available. In practice the preprocessing is often needed only for a small number
of constraints and the problem functional, so that the required amount of memory is available. Define the
stochastic (sub)gradient (the same can be made for the functional)

where

moreover, it is of no importance which representative of  is chosen;

The results of Sections 2 and 3 imply that the proposed version of the mirror descent method (with the
choice of , ) requires (here, for clearness, we restrict ourselves to the convergence
in expectation in Theorem 1, i.e. without bounds on the probabilities of large deviations)

iteration steps. The main computational complexity is in computing . However, except for the first

iteration step, the repeated solution of this problem can be organized efficiently. Indeed, assume that 
has already been calculated and we want to calculate . Since  can differ from  only in two com-
ponents (see [2]),  can be recalculated in time  based on the known

 (e.g., see [19]). Thus, the expected total number of arithmetic operations in the random-
ized mirror descent method is

(10)
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For the matrices  and the vector  all nonzero elements of which have the same order of magnitude, e.g.,
, we have

In this case, no advantages can be expected because formulas (9) and (10) will be similar. However, if this
condition (that the nonzero elements of  and  have the same order of magnitude) holds not very accu-
rately, certain advantages can be expected.

Numerical experiments confirm the estimates presented in these examples and in [2]. A more detailed
description of the numerical experiments can be found in [20].

Already after this paper has been prepared for publication, we got to know the works [21–23], in which
similar results were obtained. In connection with this, we note a different (simpler) technique used in this
paper to obtain the main results and the treatment of the primal–dual property of the proposed method
in the deterministic case.
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