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Abstract—The problem of equilibrium distribution of f lows in a transportation network in which a part
of edges are characterized by cost functions and the other edges are characterized by their capacity and
constant cost for passing through them if there is no congestion is studied. Such models (called mixed
models) arise, e.g., in the description of railway cargo transportation. A special case of the mixed model
is the family of equilibrium distribution of f lows over routes—BMW (Beckmann) model and stable
dynamics model. The search for equilibrium in the mixed model is reduced to solving a convex opti-
mization problem. In this paper, the dual problem is constructed that is solved using the mirror
descent (dual averaging) algorithm. Two different methods for recovering the solution of the original
(primal) problem are described. It is shown that the proposed approaches admit efficient paralleliza-
tion. The results on the convergence rate of the proposed numerical methods are in agreement with
the known lower oracle bounds for this class of problems (up to multiplicative constants).
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1. INTRODUCTION
The search of equilibriums in transportation networks can often be reduced to finding an equilibrium

in the corresponding congestion population game. In turn, the search for Nash equilibrium in such a game
is always reduced to optimization problems. Under natural assumptions (that are typically satisfied in
practical problems) such problems turn out to be convex. The most popular example is the BMW model
of equilibrium distribution of f lows over routes [1, 2] (the Beckmann model). Recently, the stable dynam-
ics model [1, 3, 4] and the mixed model [5] that combines properties of the two preceding models have
gained popularity.

In this paper, the result obtained in Section 3 of [1] is extended to mixed models. A new representation
of the approach proposed in [1, Section 3] is given, which makes it more convenient for applications.

The paper is organized as follows. Section 2 contains the statement of the problem. The convex opti-
mization problem the solution of which provides the desired equilibrium is formulated. The dual problem
is constructed. Formulas determining the relation between the primal and dual variables are obtained.
In Section 3, we describe the composite version of the well-known mirror descent (dual averaging)
method for solving the dual problem. A method to numerically recover the solution of the primal problem
given the (approximate) solution of the dual problem obtained using the mirror descent method is
described. A theorem on the convergence rate of the proposed method based on the prescribed accuracy
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1396 GASNIKOV et al.
of reconstruction of solution of both primal and dual problems simultaneously is proved. In Section 4,
another method to numerically recover the solution of the primal problem given the (approximate) solu-
tion of the dual problem obtained using the mirror descent method is described. A theorem similar to that
proved in Section 3 on the convergence rate of the proposed method based on the prescribed accuracy of
reconstruction of solution of both primal and dual problems simultaneously is proved. In Section 5, the
results obtained in the preceding sections are analyzed and discussed. Finally, a summary of numerical
results is given.

2. DESCRIPTION OF THE PROBLEM OF FINDING THE EQUILIBRIUM DISTRIBUTION 
OF FLOWS IN THE MIXED MODEL

Let the city transportation network be represented by a directed graph , where are the
nodes vertices (nodes),  are the edges,  are the sources of trips ( ), and  are
sinks. In modern models of equilibrium distributions of f lows in a metropolitan area, the number of graph
nodes is of the order  [1], and the number of edges is greater by a factor of three or four. Let

 be the set of possible trips, i.e., pairs source–sink.  is
called a route from  to  if  for , .  denotes the set of routes corre-
sponding to the trip ; i.e., if , then  is the set of routes beginning at the vertex  and end-
ing at ;  is the set of all routes in ;  [cars/hour] is the magnitude of the f low on the route

, ;  [cars/hour] is the magnitude of the f low through the edge :

and  is the specific cost of moving through the edge . It is usually assumed that these are (strictly)
increasing smooth functions of . More precisely,  can be better interpreted as the idea of the trans-
portation network users about their spending (typically, time in the case of personal vehicle or conve-
nience taking into account the travel time for public transport) for going through the edge  if the amount
of those who wish to use this edge is .

Consider the cost  (in terms of time or money) of using the route . It is natural to assume that

.

Suppose that we know how many moves  in unit time are made according to the trip . Then,
the vector  describing the distribution of f lows must be within the feasible set:

Consider the game in which each trip  is associated with a sufficiently large set of similar “play-
ers” that move according to the trip  (the relative scale is determined by the numbers ). The pure strat-
egies of each player are routes, and the payoff is . The player “chooses” a route ; when mak-
ing his choice, he neglects the fact that this choice “slightly” affects  of the components of the vector x and,
therefore, the payoff  itself. It can be shown (e.g., see [2]) that finding the Nash–Wardrop equilib-
rium  (macrodescription of the equilibrium) is equivalent to solving the problem

(1)

In the limit of the stable dynamics model (Nesterov–de Palma) [3, 4], we can pass to the limit on a part
of the edges :
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Then, problem (1) takes the form

In this paper, we propose a well-parallelized dual numerical method for finding the equilibrium in the
mixed model (1), i.e., in the model in which a part of the edges satisfy Beckmann’s property and the other
part are Nesterov–de Palma edges. Such problems arise, e.g., in the single-commodity railway cargo
transportation model [5]. Unfortunately, the Frank–Wolfe conditional gradient algorithm, which is used
in almost all modern transportation simulation software, is inapplicable to such mixed models. Novel
approaches are needed.

We can construct the following dual problem for problem (1) (see [1, 4])

(2)

where  is the length of the shortest path from  to  ( ) in the graph 

the edges of which are weighted by the vector . The solution  of problem (1) can be obtained
using the formulas , , where  is the Lagrange multiplier corresponding to the con-
straint ; , . Note that we have  for the edges ; and for
the BPR-functions, we have

In applications,  is usually used. In this case, the step of the iterative method (3) described below
can be performed using explicit formulas because Ferrari’s solution for the quartic equation is available
(see [6]).

Finding the vector  is of independent interest because this vector describes costs on the edges of the
transportation network graph. The solution of problem (2) gives the cost vector  at equilibrium.

3. THE FIRST METHOD FOR RECOVERING THE SOLUTION OF THE PRIMAL PROBLEM 
GIVEN THE SOLUTION OF THE DUAL PROBLEM

To solve the dual problem (2), we use the composite version of the mirror descent method [7–9]
(  ; the constraint  is always inactive and can be, therefore,
neglected)

(3)

where  is an arbitrary element of the subdifferential of the convex function  at the point  and

where  is the desired accuracy of solving problems (1) and (2) (see (6)). Unfortunately, we man-
aged to prove inequality (*) (see the proof of Theorem 1 below) for μ ≥ 0 only for the constant step

; in this case, 
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Set

(4)

(4')

where  is the Lagrange multiplier corresponding to the constraint  in the problem

The stopping rule is given by the last inequality in (5):

(5)

In this paper, we obtain (following mainly [1, 9], where the case  was considered) the following
result on the convergence of method (3).

Theorem 1. Let

Then, for

we have inequality (5) and, as a consequence,
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Corollary 1. Let  be the solution of problem (2). Set

Then, for

it holds that

(7)

(8)

Proof. Formula (8) is a standard result (e.g., see [7]). Formula (7) is also fairly conventional (see [10]);
however, we outline its derivation below. From the proof of Theorem 1, we have for every 

Therefore,

Remark 1. An advantage of approach (3), (4), (4') over the approach described in Section 3 of [1] is the
simplicity of description (there is no need in doing restarts with respect to unknown parameters) and the
existence of the stopping rule (5) that can be effectively checked. A disadvantage is that the estimate of the
convergence rate includes the poorly controllable parameter , which can be large even when .
Below, we describe another method (also see [11, 12], where similar constructs are described) for recov-
ering the solution of the primal problem (1) that differs from (4), (4') in formula (4'); in the case ,

this method allows the use of  instead of .
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4. THE SECOND METHOD FOR RECOVERING THE SOLUTION OF THE PRIMAL 
PROBLEM GIVEN THE SOLUTION OF THE DUAL PROBLEM

Set

(9)

Theorem 2. Let
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Then, for

it holds that

Furthermore, the inequalities
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hold, which can be used as a stopping rule given the pair .
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Therefore,

Repeating the reasoning in Section 6.11 in [13] and Section 3 in [12], we obtain the desired inequalities.

5. FINAL REMARKS
In this section, we discuss in the form of remarks the results obtained above and briefly present the

results of numerical experiments.
Remark 2. The advantages of formula (9) over formulas (4), (4') in the case  were discussed in

Remark 1. Here we formulate the disadvantages of this approach: (1) the constraint ,  in the
primal problem can be violated; (2) there are no left inequalities in the double inequalities (5), (6).

Remark 3. Formulas (4) and (9) by force (in case (4)) or purposefully (in case (9) for ) recover
the solution of the primal problem based on the “model”—the explicit formula relating the primal and
dual variables. The presence of such variables inevitably causes the duality gap in the solutions of auxiliary
problems the size of which is difficult to control. In the case when the existence of the model is related to
a constraint in the primal problem (formulas (9) for  and the constraint in the primal problem sat-
isfies  for ), the constraints to be controlled may be violated (11). But on the other hand, we
have complete control of the parts of the duality gap estimates (10) corresponding to these variables.
Approach (4') related to the existence of constraints ( , ) in the problem to be solved also leads
to the emergence of duality gap in the solutions of auxiliary problems the size of which is difficult to con-
trol; however, this no longer causes violations in the constraints in the problem itself and in the adjoint
problem (in the case under examination, the dual problem is (2) and the adjoint of it is the primal
problem (1)). These two primal–dual approaches are complemented with another primal–dual approach
in which the steps are made “with respect to the functional” if constraints in the problem are not violated
or weakly violated, and “with respect to the violated constraint” otherwise. This issue is discussed in more
detail in, e.g., [13, 14].

Remark 4. Both approaches described above can be extended (retaining the form of recovery formulas
and the structure of reasoning) to almost all pairs of primal–dual problems because the example of the
pair of mutually adjoint problems (1), (2) contains almost all details that can appear in such reasoning.
Moreover, instead of the mirror descent method, we could use any other primal–dual method, e.g., the
composite universal gradient method described in [15].

Remark 5. The proposed methods can be efficiently parallelized if the elements of the subdifferential
, which is the most computationally costly part of the iterative step, can be efficiently computed (see

formulas (3), (4), and (9), in which this subdifferential is used):

 can by computed by Dijkstra’s algorithm [16] and its modern analogs (see [17]) in time

. By , we may mean any (if there are several of them) shortest path from the vertex  to 
in the graph  the edges of which are weighted by the vector . By the path description, we mean

 if  appears on the shortest path and  otherwise. Thus, the computation of
 can be parallelized to  processors.

Remark 6. Strictly speaking, we want to find the vector  rather than the shortest paths. To find
 in  operations, we can construct the shortest path tree (e.g., using Dijkstra’s algorithm)

for each of  sources. Based on the principle of dynamic programming any part of the shortest path is a
shortest path itself, it is easy to verify that we indeed obtain a tree rooted at the source vertex. For a single
source, this tree can be constructed in  (see [16, 17]). However, the key point is to find proper
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weights of edges (there are not more than  edges) of this tree so that the contribution of the corre-
sponding source (over all edges) to the total vector  could be recovered in a single path. The edge
weight must be equal to the sum of all trips passing through it and beginning at the given source (tree root).
Knowing the values of the corresponding trips (there are not more than  of them), the proper weights
can be found using not more than  operations in a single backward pass through this tree (i.e., from
the tree leaves to its root). This is done by setting the weight of each edge equal to the sum of trips (which
may be zero) to the corresponding vertex passing through this edge and the sum of weights of all edges
(if there are any) outgoing from this vertex.

Six-year students of the Moscow Institute of Physics and Technology performed various numerical
experiments [18, 19] with the algorithms described in this paper and in [1]. The data for the experiments
were taken from the open resource [20]. Here are the main conclusions drawn from these experiments:

• If all edges in the mixed model are of the Beckmann type, then it is better to use the conditional gra-
dient (Frank–Wolfe) method [1, 2].

• The methods described in this paper and in [1] based on solving the dual problem by the primal–dual
mirror descent method perform in agreement with the estimates (i.e., the estimates obtained in this paper
are confirmed by practical computations, and the methods do not converge faster than predicted by these
estimates).

• It is reasonable to apply the dual approaches based on the mirror descent (dual averaging [10])
method to real cities only if relatively low accuracy is required (not greater than 5%); to achieve better
accuracy in the case of metropolitan areas (tens of thousands of edges) all these methods (not parallelized)
will take hours.

• The use of high-level languages (like Python) reduces efficiency (up to an order of magnitude) com-
pared with lower-level languages (like C++).
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