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Abstract—The feasibility problem of multicommodity f low is reduced to finding out if a multidimen-
sional vector determined by the network parameters belongs to a convex polyhedral cone determined
by the set of paths in the network. It is shown that this representation of the feasibility problem makes
it possible to formulate the feasibility criterion described in [1] in a different form. It is proved that this
criterion is sufficient. The concepts of reference vectors and networks are defined, and they are used
to describe a method for solving the feasibility problem for an arbitrary network represented by a com-
plete graph.
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INTRODUCTION
The feasibility problem of a multicommodity f low is a part of the general theory of f lows in networks,

and this problem was stated simultaneously with the appearance of this theory (e.g., see [2, 3]). It is a nat-
ural generalization of the maximal f low and minimal cut problem, which can be called feasibility problem
of a single-commodity f low; the solution of this problem obtained using the augmenting f low algorithm
is determined by the capacity of the minimal cut of the network.

In the general case, multiple source–sink pairs and intensities of f lows are given in a network. The
problem is to find out if it is possible to organize f lows with the given intensities in this network in such a
way that the edge capacities are not exceeded. An algorithmic method was also applied to this problem [3];
however, it was only proved that the solution of the two-commodity problem is reduced to checks on cuts.
However, this is generally not true.

In [1], a generic feasibility criterion of a multicommodity f low in the form of nonnegativity of scalar
products of a multidimensional vector determined by the network parameters and intensities of commod-
ities with the set of metric vectors was formulated. In [1], metrics are defined as vectors satisfying a certain
system of inequalities. No proof of the sufficiency of this criterion was given in [1] and in subsequent pub-
lications (e.g., [4]).

The main purpose of the current paper is to prove the sufficiency criterion for the feasibility of the mul-
ticommodity f low proposed in [1]. This is achieved by reformulating the criterion given in [1]. More pre-
cisely, it turned out that the multicommodity feasibility f low problem can be formulated in terms of the
theory of convex polyhedral cones, and it is equivalent to the following problem: does a given vector
belong to a given polyhedral cone? In this formulation, the convex polyhedral cone is a cone with the gen-
erators formed by all paths of all commodities and all positive unit vectors of the network edges; the com-
ponents of the network vector are the capacities of the network edges and the intensities of commodities.

In [1, 4], considerable effort was devoted to finding out which networks are “purely cut networks” (the
term purely cut network denotes a network in which all metric vectors are cuts). It is claimed in [1] that all
networks with f low schema (the definition of this concept see in this paper) in the form of two stars, com-
plete four-vertex graph, or five-vertex cycle possess this property. In [4], it is claimed that the networks
possessing this property are confined to these three f low schemata. The representation of the problem in
terms of the theory of convex polyhedral cones and introduction of the concept of reference networks pro-
vides a new look at the problem of purely cut networks.
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804 GRINBERG
1. FEASIBILITY CRITERIA FOR MULTICOMMODITY FLOWS
1.1. Formulation of the Problem in Terms of Convex Cones

The feasibility problem of a multicommodity f low in the network F is denoted by ; it is for-
mulated as follows. In the N-vertex graph (network), a symmetric (triangular) real positive N × N matrix
C of edge capacities of F with zero diagonal elements and a symmetric (triangular) real nonnegative N ×
N matrix T of f low intensities with zero diagonal elements are given:

(1.1)

The positive elements of C are called network edges with the capacities cik, and the positive elements of T
are called flow edges or commodities with the intensities of those commodities tik. The set of network and
flow edges is called the graph of the network F, and the subgraph of F formed by the edges of T is called
the f low schema.

We assume that the connectivity of F is such that the following conditions are satisfied.
1. Let  be a partition of the set of F vertices; F1 and F2 are the subgraphs of F formed by the ver-

tices  and , respectively; and let there be among the f low edges at least one edge such that one of its
vertices belongs to the first subgraph and the other one belongs to the second subgraph. In this case, the
subgraphs F1 and F2 must be connected. The set of edges connecting the nodes of these subgraphs is con-
ventionally called the cut.

2. According to Condition 1, every cut contains more than one edge (an equivalent formulation is that
the removal of any network edge does not violate the connectivity of F).

We want to find out if it is possible to organize the f lows of commodities with intensities tik such that
the sum of all commodities through each network edged does not exceed the capacity of the edge.

Let M1 be the number of network edges and M2 be the number of f low edges. It was shown in [2] that,
without the loss of generality, the sets of network and flow edges can be assumed to be disjoint. Below, we
assume that this condition is fulfilled.

Consider the real space  of dimension M3 = M1 + M2. The unit vectors corresponding to the ele-
ments of the matrix C, i.e., to the network edges of F, are denoted by , the subspace spanned
by these vectors is denoted by , the unit vectors corresponding to the elements of the matrix T, i.e., the
flow edges of F, are denoted by , , and the corresponding subspace is denoted by .
In this notation, the elements of the matrices C and T are assumed to be (positive) components of the vec-
tors  and . We also define the network vector .

The paths in the network  will be represented by the vectors in the space ; more precisely,

(1.2)

where  is the path of commodity m,  are the vertices of F included in the path ,
 are the unit vectors of the space  corresponding to the edges in , and

 is the f low edge of , . The row of components of the path vector in the space  is

(1.3)

where the ones correspond to the edges of  included in the path  and –1 are at the places of the net-
work edges of the path in . We will use the following notation:

 are the sets of vectors of type (1.2) representing all paths of each commodity m in ;

 is the set of network unit vectors, i.e., the unit vectors of the subspace RC;

 is the set of unit vectors of all commodities, i.e, the unit vectors of the subspace RT;
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 for the networks represented by complete graphs,  ;

 is the set of all paths of all commodities.

The f low of commodity  ( ) of intensity  in the network  is the vector 
defined by

(1.4)

where  is the component of this vector corresponding to the unit vector . The other compo-
nents of this vector are

(1.5)

The multicommodity f low with the intensities of the commodity f lows  is realizable in the
network  if there exist f lows  such that

(1.6)

Furthermore, let  be the number of edges in the complete N-vertex network and
 be the real space of dimension M. Let  and

(1.7)

In [1], such vectors are called metrics. Inequalities (1.7) specify a convex polyhedral cone in the space
 (e.g., see [5]); this is the cone of metrics, which is denoted by .

Extend the vectors  to the space  by assuming the additional components equal to zero.
The extended vectors will be denoted by , respectively. The feasibility criterion of the multicom-
modity f low formulated in [1] (it is called FM inequality in that paper) is as follows (we give three equiv-
alent formulations):

(1.8)

where  is the trace of the vector  in the space RC and  is the trace of the vector  in the space RT,
, and the angle brackets denote the scalar product of vectors.

Let us define new objects and reformulate this criterion.

Since the cone  is uniquely defined by the finite set of its extreme vectors (this set will be denoted by ),
the criterion formulated in [1] can be written in the form

(1.9)

Denote the adjoint cone of  by G. The extreme vectors of this cone (the set of such vectors will be denoted
by ) are:

(1.10)

where

.

(The proof of the fact that this set is not redundant is omitted in this paper.)
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Criterion (1.9) is equivalent to the following criterion:

(1.11)

Consider the convex polyhedral cone F determined by the set of its extreme vectors :

(1.12)

This cone is defined in the space . Denote by  the adjoint cone of F so that 
. The set of extreme vectors of  will be denoted by . This cone is also defined

in .

1.2. Proof of Criterion [1]
Theorem 1. The feasibility problem for a multicommodity flow has a solution or the multicommodity flow T

is realizable in the network with the edge capacities  if and only if any of the following three conditions is sat-
isfied:

(1.13)

Proof. Necessity. If a multicommodity f low is feasible, then the vector  admits expan-
sion (1.4)–(1.6), i.e. the representation by a nonnegative linear combination of vectors from the set 
therefore, .

Sufficiency. Let the vector  and , where the matrices C and T satisfy condi-
tions (1.1) and determine the components of f. This implies that f can be represented by

(1.14)

where

Hence, we see that the f lows  satisfy conditions (1.6); therefore, they provide a solution to the multi-
commodity f low problem .

Let . Consider the path  as an element in the space RM, and represent it by the expansion

(1.15)

where  is another notation for the unit vector .

All elements of expansion (1.15) are extreme vectors of the cone G; therefore,  .

Moreover, if  and i is the index of the vertex such that , then it is clear that

. Therefore,  ; hence, all extreme vectors of the cone F (1.12) belong to
this cone, and, consequently,

(1.16)

The definition of the cones  implies the following result.
Lemma 1. Let  be a network for which the feasibility problem for the multicommodity flow is for-

mulated. Then,      .
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Proof. Let . Define the set  by . In other words, 

contains all unit vectors of the space  except for the vector e and all paths from the set  that do not
pass through the edge e. (Such a path always exists because, due to our assumptions, the removal of any
network edge does not make the network F disconnected.) This set determines e as an element of the set

. Now, let . Define the set as follows: . This set

determines –e as an element of the set . This completes the proof of the first part of Lemma 1.

The proof of the second part of this lemma is as follows. Let . The element

, and . Therefore, . In the same way, we prove that

 .

If , then we denote by  the extension of this vector to the space  assuming that the addi-
tional components are equal to zero.

Theorem 2. Necessity of the criterion (see [1]).
Proof. Let . According to (1.16), ; therefore, ; i.e., due to (1.11), cri-

terion [1] holds.
Let  be an N-vertex network with a given arbitrary f low schema T. The network

 is said to be the reduced network  with respect to the edge  if it is
formed by merging two vertices Ai and Aj; if two network edges are merged, then the newly formed edge is
a network one; and if two flow edges or a network edge is merged with a f low edge, then the newly formed
edge is a f low one.

Lemma 2. Let  be a multicommodity feasibility problem and  be not a unit vector nor a cut.
Furthermore, let   be the reduced network with respect to the zero

components of the vector φ and  be the set of extreme vectors of the cone  adjoint of the cone . Then, there

exists  such that all its components are positive.

Proof. If all components of the vector  are positive, then the lemma is proved. In the general case,
the condition of the lemma implies that there exists the system of linear homogeneous equations

; (1.17)

the solution to this system is φ,  is the number of nonzero components of φ,  is the
number of zero components of φ (all of them are network components), and , i =  are the pro-
jections of the paths  on the space . Consider the space of zero components of φ. In the general
case, it consists of a collection of connected subgraphs the edges of which belong to the space . Let

, i.e., . If the vertices Ai and Aj belong to nonzero subgraphs (and at least one of them

includes more than one vertex), , and Am (An) either coincides with Ai (Aj) or belongs to its zero
subgraph, then  Let us prove this fact. Assume the converse, e.g., let . The edge  is a

part of the path , i.e., . Consider the path  in which the edge  is replaced by the edge 
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808 GRINBERG
and the paths Ai – Am and Aj – An pass through zero edges. For this path, , which cannot be true.

This contradiction completes the proof. Now let  and , . In this case, we also have
. If this were not the case, e.g., , for the path  of commodity m (i.e., for the f low edge

) consisting of the edges , it would hold that , which is impossible. Now assume that

 and let  be an extremal path passing through the edge , i.e., . Furthermore, let

 be an extremal path of the commodity m, i.e., . Form the path  by replacing the edge
 in  by the edge  and the edge  by the set of network edges of the path  – . Therefore,

. In turn, this implies that , which contradicts the assumption .

Finally, let  and . In this case, we also have ; indeed, otherwise, as in the
preceding case, we could find a path  such that . Thus, the network (cone) F and the extreme
vector of the adjoint cone φ determine the network (cone)  that has the following form: all connected
subgraphs consisting of the zero edges of the vector φ form a vertex and all edges connecting the vertices
of one zero subgraph with the vertices of another zero subgraph form one edge. We have already proved
that the components of all edges of the vector φ merged into one edge of the network  have the same
positive values; therefore, the vector φ determines in this network a vector  with positive components. Let

us prove that . To this end, consider, along with the network , the network  which, by contrast

with , contains all merged edges. The set of paths  (i = ) in  for which  (i =

) forms the set of simple paths  (i = ) in  (which can be identical) satisfying the con-
ditions , i = . We should prove that this set contains  linearly independent paths
that determine the vector . Assume the converse. Then, there exists a vector  in  satisfying con-
ditions (1.18). Extend this vector to the space  by assigning to the merged edges the same components

as in the network  and denote this extended vector by . It satisfies the equalities  =

 and, therefore, the set of paths  (i = ) is not linearly independent, which contradicts
the assumption.

Corollary 1. Let  be an N 0-vertex network, , and this vector have no zero compo-

nents. Furthermore, let  be arbitrary connected graphs. Let us form the network 
 as follows. To each vertex  of the network , we assign the graph  and,

if there exists the edge , then we form the edges in F connecting vertices of the graphs  and  (their number
is arbitrary). The flow schema of F is formed by the flow edges of the network F 0, and the set of its network edges

is formed by the network edges of the network N 0, the edges of the graphs  and the edges  con-

necting the vertices of the graphs  and  if the edge  exists in N0. Then, in the cone  adjoint of the cone
(network) , there exists an extreme vector  that is neither a unit vector nor a cut.

This corollary is proved by the fact that the reduction of the network F with respect to the network
edges gives the network F0.

Corollary 2. Let the network  be the reduction of the network  with respect to the
flow edge , , and this vector be neither a unit vector nor a cut. Then, there exists  such that it is
neither a unit vector nor a cut and .

Consider the network  in which e is a network edge. The reduction of such a network with respect to
this edge gives the network F. Therefore, by Corollary 1, the assertion of Corollary 2 holds true.

Theorem 3. Let F be the cone corresponding to the multicommodity problem  and  be not
a unit vector nor a cut. Then, there exists an expansion  of  to the space  such that .
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Proof. 1. Definition of the vector . Let . Since the network F is connected, there exists at least
one path connecting the vertices Ai and Aj. Set  over all such paths in F. Due to Lemma 2,

if this unit vector is a chord of a path , then , where  are the seg-
ments (edges) in . If the unit vector  belongs to one of the connected subgraphs with zero edges, then

.

2. Let us now prove that . To this end, we should prove that  . This is equivalent

to the following proposition: for every unit vector  and every vertex Ak ( ), it holds that
 =  or . (For the triangles , another initial edge

should be selected.) By the definition of the vector , for each unit vector , there exists a path

 connecting the vertices  and  such that . If , then this path coincides with .
Let  be such a path for the unit vector ,  for the unit vector , and  be a simple path in the space

 connecting the vertices Ai and Aj selected from the union of the paths  and . We have

 = .

3. Next, we prove that . Form the set of triangles  such that   and dim

. Let  , i.e., the path  is not a triangle and
. Consider the triangles the sides of which are chords of this path:

(1.18)

By definition, each of these triangles belongs to the set . We set the following sequence of introducing

new unit vectors into the space . First, all two-segment chords one-by-one, then three-segment
chords, etc. Each such step increases the dimension of the space by one and increases by one the number
of equations in system (1.17), that is,

 (1.19)

The solution to this system at each step coincides with . The vector ; however, since all trian-
gles (1.18) together with  form a linearly independent system of vectors, the equation with the vector 
may be replaced by an equation of type (1.19) with the triangle, e.g., , without changing the
solution  of the system.

Corollary 3. The values of the components of the vector  are independent of the numerical values of
the elements of the matrices C and T and depend only on whether they are positive or equal to zero.

Corollary 4. If  and all components of this vector are positive, then all components of  are also pos-
itive. Moreover, if , then .

Corollary 5. Let  and . Then  and .

Theorem 4. Sufficiency of the criterion (see [1]). Let  and 

. Then .

Proof. By Theorem 3, for each , , , there exists a
. Therefore, it holds that  , , , .

However, for the components of the extreme vectors of the cone , the conditions  are fulfilled
by definition. Therefore, the last condition in (1.13) is satisfied and .
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2. REFERENCE NETWORKS AND VECTORS

Denote by  the set of vectors (10) (the extreme vectors of the cone ) and by  the set of extreme
vectors of the cone , which the adjoint cone of .

The vectors  possess the following properties.

1. All components of the vectors  are nonnegative. This follows from the fact that all unit vectors
of  belong to the cone .

2. All the vectors representing the cuts of the complete graph  are extreme vectors of the cone ;
i.e., they belong to the set .

3. Let  be not a cut and . Denote by  the set of triangles determining the
vector , i.e., the triangles satisfying the condition . The condition that all components of  are

positive implies that, if , then . Consider all triangles in the set  containing

the edge . Three cases are possible: (1) The set  includes only the triangles , i.e., the triangles in

which  appears with the negative sign. (2) The set  includes both triangles  and triangles ,

i.e., the triangles in which  appears with the positive or negative sign. (3) The set  includes only the
triangles  (or ), i.e., the triangles in which  appears with the positive sign. For each vector ,

there exists the set of edges of the first kind  and the set of edges of the second and third type . Con-
sider the network  in which the edges of the first kind form a f low schema and the edges
of the second and third type are network edges. By definition, for this network we have .

The set of all vectors  with  will be denoted by . Each such vector uniquely determines
the network with the f low schema  and the set of network edges ; in addition, the numerical values of
the components of this vector depend only on the number N. For this reason, such vectors and networks
will be called reference vectors and reference networks. The set of all reference networks (it is denoted
by ) is the union of the sets of reference vectors and networks for all N, beginning from N = 5 because
these sets are empty for N = 3 and N = 4:

4. Theorem 5. Let  be a complete N-vertex network with an arbitrary flow schema T.  if
and only if there exists a  such that either  and  (and then ) or the network F can be

reduced to the network  in such a way that  and  (and then  after
adding zero components in the places of reduced edges).

Proof. Necessity. The necessity follows from the definition of the vectors φ and γ and Corollaries 1 and 2
to Lemma 2.

Sufficiency. The sufficiency follows from Theorem 3.

5. Let  be a multicommodity problem and . Furthermore, let 
be the network F reduced with respect to the zero components of φ. Therefore,  and  for

. By Theorem 3, . Let  be the network and flow edges of  that were
merged as the reduction of this network to the edge  was made. In this notation

(1.20)
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This formula is a generalization of the main result of the theory of f lows in networks—the Ford–Fulkerson
max f low min cut theorem for the single-commodity problem. The cut is a simple extreme vector .
The reduction of every network  with respect to the zero components of the vector representing
the cut gives a network consisting of a single edge; therefore, formula (1.20) is an independent proof of the
max flow min cut theorem.

6. Consider the following question: which networks are purely cut networks, i.e., which networks have
only vectors representing cuts as the extreme vectors of adjoint cones?

For the networks represented by complete graphs, the answer is given by Theorem 5. More precisely,
this condition is

(1.21)

where  is the set of networks obtained by reducing the network F and the network F itself.
7. Consider some examples.

Example 1. The cone  is defined in the space , and it has only four extreme vectors (1.10). There-
fore, .

Example 2. The cone  is defined in the space , and it has ten extreme vectors (1.10). The set  is
not empty and has a single type of reference vector. ,  = ,

 = . The f low schema of this reference vector consists of a triangle and
an edge not connected to this triangle. All paths belonging to the set , i.e., the paths satisfying the con-
dition , consist of two segments. The vector with the f low schema in the form of the five-vertex

cycle is not included in the set .

Example 3. One of the elements of the set — —has the following components:
 = , , . The

flow schema includes three edges—  and . For these edges, the set  does not include
triangles in which these edges appear with the negative sign. The set  includes not only two-segment
paths, but also three-segment paths. In these paths, the chords are the edges .
Note that the incomplete network , in which the f low schema consists of three disconnected
edges and the set of network edges consists of eight elements, i.e., it does not contain chord–edges of
three-segment paths, has the vector  such that .

Supposedly, the vectors with f low schemata in the form of the complete four-vertex graph and an edge
not connected to it and in the form of two disconnected triangles are elements of the set . The vector
having the f low schema in the form of the six-vertex cycle is not included in the set .

CONCLUSIONS

1. The representation of networks in terms of the theory of convex polyhedral cones shows that the fea-
sibility problem of a multicommodity f low is reduced to checking if a given network vector belongs to a
given cone defined by the set of all paths in the network and the set of positive unit vectors of the network
edges. One way of checking this property is to check if the scalar products of the network vector with the
extreme vectors of the adjoint cone are nonnegative. This method was proposed in [1], even though no
proof was given and no references to the theory of convex cones were made. In the current paper, all nec-
essary proofs were given. A feature (and difficulty) of the theoretical comprehension of the problem is, in
the author’s opinion, the fact that the criterion in [1] is universal, and it is independent of the character-
istics of a particular network, even though it is known that the direct and adjoint cones are in one-to-one
correspondence. In this paper, it was shown that this difficulty can be resolved by introducing the concept
of reference networks and reference vectors and by establishing the relationship between these objects and
the extreme vectors of the adjoint cone of each particular network.
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2. The results obtained in this paper are purely theoretical; they do not affect the available computa-
tional methods for solving the feasibility problem and its modifications (e.g., see [6–8]) such as linear pro-
gramming and integer linear programming (e.g., see [3, 9]) or the heuristic method [10].
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