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Abstract—A fine structure theory of shock waves occurring in a gas–particle mixture was developed
using an Anderson-type model with allowance for different phase pressures and with an equation of
state for the gas component depending on the mean densities of both phases. The conditions for the
formation of various types of shock waves based on the different speeds of sound in the phases were
indicated. A high-order accurate TVD scheme was developed to prove the stability of some types of
shock waves. The scheme was used to implement steadily propagating shock waves found in the sta-
tionary approximation, namely, shock waves of dispersive, frozen, and dispersive-frozen structures
with one or two fronts.
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INTRODUCTION
The physical and mathematical description of waves propagating in mixtures of a gas and fine solid

particles or liquid drops is a problem of interest in science and engineering. Indeed, numerous technolog-
ical processes in various industries can be described by laws of the mechanics of heterogeneous media
(MHM). Examples are the f low of gas mixture components through a loose catalyst with/without allow-
ance for chemical reactions and the f low of concentrated suspensions in various ducts. Another example
is the simulation of gas suspension formation caused by fine solid particles lifted from unstable sediment
by blast and detonation waves [1–3]. The wind interaction with a f luid surface is also a problem of this
class. Thus, there are numerous examples confirming the practical importance of the study of heteroge-
neous media f lows at high concentrations of the discrete phase. To determine types of mixture f lows,
mutually penetrating motions of the phases and components have to be taken into account. Concerning
dynamical phenomena in heterogeneous media, a problem of great interest is the interaction of porous
layers, for example, a cell-porous structure and layers of particles with strong discontinuities in the bulk
density (shock waves). Therefore, the determination of possible configurations of shock waves (frozen,
dispersive, one-, and two-front configurations) is of great interest in this area of MHM. Solving this prob-
lem, we can understand which forms of strong discontinuities can occur in heterogeneous media and
under which conditions they exist.

1. FORMULATION OF THE PROBLEM
1.1. Preliminary Remarks and an Overview of Works

Before formulating the problem, we briefly overview our works performed in this area of MHM. In [4]
the shock structure problem in a mixture of a gas and solid particles with a common phase pressure was
investigated with volume particle concentrations taken into account in the mathematical model, including
the equation of state of the medium. The case of micro- and nanoparticles moving in an ideal or viscous
775
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gas was considered. A rather comprehensive bibliography concerning this subject (up to the year 1986) can
also be found in [4]. More specifically, it was shown in [4] that, if the initial velocity of the mixture is
higher than the frozen speed of sound, then a frozen shock wave propagates in this medium. If the shock
velocity belongs to the dispersion interval, then the shock wave represents a continuous compression
wave, which is known as a dispersive shock wave. Note that the types of shock waves in a heterogeneous
medium are close to those in nonequilibrium single-speed gases or other media. Undoubtedly, worth not-
ing are the works of Nigmatulin’s school [5] and V.M. Fomin’s school in the given area. Additionally,
shock wave structures in a mixture of a viscous gas and ultradispersive solid particles were considered
in [4]. In a standard fashion, the study was reduced to qualitative analysis of a boundary value problem for
a system of ordinary differential equations describing the formulated physical problem. The resulting
assertions were illustrated by numerical computations.

The structure of combined discontinuities and shock waves was again addressed in [6–9]. These stud-
ies were based on the Anderson model (system of composite-type equations) and the Baer–Nunziato
model (hyperbolic model).

Used in [4], Kh.A. Rakhmatulin’s model is known to be valid when the volume concentrations of the
solid phase are infinitesimal. As the amount of particles in the mixture grows, the particle pressure has to
be taken into account, i.e., the model is transformed into one for granular media or heterogeneous media
with allowance for chaotic pressure [7–9]. In [6] a model of this type was used to investigate the structure
of a combined discontinuity, i.e., a strong discontinuity propagating in a mixture and having a jump only
in the particle volume concentration. Such variants of discontinuities arise in the interaction of shock and
detonation waves with the leading edge of a particle cloud [3]. In [6, 9] conditions on a combined discon-
tinuity were derived, the f low in a finite cloud of particles was numerically determined, and similar f lows
in problems of a shock wave interacting with clouds of particles were indicated.

It is well known that the system of MHM equations has a composite type (some of the characteristics
are real, and the others, imaginary) and is not conservative, except for rare simplified versions. The solv-
ability of initial–boundary value problems for certain types of the indicated mathematical models with
and without allowance for the particle pressure has been analyzed in recent years. In this case, difficulties
are caused by the presence of a nonconservative term involving the product of the gas pressure and the gra-
dient of the volume particle concentration. Without analyzing these approaches, we mention [10] as an
example in which a new definition of the weak solution to a boundary value problem is given and numer-
ical algorithms for its reproduction are constructed.

Thus, the construction of stationary/nonstationary exact solutions for these models and numerical
schemes for their implementation presents doubtless interest. In this paper we use of the simplified version
of mathematical model of a mixture used in [6–9], namely adiabatic version of the Anderson model [6,
11] for description of nonlinear motions of a granular medium.

Preliminarily, we mention [12, 13], where the shock structure problem in a gas mixture was considered
in the special case where the gas pressure depends only on the mean gas density (with the volume particle
concentration being neglected) and the nonconservative term is omitted from the equation of motion of
the particles. In this case, the basic system of equations is hyperbolic [12]. The shock structure can be ana-
lyzed using the approach of [14, 15], where a similar problem (concerning the existence of a traveling-wave
solution and its stability) was studied for the Baer–Nunziato model. The nonconservative term was taken
into account in [13]. Additionally, a numerical scheme for solving initial–boundary value problems in the
mechanics of heterogeneous media with two phase pressures was constructed in [13] and the stability of
the resulting stationary solutions was shown. Note that, in contrast to gas–particle mixtures with a single
common pressure, shock waves in the above-described f low with two phase pressures can have dispersive-
frozen and two-front structures depending on the particle concentration ahead of the wavefront and the
shock wave velocity.

In this paper, we do not assume that the equation of state of the gas is independent of the mean particle
density, which physically corresponds to allowance for the volume particle concentration. Thus, we con-
sider a more general case of f low as compared with the one described above.

1.2. Physical and Mathematical Formulation of the Problem
Consider a mixture of a gas and solid particles occupying a one-dimensional continuum. The motion

of the mixture is described by a mathematical model of interpenetrating motion of two interacting conti-
nua with parameters of each (such as the velocity, density, and pressure) averaged over the volume. The
first continuum is the continuous component of the mixture, i.e., the gas characterized by its velocity,
pressure, and volume concentration. The second continuum consists of the particles.
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COMPUTATION OF TRAVELING WAVES IN A HETEROGENEOUS MEDIUM 777
The second continuum (particle phase) is physically discrete and is characterized by its pressure (which
arises as the momentum transferred by the particles in their chaotic motion in the gas), its velocity, and its
volume concentration, which are other than the gas parameters. With the pressure of the particle phase
taken into account, the motion of the considered two-phase medium in the isothermal case is described
by the mass and momentum conservation laws written for each phase and supplemented by equations of
state (Anderson model) [11]:

(1)

In the isothermal case under consideration, we use equations of state in linear form for both phases:

(2)

Here,      and  are the mean and true densities, volume concentration, velocity,
pressure, and speed of sound of the ith phase ( ). The indices 1 and 2 denote the gas and particle
parameters, respectively;  is the force exerted by the gas on the particles;  is the force exerted by
the particles on the gas; and the true particle density  is a constant. System (1), (2) is closed by the
basic MHM equality

(3)
For the force interaction of the phases, we have

(4)

where  is the drag coefficient of a spherical particle and  is the particle radius. In the Stokes f low
regime, the drag coefficient is , where  is the relative Reynolds number
and  is the viscosity of the gas. Expression (4) in the Stokes f low regime is given by

where  is the Stokes relaxation time of the velocities.

2. SHOCK WAVE STRUCTURE
On the basis of the mathematical model of a mixture with two pressures, we consider the problem of

determining the structure of a running shock wave (SW) with the gas pressure gradient taken into account
in the momentum conservation equation for the particle phase and with the volume particle concentration
taken into account in the equation of state of the gas phase. In this case, Eqs. (1) in a coordinate system
fixed to the SW front are

(5)

(6)

The symbol 0 denotes an initial equilibrium state of the mixture, i.e., the constants  are determined by
the initial state. Solving system (5), (6) for the derivatives, we bring it to the normal form
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where

(8)

Consider the motion of the mixture in the phase plane of the phase velocities. Summing up conserva-
tion equations (6), we obtain the following momentum conservation law for the mixture as a whole:

(9)

This dependence represents a closed curve in the  plane. Note that the form of the gas equation of
state imposes a constraint on the proposed model, namely, the initial particle concentration  and the
current velocity  have to satisfy the inequality

i.e., the linear representation of the partial equation of state imposes a similar constraint on the domain
of admissible volume particle concentrations and, naturally, on the gas concentrations.

2.1. Heuristic Derivation of the Shock Wave Condition for the Discrete Phase in the Gas–Particle Mixture
The equation of motion of the particles in a dense gas mixture can be rewritten as

(10)

Define the function . Then (10) can be written as

(11)

Let . Equation (11) is integrated by parts over the discontinuity located in the interval

. According to [16], we take the limit of this expression as  to obtain

(12)

Here,  corresponds to the momentum flow across the strong discontinuity
and can be specified. For this purpose, we use the representation

.
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Note that a similar approach to the determination of I2(0) at a physical level of rigor was used in the
publications of V.G. Dulov, I.K. Yaushev, A.N. Kraiko, P.G. LeFloach, Mai Duc Thanh, et al.

2.2. Frozen SW
It can be seen that the second nonconservative equation in (6) admits an integral describing a momen-

tum conservation condition for the particle phase. In the case of linear equilibrium mixture equations, we
obtain

whence, in view of (2) and (5), the momentum conservation condition for the particle phase is finally
written as

(13)

The intersection points  of the curves  and  (if they exist) determine the
flow parameters behind the front of the frozen SW.

2.3. Equilibrium SW
The equilibrium parameter values in the mixture behind the SW front can be found as follows. Setting

 in (6), after some transformations, we obtain a polynomial of third degree for determining
these parameters in the equilibrium SW:

(14)

where     and  Obviously,  is a
root of Eq. (14), while one of the other two roots is the terminal equilibrium state . Note that the
root of (14) that does not lie on curve (9), which describes the momentum conservation law for the mix-
ture, is naturally dropped.

Thus, we have determined the parameters behind frozen and equilibrium SWs. Now, solutions can be
constructed using the mathematical model of the SW structure in a nonequilibrium mixture of a gas and
solid particles, assuming that the gas pressure depends on the mean density of the gas and the incompress-
ible particles. In this way, the results of [12, 13] can be extended to the general case of the adjoint MHM
formulation (when the gas pressure is a function of the mean phase densities).

3. RESULTS
3.1. Test: Frozen SWs (One- and Two-Front Configurations)

For  (  m/s) in the range of concentrations 

, the numerical results produced by the present model with  agree
with the SW structure computed using the model of [13], where the gas pressure is independent of the par-
ticle concentration, i.e., . The functions  and  determined by rela-
tions (9) and (13) and the Rayleigh–Michelson line through the points  and  are shown in Fig. 1 (for

). Here, the closed curve  is represented by the momentum conservation equa-
tion (9) for the mixture. The points 0 and K are the initial and terminal states of the mixture. Moving along
this curve from the initial to terminal point, we meet a point of solution blowup at which the gradients of
the f low parameters grow to infinity. This situation can be overcome by passing to the lower part of the
function  with the help of the conditions on the frozen SW. As a result, the curve transfers
in a jump to the point f, at which the velocity of the second phase is . Next, we move along the lower
part of this curve until the velocity in the second phase reaches the terminal velocity. In the first phase at
the given point, the transition to the terminal equilibrium state occurs by means of the frozen SW in the
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Fig. 1. Frozen two-front SW: (а) phase diagram and (b) phase velocities.
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first phase. Thus, we have constructed an SW with a two-front configuration having a head and a tail
strong discontinuity. The terminal equilibrium velocities  for the model of [13] and the present
model are given in Table 1. It can be seen that their values are similar for the particle concentrations under
consideration.

Note that the concept of a two-front SW was used in analyzing the structure of strong discontinuities
in the case of the Baer–Nunziato model in [14, 15] and also in [12, 13], where this type of SW was
described in detail for two versions of the Anderson model. At high particle concentrations, the transition
from the initial state of the mixture to its terminal state with  occurs by means of a shock wave
in the gas. As the particle concentration increases, the function  deforms, namely, f lattens in  and
stretches in , while the function  changes insignificantly. In this case, a one-front SW appears as the
particle concentration is increased.

3.2. Types of SW for  and 
The shock wave structures arising in this case can be analyzed as follows. First, the terminal phase

velocity is computed as a function of the mixture state parameters. Then the momentum conservation
equations for the mixture, the condition on the strong discontinuity in the second phase, etc., are analyzed
in the phase plane of . The corresponding numerical results are presented in the subsequent sec-
tions.

Terminal equilibrium velocity in SW. Figure 2 shows the terminal equilibrium SW velocity  as a func-
tion of the initial particle concentration  and the initial mixture velocity. In contrast to [13], the speed
of sound in the first and second phases was set to  m/s and  m/s, respectively. This agrees
with the physical view of sound propagation in a granular medium. The initial equilibrium mixture veloc-
ity  varied from 100 to 300 m/s, i.e.,  The solid curves show the terminal equilibrium SW
velocity as a function of the initial particle concentration , while the dashed lines depict

. It can be seen that the terminal velocity  decreases with growing ; moreover,  if the ini-
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Table 1. Phase velocities in the terminal equilibrium shock wave for  m/s
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Fig. 2. Terminal equilibrium velocity as a function of the initial particle concentration:  (solid) and  = 
(dashed) for  = (1) 100, (2) 200, and (3) 300 m/s.
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Fig. 3. Dispersive-frozen rarefaction SW: (а) phase diagram and (b) velocity distributions of the phases.
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tial particle concentrations are lower than a critical value and  in the opposite case. For ,
the values of  vary weakly in all cases and can slightly increase. Obviously, in areas of initial mixture
states where the initial f low velocity is lower than the terminal one, stationary solutions are represented by
a rarefaction shock wave. Of course, they are unstable, i.e., they do not exist as solutions of the Cauchy
problem within the framework of unsteady f low. Nevertheless, for the subsequent nonstationary analysis
of solutions having a nonmonotone distribution of parameters over the wavefront, this type of SW will be
briefly described below.

Dispersive-frozen rarefaction SW. Consider the case of dispersive-frozen rarefaction waves. As before,
let , , and  m/s and  Figure 3 shows the functions  and

 determined by relations (9) and (13) and the line  through the points  and .

Using, as initial data for system (7), the mixture parameters  on the frozen
SW (i.e., the intersection point of  and  is other than ) and solving the
boundary value problem for the system of ordinary differential equations, we obtain a solution in the form
of an unstable dispersive-frozen rarefaction SW, as shown in Fig. 3, which transfers the mixture to the ter-
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Table 2. Terminal equilibrium velocities and types of SW depending on  and  = 50 for  = 330 m/s

m20 u0 = 100 u0 = 200 u0 = 460

10–4 892.9 (RSW) 446.8 (RSW) 194.3 (FDSW)
10–3 351.5 (RSW) 176.4 (DSW) 77.1 (FDSW)
10–2 70.8 (DSW) 36.5 (DFSW) 18.6 (2FSW)
10–1 31.9 (DFSW) 24.8 (DFSW) 47.2 (2FSW)

20m 2a 1a
minal equilibrium state  m/s. In this wave, the gas velocity increases at the jump, which suggests
that the gas is in a rarefaction state. Subsequently, behind the front of the frozen rarefaction SW, the gas
velocity in the first phase decreases to the terminal value due to friction, whereas the particle velocity
increases from the initial value to the terminal equilibrium. Naturally, the pressures behave in an inverse
manner.

For the subsequent numerical analysis of SW types, Table 2 presents the terminal equilibrium velocities
and the type of f low occurring for various initial states of the mixture in the case of a rarefaction shock
wave (RSW), dispersive-frozen shock wave (DFSW), dispersive shock wave (DSW), and two-front shock
wave (2FSW). When the initial mixture velocities lie in the dispersion interval , it can be seen that,
for low particle concentrations up to some limiting value , the SW structure problem has no stable
solution, i.e., only rarefaction SWs are determined. Then, for , the solution exists in the form of
a dispersive SW as long as the terminal velocity of the mixture is higher than the speed of sound in the sec-
ond phase. This regime is observed as long as , i.e., there appears another critical volume

particle concentration  determining the type of SW. As the particle concentration increases further,

i.e., for , a frozen-dispersive SW is formed in the mixture. In this wave, the terminal mixture

velocity is lower than the speed of sound in the second phase, so it ends with a tail jump in the second
phase. Finally, for , the solution ceases to exist, since the model becomes inapplicable. Let us
describe these types of SW.

Fully dispersive SW. Consider the case , , ,  m/s, and .
Figure 4 shows the determining conservation laws and the plots of the phase velocities. In this case, it is
possible to continuously pass from the initial state  to the terminal one . In the numerical
solution, the computation started from a perturbed point of the initial state. Namely, we set ,
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Fig. 4. Dispersive SW: (а) phase diagram and (b) phase velocities for ,  = 100, and  m/s.
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Fig. 5. Dispersive-frozen SW for ,  = 100, and  = 36.49 m/s.
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Fig. 6. Frozen-dispersive SW for  =2 × 10–4,  = 460, and  = 165.1: (а) phase diagram and (b) phase velocities.

600 (a) (b)

u2

500

400

300

200

100

0
800

u1

700600500400300200100

K

0

a1

Φ1

a2

Φ2
450
u

400

350

300

250

200 u1

u2

uk

100

150

5.00
x

3.001.00−1.00

20m 0u ku
while  was found using the relation . As a result, the boundary conditions thus chosen
for solving the boundary value problem satisfied the momentum conservation law for the entire mixture.
The terminal state was reached due to its stability. The resulting SW structure is displayed in Fig. 4. It can
be seen that the particles initially move more rapidly than the gas. Then they slow down, their velocity
becomes equal to the gas velocity, and the mixture passes to the terminal equilibrium state. The existence
of fully frozen and dispersive-frozen shock waves for  can be shown in a similar manner [12, 13].

Dispersive-frozen SW. Let , ,  m/s, and . In this case, the parameters
of the mixture in the SW head vary continuously. When the mixture slows down, a sonic singularity in the
second phase can arise in the f low. Therefore, we need to introduce a tail SW for passing to the terminal
equilibrium state (Fig. 5).

Frozen-dispersive SW. In a similar fashion, we can obtain frozen-dispersive SWs, which exist for
. Figure 6 shows (a) the phase diagram of the conservation laws and (b) the velocities of the phases

for mixture parameters    and  m/s. From the initial
to terminal points, the mixture passes through a frozen SW in the gas phase with the following phase

2u ( )Φ − ε =1 0 2, 0u u

>0 1u a

=2 50a =0 100u =1 330a −= 1
20 10m

>0 1u a
−= × 4

20 2 10 ,m < < =2 1 0 460,a a u =1 330,a =2 50a
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Fig. 7. Two-front SW for ,  = 460,  = 18.59 m/s: (а) phase diagram and (b) phase velocities.
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velocities behind the strong head discontinuity and in the tail of this structure  
 m/s.

Two-front SW. As before, the initial velocity of the mixture is higher than the velocity of sound in the
gas, while the volume particle concentration is increased: . Presented in Fig. 7, the resulting
phase diagram shows that it is possible to pass from the initial to terminal points via a strong discontinuity
in the first phase, followed by a zone of velocity relaxation. When the gas velocity reaches its terminal equi-
librium value  = 18.6 m/s, the transition to equilibrium can be performed by means of a tail SW in the
particle phase. Figure 7b shows the behavior of the solution for  in the plane of physical vari-
ables. We discuss only the mathematical aspects of the problem, without giving a physical interpretation
of the resulting types of shock waves. Now let us analyze the stability of these types of shock waves.

4. VERIFYING THE STABILITY OF SOLUTIONS OF CERTAIN TYPES
4.1. Numerical Method

The stability of the resulting stationary solutions of Eqs. (1) was analyzed by applying the mathematical
technique for solving problems in the mechanics of heterogeneous media with two pressures and velocities
used in [13] for a simpler mathematical model with the mean particle density neglected from the equation
of state of the gas.

Time stepping for system (1) was based on a fifth-order scheme of the Runge–Kutta type [17]. The
scheme of mth-order accuracy can be described as follows. Let y be one of the unknown functions ρi or
(ρu)i and Qy(t) be the corresponding components of the vector  in Eqs. (1). With the use of this notation,

Eqs. (1) can be represented in the form .

Then the m-stage scheme is given by

(15)

The values of the parameters γ1, γ2, …, γm are determined by the conditions of approximation and max-
imum stability. Since the analysis of these conditions for a system of nonlinear differential equations is
associated with considerable difficulties, the values of γ1, γ2, …, γm are calculated by analyzing the linear
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= 2
20

–10m

ku
= 2

20
–10m

Q

( )+ = 0y
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transport equation. For the five-stage scheme, these parameters are γ1 = 1, γ2 = 1/2, γ3 = 3/8, γ4 = 1/6,
and γ5 = 1/4. It has been found that, for problems of the given type, this scheme allows one to considerably
increase the stability interval and to perform computations with larger Courant numbers. Moreover, the
increase in the stability interval was nonlinear in character. For example, the use of the fifth-order accu-
rate scheme made it possible to increase the Courant number by 40 times in comparison with the first-
order scheme.

To construct a spatial approximation of system (1) based on the TVD approach [18], it is necessary to
split the f lux vector  for each of the components. Numerous methods are available for this purpose.
Define  and . In what follows, the index i in f luxes is omitted. To obtain a stable
upwind approximation of the right-hand sides of the difference scheme, the f lux vector  is divided into
positive and negative components: . For this purpose, we use the splitting of the f lux vector
with respect to physical processes [19]. Accordingly, the f lux vector  is split into components  and 
depending on the velocity sign so that the pressure is approximated by a downwind scheme, while the
other variables are approximated by an upwind scheme:

(16)

A higher order approximation is obtained using the formulas

(17)

where

(18)

The expressions for  and  are derived by shifting the index by unity.
Formulas (17) and (18) approximate spatial derivatives with the third (κ = 1/3) or second (κ = –1, 0, 1)

order. The approximations represent fully one-sided differences for κ = –1, central differences for κ = 0,
and upwind differences for κ = 1/3, 1.

To preserve the monotonicity of the solution in high-gradient regions, the order of approximation is
reduced by applying the minmod limiter to the operators Δ+ and Δ− of [18]:

(19)

where the range of the parameter  is given by

(20)

After introducing the limiter, formulas (18) become
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Fig. 8. Grid convergence for a two-front SW.
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By using the splitting given by formulas (17)–(21), we can construct approximations of the derivatives
of the f lux components in Eqs. (1); their numerical solution is used to analyze the resolution of several
schemes.

The nonconservative terms of Eqs. (1) were approximated using a second-order accurate scheme with
central differences

where i is the phase index.
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Fig. 10. Comparison of stationary (solid) and nonstationary (circles) solutions for two types of SW.
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Fig. 11. Stability of a two-front SW with respect to finite perturbations.
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4.2. Grid Convergence

The grid convergence of the numerical solution of the two-front SW propagation problem is demon-
strated in Fig. 8. For both velocities, the figure shows only a portion of the dispersion interval of the SW,
namely, the structure of the frozen SW in the form of a stationary solution (solid curve) and several solu-
tions on refined meshes. It can be seen that, as the mesh size is reduced, the numerical solutions become
indistinguishable. The Courant number was set to 0.5. Note that the numerical solution profiles in Fig. 8a
intersect at a single point, which was called the center of a finite-difference shock wave in [20]. Such a
point is not observed for the tail SW profiles (Fig. 8b), which can possibly be explained by the preceding
dispersion interval of this wave structure.

4.3. Stability with Respect to Infinitesimal and Finite Perturbations

Let us discuss the stability of some types of stationary solutions. Figure 9 shows the shock wave position
at various times for (a) fully dispersive SWs and (b) SWs frozen in the first phase and dispersive in the sec-
ond. A stationary solution was specified as initial data. This formulation can be thought of as stability anal-
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 58  No. 5  2018
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Fig. 12. Propagation of a dispersive-frozen rarefaction SW specified as initial data.
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ysis with respect to small (infinitesimal) perturbations, which always arise in the numerical solution. It can
be seen that SWs of both types propagate stably in the mixture.

The steady character of propagation is confirmed by Fig. 10, which compares stationary (solid) and
nonstationary (circles) solutions for these two types of SW. The stationary solution specified as initial data
for the nonstationary problem remains nearly unchanged. It can be seen that three points of the numerical
solution fall in the frozen SW (Fig. 10b).

Let us analyze the stability of the solution with respect to finite perturbations. Figure 11 shows the
propagation of a two-front SW. The initial stationary solution was perturbed by sinusoidal oscillations with
an amplitude of 5% of the velocity behind the shock wave. It can be seen that, at the subsequent times, the
perturbations are rapidly damped and the wave propagates steadily.

Finally, we discuss a solution with a dispersive-frozen rarefaction SW. It is well known that such a dis-
continuity cannot propagate steadily. Figure 12 shows the f low field at various times in the case of initial
data specified as the solution shown in Fig. 3. The pressure profiles in the gas phase at various times are
presented. The unstable initial f low configuration breaks up into two rarefaction waves. The more inten-
sive wave propagates to the right, while the less intensive wave, to the left. Between them, there appears a
low-pressure region.

CONCLUSIONS

A fine structure theory of shock waves was developed using an Anderson-type mathematical model
(with the gas equation of state taking into account the particle phase) for describing the f low of a mixture
of a gas and solid particles with allowance for their pressures. The types of steady shock waves occurring
in the f low were determined on the basis of this theory.

A mathematical technique was developed for computing initial–boundary value problems for nonsta-
tionary one-dimensional Anderson-type equations for the mechanics of heterogeneous medium. By
applying this technique, it was shown that the resulting frozen and dispersive shock waves of various types
are stable with respect to infinitesimal and finite perturbations, and the instability of rarefaction shock
waves was demonstrated.
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