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Abstract—The main computational costs of implicit Runge–Kutta methods are caused by solving a
system of algebraic equations at every step. By introducing explicit stages, it is possible to increase the
stage (or pseudo-stage) order of the method, which makes it possible to increase the accuracy and
avoid reducing the order in solving stiff problems, without additional costs of solving algebraic equa-
tions. The paper presents implicit methods with an explicit first stage and one or two explicit internal
stages. The results of solving test problems are compared with similar methods having no explicit inter-
nal stages.
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1. INTRODUCTION
One step of the numerical solution of a system of ordinary differential equations (ODEs)

by the Runge–Kutta method is defined by the formulas

The convenience of the method can be conveniently represented by a Butcher table,

The matrix A of a fully implicit method has a full rank. In this case, the implementation of one step is
reduced to a numerical solution of a system of nonlinear algebraic equations the size of which is equal to
the product of the number of stages s by the number of equations in the system of ODEs. There are also
implicit methods with an explicit first stage, the Butcher table of which has the form

(1.1)

where the matrix  has a full rank. These include the Lobatto IIIA methods [1, 2], the diagonally implicit
ESDIRK methods [3, 4], and the SAFERK methods considered in [5].

Denote by r the degree of the denominator of the stability function, calculated by formula
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308 SKVORTSOV
Suppose that the rank of the matrix  (or , for the method with an explicit first stage) is equal to r (this
assumption holds for all methods considered in this paper). Then, among the rows of the matrix  (or )
one can select r basis rows, through which the remaining rows are linearly expressed. The stages corre-
sponding to the basis rows are considered implicit, and the remaining stages, explicit. The separation of
stages into explicit and implicit is rather arbitrary, since the choice of basis rows is not unique. The values
of explicit stages are linear combinations of the values of implicit stages; therefore, a system of algebraic
equations can be formed and solved with respect to only implicit stages. Thus, the introduction of explicit
stages makes it possible, with the same total number of stages, to reduce the size of the algebraic system to
be solved.

Until recently, efficient implicit methods with explicit internal stages were not known. The Lobatto
IIIB methods include an explicit internal stage, but they are not suitable for solving stiff problems (see [1]).
Originally, efficient implicit methods with explicit first and explicit internal stages, called “implicit nested
Gauss-type methods”, were proposed in [6, 7] (see also [8, 9]). In [10], methods inverse to explicit meth-
ods, containing explicit internal stages and suitable for solving stiff problems and differential-algebraic
problems of indices 2 and 3 were considered.

To understand why it is necessary to introduce explicit stages into an implicit method, let us consider
methods of the sixth order with a stability function

Such are the three-stage Gauss method (Gauss63), the four-stage Lobatto IIIA method (Lobatto64), the
seven-stage Kulikov method from [7–9] (Kulikov634), and the six-step IERK65 method (Implicit with
Explicit stages Runge-Kutta). In the designation of the method, the first digit is the order p, the second
digit is the stage order q, and the third digit is the pseudo-stage order  (present if ). The definition
of the pseudo-stage order is given in the next section. These methods were used for solving the problem

(1.2)

with the known exact solution , , which is independent of the index of stiff-
ness μ. Figure 1 shows the dependence of the errors of the solution and estimates of the order on the stiff-
ness of the problem. The errors were calculated by the formula

(1.3)

where  is the error in the ith component with the step size , and the order estimates are cal-
culated by the formula

(1.4)

where  and .
The Gauss63 method does not contain explicit stages and is not stiff ly accurate; therefore, it demon-

strates the worst results. The introduction of an explicit first stage in the Lobatto64 method made it pos-
sible to increase the stage order to four and to make the method stiff ly accurate, which led to a noticeable
increase in accuracy. The Kulikov634 method has an explicit first and three implicit internal stages. The
stage order of this method is only three, but it has the fourth pseudo-stage order; therefore, the error of
this method behaves similarly to the error of the Lobatto64 method. However, the Kulikov634 method is
mono-implicit, which gives some advantages (see [7–9]), but the Lobatto64 method is not. The IERK65
method has three explicit stages (the first and two internal ones), which made it possible to provide the
fifth stage order and improve the accuracy in comparison with all other methods. Thus, the introduction
of explicit stages made it possible to increase the stage (or pseudo-stage) order of the method, which led
to a noticeable increase in accuracy.

The stage order of the Runge–Kutta method is defined as the largest integer number q for which

(1.5)
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Fig. 1.
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(hereinafter, we assume the component-wise execution of the vectors operations). The importance of a
high stage order in solving stiff problems was noted in many works (see, e.g., [1, 2, 10, 11]). The large dif-
ference between the classical order p and the stage order q leads to a reduction in the actual order. To avoid
a reduction in the order or make it insignificant, it is desirable that  or .

For a given number of stages s, the maximum stage order  is inherent in the collocation methods.
For all other methods, . For a given number of implicit stages r, the maximum order of a method is
limited by the order of the consistency with the exponential of the stability function. For A-stable meth-
ods, the maximal order is  (as in the Gauss, Lobatto IIIA, and Lobatto IIIB methods, see [1, 2]) and,
for L-stable methods, it is  (as in the Radau IA and Radau IIA methods, see [1, 2]).

The implicit high-order methods used in practice, such as Radau IIA and Lobatto IIIA, have a large
difference between the classical and stage orders, which can lead to a reduction in the actual order in solv-
ing stiff problems. For a given classical order, it is possible to increase the stage order by increasing the
number of stages. However, if these stages are implicit, the computational costs of solving the algebraic
system significantly increase. The introduction of explicit stages helps to avoid a noticeable increase in
computational costs.

In this paper, we consider implicit methods of orders 3 to 6, containing an explicit first and one or two
explicit internal stages. The results of the comparison with the Radau IIA and Lobatto IIIA methods,
which have the same orders and stability functions but do not contain explicit internal stages, are pre-
sented.

2. PSEUDO-STAGE ORDER
The pseudo-stage order has the same significance as the stage order: its increase makes it possible to

avoid a reduction in the actual order in solving stiff problems (see [10, 11]). At the same time, it does not
have such restrictions as the stage order; the pseudo-stage order of explicit methods and inverse of them
can be higher than 1, of diagonal-implicit methods, higher than 2; and, of the mono-implicit methods,
higher than 3, as in the Kulikov634 method.

In [10, 11], the pseudo-stage order was defined in terms of the error functions  proposed in [12]:
a method has a pseudo-stage order  if all functions  of orders  are identically zero. Analytical
expressions of the dependence of the error functions on the free parameters of the method can be very
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Table 1

i Tij Graph γ(Tij) Φ(Tij)

1 T1 1 e

2 T21 2 c

3 T31 3 c2

T32 6 Ac

4 T41 4 c3

T42 8 c(Ac)

T43 12 Ac2

T44 24 A2c
cumbersome, which makes it difficult to use them when constructing new methods. Therefore, in this
paper, an equivalent definition is given, which makes it possible to simplify the construction of methods
of a given pseudo-stage order. For this, it is convenient to use some notation adopted in the conditions for
the classical order.

The derivation of the conditions for the order of the Runge–Kutta methods is based on a one-to-one
correspondence between elementary differentials and root trees (see [13]). As in [13], we will solve an
autonomous system . Define , . The conditions ensuring an order p are writ-
ten in the form

, (2.1)

where  is a root tree of order i with an order number j and  is the number of trees of order i. The quan-
tities  and  were derived in [13]. Table 1 presents these quantities for trees up to the 4th order
inclusively.

Definition 1. The pseudo-stage order of the Runge–Kutta method is the largest integer number  for
which

(2.2)

where  are trees of the ( )-st order with more than one branch issuing from the root vertex or the
tree  if  (in Table 1, those are the trees , , , and ) and  is the number of such trees of
order . Note that, if condition (2.2) is satisfied for , then it is also satisfied for  (this
follows from the fact that the matrix A satisfies its characteristic equation).

Theorem 1. The order p, the pseudo-stage order , and the stage order q of a Runge–Kutta method satisfy
the inequality . Furthermore, if , then .

Proof. With the ordering of trees adopted in [13],  is a “bush” with  branches issuing from the
root, , and . It is clear from (2.2) that, for the trees , , conditions (2.1)

are satisfied. For , , we have  and . From (2.2), for ,

we obtain  and , ,
, , which implies that the order conditions are satisfied for the trees , ,
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. For , all conditions for the third order are satisfied. From the rule of calculating
, given in [13], it follows that, if  is a tree of order i and  is a tree for which ,

then . Therefore, the conditions for the ith order and the conditions

 and  (the latter is condition (2.2) for  and ) imply that the
order conditions are satisfied for all trees of the ( )-st order that have only one branch issuing from the
root. For , these are the trees , . Since, for , all the conditions
for the third order are satisfied, we find, using mathematical induction, that the conditions for all orders

 are also satisfied. In a similar manner, it can be proven that all conditions for the order  are satisfied
under the additional condition .

Now let us prove that . For this, it suffices to show that, if , (1.5) implies (2.2). If con-
ditions (1.5) are satisfied, then the conditions (2.2) for ,  will be satisfied too. From the
inequality  (which follows, e.g., from Theorem IV.5.1 [13]), it follows that all conditions (2.2) will
also be satisfied for ,  (the proof is analogous to the proof given above). Examples of meth-
ods with  are given in [10, 11, 14] and in this paper.

Definition 2. The functions

(2.3)

are called the error functions of the Runge–Kutta method.
In [12, 14], the error functions were obtained through local errors of the solution of simplest stiff equa-

tions as a function of , where h is the step of the solution and  is the coefficient on the right-hand
side of the equation.

Theorem 2. Conditions (2.2) and the condition

(2.4)

are equivalent.

Proof.  as a function of the matrix  can be represented as a matrix polynomial of  with
a degree below s (see [15]). This implies that, if conditions (2.2) are satisfied, then conditions (2.4) are sat-
isfied too. Now let us show that (2.4) implies (2.2). Let . Write function (2.3) in the form

; then  = 0 and . Using the equality

, where  (it can be easily checked by multiplying both sided by ), we

obtain , whence  and . Continuing in

a similar way and taking into account that all functions  are bounded in the neighbor-

hood of zero, we obtain , , i.e., all conditions (2.2) are satisfied.

For solving stiff problems, it is advantageous to use strictly exact methods, in which  is equal to the
last row of the matrix A. For such methods, formulas (2.2) and (2.3) can be simplified. Writing the con-
dition of strict exactness in the form , , and , we obtain from (2.2)

Since the matrix A satisfies its characteristic equation, then the values of k can be shifted by setting
. In this case, for  and , we obtain ; therefore, the

condition  can be eliminated, as a result of which (2.2) will be replaced with

(2.5)
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In order to obtain analogous formulas for , successively substitute into (2.3) the relationships

where  are the trees obtained from the tree  after removing the root with the edges inci-
dent to it (for example, for the tree  from Table 1, these are  and ). Let ; then,

 and . As a result of the corresponding substitutions, we obtain

(2.6)

We will consider stiff ly accurate methods with an explicit first stage, i.e., methods of the form (1.1) in
which . For such methods, for , condition (2.5) for the pseudo-stage order will be written
in the form

(2.7)

and error functions (2.6), in the form

(2.8)

where the expression for  is obtained by replacing  with  and  with . In comparison
with (2.2) and (2.3), expressions (2.7) and (2.8) are simpler and more convenient for constructing meth-
ods with minimized or zero error functions.

3. FOUR-STAGE METHODS OF ORDERS 3 AND 4
Let us consider the construction of four-stage methods with an explicit first and one explicit internal

stage having a stability function

(3.1)

For , this function specifies the Padé approximant of order 3 and, for , the Padé approxi-
mation of order 4. The Butcher table of such methods has the form (1.1), where

Suppose that . Then,

(3.2)

To ensure the given stability function (3.1), the coefficients of the polynomial 

 must satisfy the conditions

(3.3)

For , conditions (3.3) uniquely define stability function (3.1), since the degree of its numerator is no
higher than 3. Let us require that the methods constructed have . There are a total of two error func-
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, these functions are identical and, therefore, the corresponding conditions (2.7) are composed only
from one of them and have the form

(3.4)

On the basis of conditions (3.2)–(3.4), a four-parameter family of methods with  and  and
stability function (3.1) were constructed. The specified parameters are , , , and . Expressions for
the parameters of the method are rather cumbersome; therefore, here, only two subfamilies of this family,
corresponding to  and , are presented.

Setting in (3.3) , we obtain methods of order 3 with a stability function

(the same as the third-order Radau IIA method) and free coefficients , , and . The remaining coef-
ficients are found from formulas

(3.5)

Let us discuss the choice of the coefficient . In the general case, the methods of family (3.5) have
 and . Specifying

(3.6)

we obtain . The presence of explicit stages can affect the stability of the internal stages. Consider
the vector of stage stability functions . For large z, for the methods specified by formu-

las (3.5) and (3.6), the components of this vector are , which is quite understandable.
All internal stability functions have a denominator as in (3.1), but, to ensure the third order of the internal
stages, i.e., , degree of the the numerator must be no lower than 3. It is possible to avoid the instability
of the internal stages for  and . To do this, we should specify

(3.7)

then, . The presence of unstable internal stages is not an obstacle to solving stiff
problems if the final stage is stable. This is indicated by the results of testing of implicit and special explicit
methods that have unstable internal stages and, at the same time, are very efficient in solving many stiff
problems (see [9, 16]).

In the numerical experiments, we will estimate the effect of a higher stage order (with the same pseudo-
stage order) and the instability of the internal stages. Therefore, we will take for the experiments two meth-
ods from family (3.5) in which we will set  and . The first of them (denote it by IERK33)
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has  and  from (3.6). The second method (IERK323) has , , and  from (3.7).
The coefficients of these methods are as follows:

For comparison, we will use the Radau IIA method of order 3 (denote it by Radau32).

Now let us consider methods of order 4, which we obtain by setting in (3.3) . They have a sta-
bility function

(the same as for the Gauss and Lobatto IIIA methods of order 4). Requiring that the method be symmetric
(see [13] for symmetry conditions), we obtain a two-parameter family with free parameters α and β and
the Butcher table

(3.8)

For , we obtain Gaussian nodes, and table (3.8) defines a nested Gauss-type method, pro-
posed in [7–9].

As in the third-order methods, the coefficient  makes it possible to choose a method of a higher
stage order or a method with stable internal stages. Setting

(3.9)

we obtain a method of the third stage order with unstable internal stages, and setting

(3.10)

a method of the second stage order with stable internal stages.
Since, in the fourth-order methods, , the effect of reduction in the order, although little, can

be manifested. Therefore, it makes sense to analyze the fourth-order error functions. There are five of
them:

For any β, we have

(3.11)
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The functions  and  have the same values for , i.e., for β in the form (3.9); for β in the
form (3.10), we obtain

(3.12)

Setting small α ensures small values of all the fourth-order error functions for  and functions (3.11) for
. However, α should not be taken very small, because, in this case, the coefficients of the method

become large, which can lead to an increase in the computational errors. We chose ; then the
coefficient with largest absolute value is . The method obtained with  and β
specified by (3.9) is denoted by IERK43, and the method with  and β specified by (3.10), by
IERK423. Another pair of methods will be obtained on the basis of nested Gauss-type methods, i.e., by
setting . Specifying β by formula (3.9), we obtain the Kulikov43 method, and, using for-
mula (3.10), the Kulikov423 method. With two different values of the parameters α and β, we can estimate
the influence of these parameters on the efficiency of the method. For comparison, we use the Lobatto
IIIA method of order 4, which will by denoted by Lobatto43. Note that this method can also be obtained
from family (3.8) by setting . Then, by any of formulas (3.9) or (3.10), we obtain . Substi-
tuting these α and β into (3.8), we obtain a method with identical second and third stages, and, excluding
one of them, we obtain the Lobatto43 method.

4. METHODS OF ORDERS 5 AND 6
We will construct the methods of order 5 on the basis of the stability function in the form of the Padé

approximation of order 5,

Set , , and . Then, along with conditions (1.5) for the stage order, we must satisfy the con-
ditions

We took  and constructed two methods: IERK54 ( , unstable internal stages) and
IERK534 ( , stable internal stages). The coefficients of these methods are as follows:

For comparison, we use the Radau IIA method of order 5, which will be denoted by Radau53.
We also constructed a method of order 6 with the stability function

To obtain , there must be at least two explicit internal stages, i.e., , but, in this case, we failed
to construct a method with stable internal stages. We specified  and  and determined the
coefficients of the matrix A from conditions (1.5) and . From the sym-
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metry condition, the vector of abscissas must have the form . To minimize the
sixth-order error functions, we should set . Then,

and, for small , these functions will also be small. We chose the value , at which the coefficient
table of the method has the form

Demote the constructed method by IERK65. In the experiments, we also use the method of the sixth
order from [7–9], which will be denoted by Kulikov634, and the Lobatto IIIA method (Lobatto64).

5. NUMERICAL EXPERIMENTS

In order to study the dependence of the error and the actual order on the stiffness of the problem, it is
convenient to use tests with a known smooth solution independent on the stiffness parameter, which is
proportional to the largest eigenvalue. Let us present the results of solving Kaps problem (1.2), which was
used to study the convergence of methods as a function of the stiffness of the problem in [10–12, 17–19]
and other works. The error e and estimated order  are calculated by formulas (1.3) and (1.4). The calcu-
lations are performed with , , and  for the third- and fourth-order methods and,
with , , and  for the methods orders 5 and 6. The results of the third-order meth-
ods are presented in Fig. 2; fourth-order methods, in Fig. 3; fifth-order methods, in Fig. 4; and sixth-
order methods, in Fig. 1. Despite the different stage order, the third-order methods IERK33 and
IERK323 demonstrate similar results, noticeably better than the results of Radau32. It was found that,
among the fourth-order methods, the best one is the method with the minimized error functions,
IERK43, and, among other methods, Kulikov43 and IERK423 are slightly better. Due to a higher
pseudo-stage order, the errors of the fifth-order methods IERK54 and IERK534 are significantly smaller
than those of Radau53. In this case, the behavior of the error of these methods near  is explained
by the form of the error function

which is equal to zero at . A small difference in the behavior of the errors is due to the fact that,
in the IERK54 method, unlike IERK534, all error functions of the fifth order equal to each other. The
most accurate among the sixth-order methods is IERK65, which has , while, in the Kulikov634
and Lobatto64 methods, .

The second stiff problem was taken from [20] and obtained by discretizing the diffusion equation
, , by the method of lines. The resulting system of ODEs has the form

(5.1)
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Fig. 2.
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Fig. 4.
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As in [20], we take . Then, the eigenvalues of the Jacobi matrix are located in the interval from 
to .

The results of solving this problem (the maximum errors on the entire interval among all the compo-
nents and the estimated order) are presented in Table 2. They agree with the results of solving the Kaps
problem, except for the results of the IERK43 and IERK423 methods, which deserve a special comment.
In solving problem (5.1), these methods demonstrated the same results, although, in solving the Kaps
problem, IERK43 had a tangible advantage. This is explained by the fact that problem (5.1) is linear;
therefore the expansion of its solution in the Taylor series does not contain elementary differentials that
are present in nonlinear problems. The behavior of the error of solving linear nonautonomous problems
can be analyzed on the basis of the error functions  obtained by expanding the error of solving of the
Prothero–Robinson equation in a Taylor series (see [12]). However, this is not enough to explain the
behavior of the errors in nonlinear problems; it is also necessary to analyze the error functions  for

. In our case, it is sufficient to analyze formulas (3.11) and (3.12). The IERK43 and IERK423 meth-
ods have the same error function , which is expressed by formula (3.11). Therefore, when solving lin-
ear problem (5.1), they demonstrate practically the same results. However, for the IERK423 method, we
have , whereas, for the IERK43, , which explains the tangible
advantage of the IERK43 method in solving the Kaps problem. A similar explanation can be given to the
same results demonstrates by the Kulikov43 and Kulikov423 methods in solving problem (5.1) and a slight
advantage of the first of them over the second in solving the Kaps problem.

Thus, the results of solving stiff problems presented above are fully explained with the help of pseudo-
stage order and error functions. The pseudo-stage order has a decisive influence on the accuracy of solu-
tion. Among methods with equal q, the more accurate one is that having a greater , and, among methods
with equal , the more accurate one is that has smaller values of the error function of order .

Now let us analyze the convergence of methods for solving differential-algebraic equations of higher
indices. The problem of index 2

(5.2)
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Table 2

Method
Error

Radau32 2.79

IERK33 2.81

IERK323 2.81

Lobatto43 3.89

Kulikov43 3.91

Kulikov423 3.91

IERK43 4.03

IERK423 4.03

Radau53 4.00

IERK54 4.77

IERK534 4.77

Lobatto64 5.08

Kulikov634 5.09

IERK65 6.02

�p
=1 0.25h =2 0.025h

−× 52.90 10 −× 84.72 10
−× 51.01 10 −× 81.57 10
−× 51.01 10 −× 81.57 10
−× 65.60 10 −× 107.24 10
−× 64.06 10 −× 104.95 10
−× 64.06 10 −× 104.95 10
−× 61.67 10 −× 101.56 10
−× 61.67 10 −× 101.56 10
−× 61.57 10 −× 101.56 10
−× 71.73 10 −× 122.95 10
−× 71.73 10 −× 122.95 10
−× 71.10 10 −× 139.10 10
−× 89.35 10 −× 137.62 10
−× 93.31 10 −× 153.16 10

Table 3

Method

Radau32 3.00 1.99

IERK33 3.00 2.98

IERK323 3.01 3.02

Lobatto43 4.00 2.00

Kulikov43 2.00 2.00

Kulikov423 4.00 2.00

IERK43 2.00 2.00

IERK423 4.00 2.00

Radau53 5.00 2.99

IERK54 2.97 3.15

IERK534 5.00 3.99

Lobatto64 5.99 3.98

ye ze �yp �zp

−× 62.04 10 −× 46.54 10
−× 62.75 10 −× 67.13 10
−× 62.06 10 −× 63.06 10
−× 82.10 10 −× 43.01 10
−× 66.68 10 −× 42.12 10
−× 83.33 10 −× 42.58 10
−× 53.50 10 −× 52.26 10
−× 84.87 10 −× 41.89 10
−× 101.52 10 −× 68.64 10
−× 73.91 10 −× 72.28 10
−× 102.14 10 −× 83.87 10
−× 121.04 10 −× 71.58 10
has the solution , , and the problem of index 3

(5.3)

has the solution , . The errors and estimated orders are calcu-
lated by formulas (1.3) and (1.4) with  and  for each of the following components of
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Table 4

Method

Radau32 1.96 1.97 0.95

IERK33 3.04 3.00 1.96

IERK323 3.01 2.93 1.96

Radau53 4.08 2.97 1.99

IERK54 2.99 2.98 2.99

IERK534 5.00 3.96 2.99

Lobatto64 3.98 3.97 2.00

ye ze ue �yp �zp �up

−× 69.94 10 −× 44.63 10 −× 22.43 10
−× 71.30 10 −× 65.07 10 −× 46.02 10
−× 77.86 10 −× 61.83 10 −× 44.61 10
−× 92.01 10 −× 66.10 10 −× 45.03 10
−× 88.04 10 −× 77.40 10 −× 67.94 10
−× 101.60 10 −× 82.71 10 −× 66.56 10
−× 91.21 10 −× 88.77 10 −× 44.63 10
the solution: , the y-component (variables of index 1); , the z-component (variables
of index 2); and u, the u-component (a variable of index 3). The results of the solution of problem (5.2)
are presented in Table 3, and of problems (5.3), in Table 4. If the method does not converge (one of the
estimates of the order is about zero or negative), then its results are not given. Similar results were also
obtained in solving problems of indices 2 and 3 in [21, 22].

Among the third-order methods, the most advantageous are the methods of a higher pseudo-stage
order, IERK33 and IERK323. All fourth-order methods proved to be unsuitable for solving problems of
index 3. This is probably due to the fact that they have , which leads to accumulation of errors.
Among the fifth-order methods, the best results were demonstrated by IERK534, a method with a stable
internal stage. Of all the sixth-order methods, only Lobatto64 provided convergence, but it has

, which can lead to deterioration of convergence in the integration with a variable step (see
Remark 2 to Theorem 5.2 in [21]).

6. CONCLUSIONS
The results of the experiments have shown that the methods with explicit internal stages can be more

accurate than the analogous methods (of the same order and with the same stability function) without
explicit internal stages. Such methods can have an advantage in solving large problems with sufficiently
simple right-hand sides, when the main computational costs are caused by solving a system of linear alge-
braic equations in each iteration.
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