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INTRODUCTION
Problems of mathematical programming and optimal control were an important area of N.N. Moi-

seev’s research. He made a special contribution to the development of efficient numerical methods for
finding their solutions (see [1–3]). Recently, new formulations of optimization problems appeared, which
required new numerical methods. The linear cone programming problems are among such formulations.
They are more general in comparison with linear programming problems; the requirement of nonnegativ-
ity of variables is replaced in them by the belonging of these variables to some convex cone. Of particular
interest are problems with a second-order cone (the Lorentz cone) and semidefinite programming prob-
lems, the cone in which is the cone of positive-semidefinite matrices (see [4]). Since recently, all these
problems attract increased attention. This is related both to theoretical issues and to the possibility of
reducing many other optimization problems, including combinatorial optimization problems, to cone
programming and semidefinite programming problems (see [5]).

Numerical methods for solving cone programming problems are usually constructed by adjusting to
these problems appropriate linear programming methods. The most popular of them are the primal-dual
interior point methods (see [4, 6, 7]). There are also simplex-type methods (see [8–10]). In this paper, we
consider the general cone programming problem in which a part of the variables belongs to the nonnega-
tive orthant of the space and the other part, to the direct product of second-order cones. In this paper, for
solving this problem, a primal Newton-type method is proposed. Earlier, in [11], this method was consid-
ered in connection with the linear semidefinite programming problem.

The work consists of three sections. Section 1 gives the optimality conditions for cone programming
problems. Section 2 gives the formulation of the general cone programming problem containing second-
order cones. Finally, in Section 3, a numerical method is developed and its convergence is proven.
Symbol  is used to denote a unit matrix of order s, and symbol  denotes an s-dimensional zero vector.
The diagonal matrix with a vector x on the diagonal is denoted by .

1. OPTIMALITY CONDITIONS IN CONE PROGRAMMING

Suppose that, in , there is a convex closed cone K with a nonempty interior . We also
assume that the cone K is directed in the sense that . Then, K defines a partial order:
namely,  if . The strict inequality  means that .
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Suppose, in addition, that there are an -matrix  and nonzero vectors  and . The
linear cone programming problem in the standard formulation is

(1)

The problem dual to (1) is

(2)

where  is the dual cone to K. It is assumed that both problems (1) and (2) have
solutions and the rows of the matrix  are linearly independent.

The necessary and sufficient optimality conditions for the pair of problems (1) and (2) are written in
the form of the equalities (see [12])

(3)

in which  and , where the first equality can be replaced by n other equalities.
Further on, we assume that the cone K is self-dual, i.e.,  and consider two examples of prob-

lems with such cones (see [12]).

Example 1. . This cone is polyhedral; for any vector , we have the expansion
, where  is the ith unit vector and , . A point x belongs to  if and

only if  for all . Problem (1) with the cone  is an ordinary linear programming problem.

Define in  the Hadamard product  of vectors :

(4)

and the square . Then, we can consider a quadratic transformation . Obviously,

the cone  is the image of the entire space  under the mapping . The first equality in (3) for 
and  is satisfied if and only if . Taking the matrix , we obtain

(5)

where  is the n-dimensional vector with all components equal to one.

Example 2. , where  is a second-order cone (the Lorentz cone) in the space , defined as

(6)

The norm in (6) is the Euclidean norm. Any vector  can be represented as

(7)

where , ,

(8)

The vectors  and  belong to the boundary of the cone . A vector x from  belongs to the cone 
if and only if  and .

Now consider instead of (4) the product of the vectors :

(9)
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Let , where the product of vectors is now determined according to (9). It is easy to check that

the cone  is the image of the space  under the quadratic transformation . We again

find that the first equality in (3) for  and  is satisfied if and only if . Formula (5) is
preserved if, for the matrix , we take the matrix  having the form

2. GENERAL CONE PROGRAMMING PROBLEM

Let , where  and , . In addition, suppose that the vec-
tors c and x are divided into subvectors  and , where  and the
matrix  is divided into submatrices:

A semicolon in the enumeration of the components of vectors  and  indicates that one of the compo-
nents is placed under another.

Consider a cone programming problem (1) in the form

(10)

The dual to it is the problem

(11)

in which .

Suppose that  and . Denote the feasible set in problem (1) by  and the
feasible set in problem (2) by .

In addition, define the product of the vectors x and  from  as follows:

(12)

where product (4) is used in the first component  and product (9) is used in all the others. Accoding
to formulas (5), the equality  is rewritten as

and the optimality conditions for problem (10) can be represented in the following form:

(13)

Substituting  into the first two equalities and multiplying them by the corresponding matrices , we
obtain
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Sum these equalities with each other and add to them the third equality from (13) previously multiplied
by a certain coefficient . As a result, we arrive at an equation for the dual variable u:

(14)

where

If the matrix  is not singular, then, resolving Eq. (14), we find

and, for the weak dual variable , we have

Then, the first two equalities in (13) after substituting  actually reduce to a system of n nonlinear equa-
tions with respect to the variable x, namely:

(15)

Let us find the conditions under which the matrix  is not singular. Let  be the tangent space to
the cone  at a point . Since the cone  is the Cartesian product of the cones  and ,

,

Here,  is the tangent space to the cone . Accordingly,  is the tangent space to the cone ,
. In addition, denote by  the null-space of the matrix .

Definition 1 (see [12]). A point  is said to be nondegenerate if .

Let , where . Divide the vector  into two parts. The vector  includes the
positive components of the vector , and the vector  includes the remaining zero components. Divide
the vector  into three parts, , , and . Assign to  those nonzero components  of the vector 
that belong to the boundary of the cone . On the contrary, to , assign the components .
All components  comprise the vector . Without loss of generality, we assume that

(16)

and the number of columns in the matrix  is equal to the number of components of the vector .

If , then we can apply to it expansion (7) in which  and . If, in addition,  is a

non-zero vector belonging to the boundary  of the cone , then one component,  or , is posi-
tive and the other is zero. The vectors  and  are eigenvectors of the matrix . The eigenval-
ues corresponding to them are  and . Let  be an orthogonal matrix of the form

(17)

where  is a -matrix all columns of which are orthogonal to the vectors  and . Then, any
column of the matrix  is an eigenvector of the matrix  and the columns of the matrix  corre-
spond to the same eigenvalue equal to . Denote by  the left submatrix of the -matrix ,
i.e., in other words, the matrix  from which the right column is removed.
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Assume that  and, for definiteness, that  and . Then,  and

If , then  coincides with the entire space .

Let  be the number of positive components of the vector . Let, in addition,  be the number of
vectors  and  be the number of vectors . We have the following nondegeneracy cri-
terion in problem (10) (see, e.g., [12]).

Assertion 1. A point  in which  and  have form (16) is nondegenerate if and only if the
rows of the matrix

(18)

are linearly independent.
According to this criterion, at a nondegenerate point , we must have the following inequality:

Assertion 2. If a point  is nondegenerate, then the matrix  is nonsingular.
Proof. Substitute instead of the matrices , , their factorizations using the orthogonal

matrices  from (17). Then, taking into account Assertion 1, we find that  is a Gram matrix com-
posed for linearly independent vectors. Therefore, it is nonsingular. The assertion is proven.

Assertion 3. Let  be a nondegenerate solution of problem (10) and  be the solution of dual
problem (11). Then,  and .

Proof. From the duality condition, it follows that . On the other hand, the vector 
must satisfy system (14) in which . Substituting , we find that the given vector satisfies this
system. Since the matrix of the system is nonsingular, its solution is unique. Hence,  and

. Therefore, we have the equality . The assertion is proven.

3. ITERATIVE PROCESS

Suppose that problem (10) is nondegenerate, i.e., all points  are nondegenerate. Then, by
Assertion 2, the matrix  is nonsingular at any point . Due to its continuity, it will remain
nonsingular also in some neighborhood of the feasible set . By Assertion 3, the solution of problem (10),
the point  satisfies the system of equations (15).

Let us apply Newton’s method to solving system (15). Let  be the block-diagonal matrix with
blocks

Then we come to the following iterative process:

(19)

where  is the Jacoby matrix of the vector function .
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where .
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Differentiating (21) with respect to x and taking into account Assertion 2, we obtain

After substituting  into the Jacobi matrix , we arrive at (20). The
assertion is proven.

If  and  are the solutions of the primal and dual problems (1) and (2), then, due to (3), we have
the complementarity condition , where the product of vectors is understood in the sense
of (12). The strict complementarity condition means that . The matrices  and

, , are mutually commutative. Therefore, in their factorizations, one can use the
same orthogonal matrix .

Below, we will need the definition of nondegeneracy in dual problem (11).

Definition 2 (see [12]). A point  is said to be nondegenerate if , where

 is the space of columns of the matrix .

Suppose that  and, for ,  admits the representation , similar
to (7) where  and . We also assume that the matrix  admits the decomposition

 in which the orthogonal matrix  has form (17) and  is the vector of eigenvalues
of . Define , , and form from vectors  the matrix .

The matrix  has the dimensions .

Assertion 5 (see [12]). A point  at which  and  is nondegenerate if and
only if the columns of the matrix  are linearly independent.

Assertion 5 implies the inequality

Theorem 1. Suppose that the solutions  and  of the primal and dual problems (10) and (11) are
nondegenerate. Suppose, in addition, that  and  satisfy the strict complementarity condition. Then,
iterative process (19) converges locally to  with a superlinear rate.

Proof. Let us show that a homogeneous system of linear equations , where , has only
the trivial solution .
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tion, the number of zero components of the vector  that compose the subvector  is equal exactly to .
For the same reason, the number of vectors entering into the blocks , , and  are equal to , ,
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and set
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tive-definite matrices. Since the matrix  has form (20), this immediately implies that  and
.

Now suppose that , , and  are the vectors x, , and y without the first and last component. Sup-
pose, in addition, that  and  are the block-diagonal matrices  and  from which the
first and last diagonal blocks are removed and  is the submatrix of  that does not have submatrices 
and . Then it only remains to show that the system

(22)

where  and , has only the trivial solution.

The matrix  is idempotent; therefore, multiplying (22) from the left by , we obtain
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Since , based on (23), we have the equalities

Hence, since the components , , of the diagonal matrix  are equal to zero and all others are
strictly positive, we find that, in the vectors , , only the first components can be nonzero.

Thus, if we assume that the vector  is nonzero, then the columns of the matrix  are linearly
dependent. We arrived at a contradiction with the requirement that the solution  be nondegenerate
in dual problem (11). Therefore, necessarily, . Hence, the matrix  is nonsingular and, by The-
orem 10.2.2 from [13], iterative process (19) locally converges to the point  with a superlinear rate. The
theorem is proven.
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