ISSN 0965-5425, Computational Math, ics and Math ical Physics, 2018, Vol. 58, No. 2, pp. 159—169. © Pleiades Publishing, Ltd., 2018.
Original Russian Text © B.V. Ganin, A.I. Golikov, Yu.G. Evtushenko, 2018, published in Zhurnal VychisliteI’'noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58,
No. 2, pp. 169—180.

Dedicated to the 100th birthday of Academician N.N. Moiseev

Projective-Dual Method for Solving Systems of Linear Equations
with Nonnegative Variables

B. V. Ganin, A. 1. Golikov*, and Yu. G. Evtushenko
Dorodnitsyn Computing Center, FRC CSC RAS, Moscow, 119333 Russia
*e-mail gol-a@yandex.ru
Received July 12, 2017; in final form, September 6, 2017

Abstract—In order to solve an underdetermined system of linear equations with nonnegative variables,
the projection of a given point onto its solutions set is sought. The dual of this problem—the problem
of unconstrained maximization of a piecewise-quadratic function—is solved by Newton’s method.
The problem of unconstrained optimization dual of the regularized problem of finding the projection
onto the solution set of the system is considered. A connection of duality theory and Newton’s method
with some known algorithms of projecting onto a standard simplex is shown. On the example of taking
into account the specifics of the constraints of the transport linear programming problem, the possi-
bility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some
examples of numerical calculations using MATLAB are presented.
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INTRODUCTION

The problem of finding a solution of an underdetermined system of linear equations with nonnegative
variables does not belong to the classical problems of computational linear algebra. To solve such prob-
lems, it is expedient to use duality theory and various optimization methods, e.g., Newton’s method,
which, being applied to large linear programming (LP) problems, finds the projection of a given point
onto the solution set of the initial LP problem [1, 2].

On the one hand, a system of linear equations with nonnegative variables can be considered as an LP
problem with a zero objective function. On the other hand, as is well known, an LP problem reduces to
solving a system of linear equations and inequalities. The disadvantage of this reduction is an increased
number of variables in the system in comparison with the initial LP problem. A different method of reduc-
ing the initial primal LP problem to a system of linear equations with nonnegative variables was proposed
in [1]. If, in the primal problem, we add to equality constraints with nonnegative variables the equality of
the objective function to its a priori unknown optimal value, we will obtain a linear system describing the
solution set of the primal LP problem. Let us find in this set the projection of a given point, i.e., the solu-
tion of a strictly convex quadratic programming problem (the projection stage). To solve this problem, it
is expedient to pass to the dual problem, which is the problem of unconstrained maximization of a concave
piecewise-quadratic function (the second stage of the method is the passage to the dual problem). The
number of variables in the dual problem is equal to the number of constraints in the primal LP problem
plus the Lagrange multiplier corresponding to an additional constraint: the equality of the objective LP
function to its unknown optimal value. As shown in [ 1], this factor can be fixed, taking it larger than a cer-
tain threshold value. After this, the knowledge of the optimal value of the objective function is not required
and, based on the results of unconditional maximization, the projection of a given point on the solution
set of the LP problem is found by a simple formula.

The unconstrained maximization of a concave piecewise-quadratic function can be carried out espe-
cially efficiently by Newton’s method, which, in this case, converges globally for a finite number of steps
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160 GANIN et al.

if the step size is chosen by the Armijo rule [3]. Since a piecewise-quadratic function does not have a
matrix of second derivatives, a generalized Hessian matrix is used. In some cases, this matrix has a specific
form that makes it possible to recalculate it fairly easily at each step of Newton’s method and makes it pos-
sible to easily parallelize the method [2, 4, 5].

In Section 1, the solution of a linear system of equations with nonnegative variables is considered as a
problem of projecting a point on the solution set of this system (the first stage of the method is the replace-
ment of the original problem by the problem of finding the projection of a given point on its solution set).
Thus, we come to a convex quadratic programming problem, the dual of which is the problem of uncon-
strained maximization of a concave piecewise-quadratic function [6]. From the solution of the dual prob-
lem, the projection, i.e., the solution of the original system, is calculated by a simple formula (the second
stage of the method is the passage to the dual problem and its solution). The number of variables in the
dual problem is equal to the number of equations in the original system.

In Section 2, the linear system with nonnegative variables is solved as a regularization problem, which
is the problem of minimizing a strictly convex quadratic function on a nonnegative orthant. For this min-
imization problem, the dual problem of unconstrained maximization of a strictly concave piecewise-qua-
dratic function is introduced. From its solution, the solution of the regularized problem is easily calcu-
lated. In contrast to the primal minimization problem on a nonnegative orthant, this dual problem of
unconstrained maximization can be efficiently solved by Newton’s method. Examples of solving large lin-
ear systems in MATLAB by the projection and regularization method are presented.

In Section 3, we consider the special problem of projecting a point onto a standard simplex. Using the
duality and Newton’s method, we show the connection between the methods of projecting onto a simplex,
which were considered in detail in [9, 10].

In Section 4, in order to reduce the computational costs in the construction of the generalized Hessian
matrix, we consider and take into account the specificity of linear equality constraints in the transport lin-
ear programming problem. The results of calculations in MATLAB are presented.

1. BASIC COMPUTATIONAL FORMULAS FOR THE PROJECTION-DUAL
AND NEWTON’S METHODS

Given a system of linear equations with nonnegative variables:
Ax=b, x2=0,. (D)

Here, the matrix 4 € R™" and the vector b € R” are defined and m < n. We denote by 0, the i-dimen-
sional zero vector. Henceforward, we will assume that system (1) is solvable. This system is regarded as a

special case of the linear programming problem
min 0/x, X={xeR":Ax=bx20,), )
with the objective function vector ¢ = 0,,. The problem dual to (2) is
T m T
m%Xb u, U=ueR":Au<0,. 3)

Since X # and U # 0, LP problems (2) and (3) are solvable. Denote their solution sets by X* and U*.
In this case, X = X*, i.e., the feasible set of problem (2) coincides with its solution set. The specific form
of these linear programming problems allows us to use, for solving problem (2) and, consequently, (1), a
concave piecewise-quadratic penalty function not containing a penalty coefficient. In order to find the
normal solution of system (1), it suffices to apply to dual problem (3) a quadratic penalty function. Then,
from the solution u* of the problem

max {bTu - %H(ATL{)+

ueR™

’|
| C))

we find by a simple formula x* = (4 Tu*) .. the normal solution of LP problem (2) (the normal solution of
system (1)) [1]. Hereinafter, a, denotes a vector in which all negative components are replaced by zeros.
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PROJECTIVE-DUAL METHOD FOR SOLVING SYSTEMS OF LINEAR EQUATIONS 161
The normal solution of system (1) (LP problem (2)) is the projection of the zero point onto the set X (X *):
x* = Pry(0,) = Pry.(0,). Note that problem (4) is dual to the quadratic programming problem (see [1, 6])

2

, X={xeR":Ax=b,x20,},

min 1 ||x
xe X 2
or, which is the same, to regularized problem (2).

In a similar manner, we find the projection x* of a given point x onto the set X. The following two
problems are mutually dual [1, 6]:

mi§1%||x—)2||2, X={xeR:Ax=h x>0, 5)
max{pr—l G+ Al +1/2 ;22}. (6)
peR” 2

By the Frank—Wolfe theorem [7], problem (5) is solvable, since its objective function is quadratic and
bounded below on the nonempty set X. Therefore, dual problem (6) is also solvable [6].

From duality theory for quadratic programming, we deduce the following assertion.

Assertion [6]. The unique solution x* of problem (5) is expressed in terms of the solution p* of dual
problem (6) by the formula

=R+ A p),. (7)

Thus, solving the unconstrained minimization problem

2

&+A"p)., (8)

maxS(p),  S(p)=b'p-1
peR” 2
we find by formula (7) the solution x* of the linear system with nonnegative variables (1), which is the

projection of the given point x* = Pry(X) onto the set X.
The function S(p) does not have the ordinary Hessian matrix. Indeed, the gradient

S,(p)=b— AR+ 4 p),

of the functions S(p) is not differentiable. However, for this function, we can define a generalized Hessian
matrix, which is a symmetrically negative-semidefinite m X m matrix of the form

S,,(p) =-AD)A’, )

where D(z) denotes a n X n diagonal matrix with the /th diagonal element z; equal to 1 if (X + A p); >0
and equal to 0 if (x + ATp),- <0,i=1,...,n;i.e., the n-dimensional vector z = sgn(x + ATp)+.

Since the generalized Hessian matrix §,,( pk) at the kth step of Newton’s method can be degenerate,

mxm

we form the matrix H* € R™":
H* =-AD(Z)A" - 61, (10)

where /, € R™" is the unit matrix and § is some positive number (usually, 10_4). The direction of maxi-
mization, Ap, of the function S(p) at the point p* is found from the solution of the system of linear equa-
tions
k k
H Ap ==5,(p"). (11)

1

The next approximation pk+1 is defined by the formula pk+ = pk - TkAp, where the step T is found from

the solution of the one-dimensional maximization problem = argmax.S( pk — TAp), e.g., by the Armijo
T

method. O. Mangasarian proved the finite convergence from an arbitrary point p0 of the generalized
Newton’s method for the unconstrained maximization of a concave piecewise-quadratic function [3].
Thus, in a finite number of steps, we find the solution p* of problem (6) and find by formula (7) the pro-
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162 GANIN et al.

jection of the point x onto the set X. Thus, the solution of system (1) with » nonnegative variables and m
equations reduces to a finite number of solutions of systems (11) of the dimension m X m.

2. REGULARIZED PROBLEM OF FINDING THE PROJECTION OF A POINT

In order to find the projection of a point X onto the solution set of system (1), we can use another
approach, different from the application of mutually dual problems (5) and (6). For this, following [8], let
us consider the regularized problem (or, which is the same, penalty problem (5))

min F(x), F(x) = %(Hb — A +e|x - #P) (12)
xR’}

with a positive parameter €. As € — 0, the solution x(€) of problem (12) converges to the solution x* of
problem (5) or, which is the same, to the projection x* of the point X onto the solution set of system (1).
From the computational point of view, this problem has two drawbacks: the condition of nonnegativity of

variables x and their dimension # > m, which hampers the direct application of Newton’s method to
problem (12).

These drawbacks are not inherent in the following unconstrained maximization problem:

maxW@w), Ww=bu-Et
ueR" 2

the solution of which can be easily calculated in terms of the solution of problem (12).

P
=Sl (13)

(% + (‘;Aﬂm

Theorem. For any € > 0, the unique solution x(€) = arg mirnl F(x) of problem (12) is determined in terms

xeRY

of the unique solution u(e) = arg max W (u) of problem (13) by the formula
ueR"

X(e) = (x + iATu(a)) :

Proof. The function to be minimized in problem (12) for € > 0 is a strictly convex quadratic function,

bounded below by zero on R’;. Therefore, by the Frank—Wolfe theorem [7], problem (12) always has a
solution, which is unique.

In problem (13), the maximized piecewise-quadratic function for € > 0 is strictly concave and
bounded from above on the entire space R”. Indeed, it is true that

2
Ww=bTu-% S i e R

(% + iATuL

2 2
Tz 1 2 12
==|p|" —=|1b — - < =B .
L6 -2~ 1o

%+ iATu)Jr

(% + iATu)Jr

_¢t €

2 2
Therefore, for any € > 0, by the Frank—Wolfe theorem, problem (13) always has a solution, which is
unique.

For problem (12), using additional variables y € R™, we introduce artificial constraints Ax + y = b and
obtain an equivalent nonlinear programming problem:

minmin Ly +e[x - %), Ax+y=b, (14)

yeR"” xeR" 2

for which the dual problem is formulated in a standard way.
Introduce the Lagrange function for problem (14) as follows:

L(y,x,u) = %”y”2 + %”x -3 + u'(b— Ax - y).

Here, u € R™ are the Lagrange multipliers for this problem. The problem dual to (14) has the form

max min min L(y, x, u). (15)
ueR"” yeR" xeR’
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PROJECTIVE-DUAL METHOD FOR SOLVING SYSTEMS OF LINEAR EQUATIONS 163

Write the conditions for the minimum with respect to y and x for the internal minimization problem:
L,(¥(€), x(e),u) = y(€) —u = 0,,
L&), x(e)u) =e(x(€) —X)—A'u>0, x (E)Ex@E)-%-A4u)=0, x@E)=0,

From these conditions, we easily find the solutions of internal minimization problem (15):

»E) =u, (16)
X(e) = (x + 1ATu) . (17)
€ +

Substituting solutions (16) and (17) into the Lagrange function L(y, x, u), after simple transformations, we
obtain the dual function for problem (15):

2
Lwy=b"u-E — L + €z A,
2 2 2

(% + éATu)Jr

2 €
=W(u)+=
(u) 5

i.e., we come to problem (13) dual to problem (14) and, therefore, to problem (12). The theorem is proven.
Let us make in (13) the change of variables p = u/€ and solve instead of (13) the problem

maxW(p), W(p)=b"p—-1|c+47p),
peR 2
Then, from its solution p(€), we find the solution of regularized problem (12):

2 8 2
-= . 18
£ (18

x(€) = (X + A" p(e)),.

Problem (18) can be conveniently solved by Newton’s method, especially if we take into account that
m < n. The function W (p) to be maximized in problem (18) is strictly concave piecewise-quadratic and
differentiable. Its gradient has the form

Wy(p)=b—AG + A4 p), —ep.

The function W ,(p) is not differentiable; we can define for it a generalized Hessian matrix, which, in con-

trast to the matrix §,,, for € > 0, is a nondegenerate (m X m)-matrix of the following form:

W,p(p) = —AD()A" —el,,
Here, by analogy with formula (9), we denote by D(z) the diagonal (n X n)-matrix, and the n-dimensional

vector is z = sgn(x + ATp)+.

Let us present some results of calculations in MATLAB 2014b on a personal computer with an AMD
FX-8350 processor with a frequency of 3.90 GHz and 16 GB RAM. We solved randomly generated sys-
tems with a large number of nonnegative variables (up to a million) and a moderate number of equations
(up to four thousand), i.e., the condition n > m was satisfied. The numbers m and »n, which determine
the number of rows and columns in the matrix 4, and d, the density of filling the matrix 4 with nonzero
elements, were specified. In particular, d = 1 means that all elements of the matrix A were randomly gen-
erated and d = 0.1 indicates that only 10% of the elements of the matrix 4 were generated and the rest were
set to zero. The elements of the matrix 4 were specified randomly from the interval [—50, +50]. The solu-
tion p* was chosen randomly from the interval [—10, 10], and the projected vector x, from [0, 10]. Using

them, by formula (7), the projection x* and then the vector b = Ax* were calculated.

Table 1 presents the dimensions of the problems and the density of the matrix. The number of iterations
of Newton’s method, the Chebyshev norm of the residual of the system, and the computation time are
given for the solution of projection problem (5) by solving dual problem (8) by Newton’s method and for
the solution of regularized problem (12) by solving the dual problem (18) by Newton’s method. In regu-

larized problem (12), the regularization coefficient € was set to 107" and the unconstrained maximization
problem was solved. When solving dual problem (8), at each kth step of Newton’s method, in formula (10)

for calculating H k, it was assumed that 8 = 10™*. In these examples, the use of the Armijo rule was not
necessary. From the calculation results, it can be seen that projection problem (5) and regularized problem (12)
showed approximately the same accuracy and solution time.
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Table 1. Comparative results of programs for solving problems (5) and (12)

Dimension Density Problem (5) Problem (12)
mxn d it [Ax — 8|, t,s it [[Ax — ], t,s

250%10* 1 6 2.8%x107" 2.8 6 2.6x107" 2.7
500 x 10* 1 6 5.6%x107" 8.7 6 3.7%x107" 8.9
1000 x 10* 1 7 6.0x107" 35.5 7 4.1%x107" 35.1
2000 x 10* 1 8 4.4x10™" 166.4 8 3.7%x107" 156.1
3000 x 10* 1 9 6.2x107" 446.1 9 6.5%x107" 451.6
4000 % 10* 1 10 7.4%107" 822.1 10 7.0x107" 825.1
1000 x 10° 0.5 6 1.8x107" 167.6 6 1.4x107"° 164.9
2000 x 10° 0.5 6 53%x107"° 671.7 6 5.0x107"° 658.9
3000 % 10° 0.5 6 4.5%107"° 1479.0 6 53%x107"° 1414.0
4000 x 10° 0.5 6 52%x107"° 2508.5 6 59%x107"° 2470.3
500 x 10° 0.1 6 1.5x107" 57.4 6 2.2x107"° 59.3
1000 x 10° 0.1 6 1.5%107° 180.5 6 1.6x107° 180.1
2000 x 10° 0.1 6 1.3%107° 685.8 6 1.2%x107° 687.6

3. SPECIAL CASE OF PROJECTING A POINT ONTO A STANDARD SIMPLEX
The projective-dual method is especially simple and efficient in a special case of problem (5) when the
projection of a given point X € R" on a standard simplex is sought. Suppose that, in problem (5), m = 1,

b=1,and 4 = e,,T , where e, denotes an n-dimensional vector whose all components are equal to unity,
i.e., a standard simplex is defined. Write this projection problem in the form

mian(xi -3, X= {xe R": > x,=1,x20ieN=1: n}. (19)

i=1
In accordance with (6), the problem dual to (19) reduces to the unconstrained maximization of a concave

one-dimensional piecewise-quadratic function of the scalar p € R':
n
1y, 2 1 2
max .S =max{ —=[(x+e }=max - = it . 20
max S(p) = max{p 2||( D). | ma {p . ;(x ph} (20)
Substituting the solution p* of this problem into formula (7), we find the projection x* of the point X onto
the standard simplex:

x* = (X +e,p*),. (21)

The one-dimensional unconstrained maximization problem (19) can be solved using various optimization
algorithms, but Newton’s method is especially efficient. Let us show that the “vector algorithm” studied

in detail in [9, 10] is a variant of Newton’s method with a special choice of the initial approximation po,
which ensures the positivity of the generalized second derivative of the function S(p) at each step.

The derivative of the function S(p), calculated at the kth iteration of the generalized Newton’s method
at the point pk , has the form

n
T,A k N k N k
S,(p)=1-e,G+ep" ), =1-Y & +p)=1- D %+np".
i=1 ieN\I,

Here, we introduce the index set [, ={ie N : £+ pk <0} and n, = |N \/ k| is the number of positive

components of the vector £* = (X + ¢,p"),.
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The equality to zero of the derivative S,(p) is the necessary and sufficient condition for the optimality
of problem (20). It should be noted that finding the root p* of the equation

D Gi+p)n=1 (22)
i=1

underlies the “scalar algorithm” presented in [9, 10].The high efficiency of this algorithm is related to the
specificity of the equation, whose left-hand side is a piecewise-linear function of one variable p. Basically,
solving Eq. (22) by any method, we obtain by the formula (21) the solution of the original problem (19).

The generalized second derivative S,,(p) of a function S(p), calculated at a point pk has the form
Spp(P") = —e, D", = —n. (23)

Here, D(zk) is a n X n diagonal matrix in which the ith diagonal element is equal to the ith component of

the vector z*, which is equal to 1 if (£ + e,,pk), > 0 and equal to 0 if (x + e,,pk)i <0,i=1,...,n,i.e., the
. . k o k

n-dimensional vector z© =sgn(X +e,p"),.

An iteration of Newton’s method has the form

S,
P =pk—"—k=—(1— > x] (24)
Spp(p ) nk ieN\I,

The case of n, = 0 is possible if N\/, =0, i.e., if all components of the vector x + ¢, pk are nonpositive.
In this case, in accordance with (10), we should use in method (24) the regularized generalized second
derivative

H=5,(p")-8=-n -3, (25)

where 0 is some positive number (usually, 10_4).

Method (24) converges in a finite number of steps. The choice in the “vector algorithm” [9, 10] of the
initial approximation by the formula

P = 1[1 _ ch,.j (26)

n ieN

guarantees that the second derivative §,,(p) will be nonzero at each step. During the work of the algo-

rithm, the index set /, strictly expands and, at a finite iteration, is equal to the number of zero components
in the projection x*, the solution of original problem (19). The total number of iterations depends on the

initial approximation p0 and the number of positive components in the solution x*.
Let us consider an example from [9] with the maximum complexity of the “vector algorithm,” when

the number of positive components of the vector £* = (X +e, pk) decreases by one at each iteration. In this
case, the solution of the problem of projecting a point onto a simplex is achieved at one of the unit vectors

of the space R".

Example (see [9]). Let n =4, x = (1,17,22,25), and the initial approximation pO = —16 be chosen
according to (26). In this case, at each iteration, one component of the current vector x changes and the
method arrives at the optimal point x* = (0,0,0,1) in 4 iterations. However, for any initial approximation po
from the interval (—25, —22), Newton’s method (24) finds the projection in one step; for any pO from
(=22, —17), in two steps; for any pO from (—17, —1), for three steps; and, for po > —1, in four steps.

If we take pO < =25, then all components of the vector (x + ¢, po) are negative, we must use in New-
ton’s method generalized derivative (25), and the projection is obtained at the sixth step.
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4. THE CASE OF A TRANSPORT LP PROBLEM
Given a transport problem in the standard formulation:

m

n
ZZC,]x,-j — min,
i=1 j=1
n . (D
dxj=a, Dx;=b, x,20, 1<i<m, 1<j<n
=] ]

. — — T T N T
Define the vector ¢ € R™ as ¢ = (¢;,Cpy...Clpe- CoiCma--Con) > the vector b € R™™ as b = (a,...a,,b,...b,) ,

and the vector X € R™ as X = (x, ,xlz...xln...xmlxmz...xmn)T. Then, the problem (7") can be rewritten in the
form of a linear programming problem in the canonical form:

¢'Xx > min, Ax=b, Xx20. (P)
Here, the matrix A of the dimension (m + 1) X mn consists of zeros and units and has the form
11...1

|
Il
—_
—_
—_

1 1 1
As shown in [1], the linear programming problem (P) reduces to the following unconstrained maximiza-
tion problem:

max S(p,B,X) = max {5Tp—%u(§+ZTp_Bg)+
p

pER(WH»n) <R

2} : 7)

Here, [ is some numerical parameter and X is an arbitrary fixed point. Then, for any B>P " where 3 N is

a certain threshold value, one can find the projection of the point X onto the solution set of the linear pro-
gramming problem (P) by the formula

X*=(x+4 p@B)-po).,
where p(B) is the solution of problem (27).
Problem (27) can be efficiently solved by the generalized Newton’s method. Since the Hessian matrix

for the concave piecewise-quadratic function S(p, B, X) is not defined, we use the generalized Hessian
matrix, which is a diagonal (m + n) X (m + n)-matrix

S,,(p,B,X) = -AD()A". (28)
Here, D(z) is a diagonal mn X mn-matrix whose ith diagonal element is the ith component of the vector
z€ R™ whichisequalto 1 if (x + ZTp —B¢); > 0 and equal to 0 in the remaining cases, i = 1,..., mn; i.e.,
z=sgn(x+ A4 p-Ppo),.

When using the generalized Newton’s method, much time is spent to calculate matrix (28). Therefore,
in order to accelerate the computation of generalized Hessian matrix (28), it is expedient to take into

account the specific form of the constraint matrix 4 of the transport problem. The matrix A has a pro-
nounced block structure, and the generalized Hessian matrix has the same property. In particular, if

D(z) = 1,,,, matrix (28) has the form
__ P 0
Spp = A4’ = =T Q~ )
Q0 R

P=mI, PeR™, R=nl, ReR™,

ns
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11...1
A S |
0=|. ., Qe R™.
11...1

Thus, the generalized Hessian matrix consists of 4 blocks, two of which are diagonal matrices, and the two
others have all elements equal to 1. This matrix will be called the initial generalized Hessian matrix. Then,
at each iteration of the process of solving the unconstrained maximization problem (27), the generalized

Hessian matrix is obtained by stepwise transformations of the original matrix A4 i If, on the diagonal of
the matrix D(z) in the ith position, the first zero element occurs, then, in the original generalized Hessian
matrix, four elements are reduced by 1 as follows:
Dix = Pix — L Faa=Faa— 1, qk(m+d) =0, q(erd)k =0, (29)
where
n, i—nli/n|=0,
k=[], a={® iorliml=0
i—n|i/n] otherwise.
Here, f(x) =[x] is the upward rounding and f(x) = | x | is the downward rounding of the argument to
the nearest integer number. Further transformations are carried out step by step in accordance with the
position of subsequent zero elements on the diagonal of the matrix D(z). If, on the contrary, at some iter-
ation, zero elements in the matrix D(z) are replaced by units, then we perform the recalculation by similar
formulas:
Pk = P + 1, Fpy =Py +1, qk(m+d) =1, q(m+d)k =1. (30)
As a result, the computations of the generalized Hessian matrix can be simplified considerably by taking

into account at each iteration only those elements of the matrix D(z) that have changed. If, on passage to

the (k + 1)-th iteration, / elements of the matrix D(z) have changed in comparison with the kth iteration,
then, for calculating the matrix Sﬁ; ', we must perform 4/ elementary transformations of the matrix Sﬁp.

Let us give an example that clearly demonstrates the transformations of the generalized Hessian matrix.
Consider the case of m = 2 and n = 3. Then, the initial Hessian matrix takes the form:

30111
03111
S,=(11200].
11020
11002
Let D,(z) = 0 be the first (and only) zero element occurring on the diagonal of the matrix D(z). Then, the
matrix §,, will be rewritten (in one step) as follows:
20101
03111
S,=(11200].
01010
11002

Obviously, exactly four elements have changed, one in each block. Let also D(z) = 0. Now the matrix §,,
has the form

10100
03111

S,=11200].
01010
01001
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Table 2. Computation results

mXn J, steps Ay Ay t,s
10 x 20 8 4.0x107" 3.0x107" 0.07
8 4.0x107" 3.0x107"2 0.09
60 x 80 6 3.0x107"2 45%x107" 0.4
6 3.0x107"2 4.5%107" 0.64
100 x 200 6 1.ox10™" 2.3%x107"° 3.4
6 1.0x107" 2.3%x107"° 3.2
100 x 300 8 1.1x107" 1.5%x107"° 10.1
8 1.1x107" 1.5%107"° 7.3
250 x 400 10 2.0x107" 1.0x107° 102
10 2.0x107" 1.0x107° 45
300 x 500 8 2.5%x107" 1.6x107° 132
8 2.5x107" 1.6x107° 70
200 % 600 7 2.9%107" 2.6x107"° 138
7 2.9%107" 2.6x107"° 67
300 x 700 6 3.6x107" 7.6x107"° 91
6 3.6x107" 7.6x107"° 47

Further on, if Dy(z) = 0, then

10100
02101
S,=[11200
00000
01001

etc., in accordance with formulas (29) and (30).

In order to determine the efficiency of the approach considered, a series of numerical experiments was
performed. In this case, we compared the generalized Newton’s method, whose application to the linear
programming problem was described in [1, 2], and its modification in accordance with the above formulas
of iterative transformations of the generalized Hessian matrix. Transport problems generated with the
given number of variables n and the given number m of constraints were solved. To calculate the coeffi-

cients of the objective function ¢ and the right-hand sides » of the LP problem, we used the solutions of
the primal and dual problems, X, and u,, which were generated as follows: in the vector X, the compo-

nents were chosen randomly from the interval [0,10] and, for the vector u,, half of the components were

set to zero and the rest were randomly chosen from the interval [0,10]. Then the vectors » and ¢ were
determined by the formulas

b=Ax* c=Au*+E,

where, if X" > 0, then &, = 0, and, if X = 0, then the component &, was chosen randomly from the
interval

0<vy, <& <0,
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After terminating the iterative process at the Kth step, the residuals were calculated, from which the cor-

rectness of the solution x* found can be determined:
A = HZ)?K — b] H , A= ‘ET)%K —e'x4.

Table 2 presents the results of the computational experiment. Each problem was solved using Newton’s
method. In the first case, the generalized Hessian matrix was calculated using formula (28) (upper line)
and formulas (29) and (30) (bottom line). The first column indicates the number of variables and the
number of constraints in the transport problem generated. The second column indicates the number of
iterations in which the solution was found, and the last column gives the computation time. The third and
fourth columns give the residuals. The problems were solved in MATLAB 2012b on a personal computer
with a dual-core Intel (R) Core (TM) i5-2410M processor with a frequency of 2.30 GHz and 8§ GB RAM.

The results show that the solutions were obtained with a high accuracy. In some cases, the modified
algorithm reduces the computation time. This occurs in the case of a large number of changes in the diag-
onal elements of the matrix D(z). In the last numerical experiment with the problem with the dimension
300 x 700, the step size was chosen using the Armijo rule.
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